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Supplementary Tables 
Supplementary Table 1. Data sources for climate projections. 
Supplementary	Table	1.	Data	sources	for	climate	projections.		Source	information	for	

climate	trends	for	each	environmental	variable	in	the	life‐cycle	model.		RCP	4.5	
and	8.5	scenarios	were	produced	for	the	IPCC	5th	Assessment	Report	(AR5),	
while	the	A1B	and	B2	scenarios	were	produced	for	the	IPCC	4th	Assessment	
Report	(AR4).			

 

Variable, 
Source 

Emissions 
scenario 

GCMs/ 
scenario 

Time 
series/ 

scenario Comments 
Air 
temperature 
and snowpack1 

RCP 4.5, 8.5 10 10 We aggregated daily max and min into 
seasonal mean and April 1 snowpack from the 
grid cell that includes the upper Middle Fork 
Salmon River 

Flow, Salmon, 
ID1 

RCP 4.5, 8.5 10 40 We aggregated daily data to seasonal flows 
using the Multivariate Adaptive Constructed 
Analogs (MACA) downscaling method, 
followed by 4 hydrological models 

Flow LGR1 RCP 4.5, 8.5 10 40 We aggregated daily data to seasonal flows 
using the Multivariate Adaptive Constructed 
Analogs (MACA) downscaling method, 
followed by 4 hydrological models 

Stream 
temperature 
LGR2 

RCP 4.5, 8.5 10 40 We used air temperature, snowpack and flow 
to model stream temperature in the Lower 
Granite Pool for input into the COMPASS 
model 

Flow BON3,4 A1B,  B2 2 2 Although only 2 fully downscaled time series 
were available to run the daily submodel, we 
used the high correlation between BON and 
LGR to select representative years from the 
upstream survival simulations to follow the 
trends in LGR time series (see Appendix S3) 

Stream 
temperature 
BON3,4 

A1B,  B2 2 2 

Sea surface 
temperature5 

RCP 4.5, 8.5 26 26 We utilized monthly output for 2x2 degree 
grid cells, selecting the area included in the 
arc polygon (Johnstone and Mantua 2014) or 
the 4 degree grid cell off WA coast (Lat 46-
48, Lon -124--126) 

Upwelling6 RCP 8.5 1 80 We utilized monthly output from 40 members 
of the Community Earth System Model Large 
Ensemble Project (CESM-LE). Each 
ensemble member begins from a slightly 
different initial atmospheric temperature in 
1920, is subject to historical radiative forcing 
through 2005, and RCP 8.5 radiative forcing 
from 2006 to 2100. 
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Supplementary Table 2. Biological data sources. 
Supplementary	Table	2.	Biological	data	sources.		Data	sources	for	each	life	stage	

survival	estimate,	years	included	in	analysis,	sample	sizes	(N)	for	stage	
survivals	or	uncertainty	estimates	that	we	analyzed	for	this	study.	Data	used	in	
fitting	the	equations	shown	in	the	text	is	available	in	the	data	archive.	See	
references	for	additional	information.	Note	that	years	listed	for	SAR	span	
outmigration	and	adult	return	years.	Outmigration	years	were	2000‐2015.	

	
 
        

Life stage Years N 

Spawner abundance7,8 1998-2016 33542 
Stributary (s2)9  2000-2014 171004 
Smainstem (s2)10 2000-2014 ~1,600,000 
SAR (s3, s0)11 2000-2017 122,415 
Supstream12 2004-2017 7553 
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Supplementary Table 3.  Environmental data for model fitting . 
Supplementary	Table	3.	Environmental	data	for	model	fitting	.		Abbreviations;		

USGS‐U.S.	Geological	Survey,	PRISM‐Parameter‐elevation	Regressions	on	
Independent	Slopes	Model,	USACE,	U.S.	Army	Corps	of	Engineers.		*ICOADS:	
International	Comprehensive	Ocean‐Atmosphere	Data	Set	
https://icoads.noaa.gov/	

  
Life stage  Covariate Abbreviation Source Years 

Stributary Seasonal mean flow at Salmon, ID Gage 
13302500 

FSAL USGS13  1960-2018 

     
Stributary Seasonal mean air temperature, Middle 

Fork Salmon River, ID: 4‑km grid cell 
44.4068N, 115.3520W 

TSAL PRISM14  1960-2018 

     
Smainstem Mean temperature and flow in Lower 

Granite pool  (April-June), proposed 
action in EIS (DOE/EIS-0529) 

TLGR, FLGR USACE15 1929-2008 

     
Supstream Mean temperature and flow, Bonneville 

Dam scroll case (April-June) 
TBON, FBON USACE16 1980-2018 

 
Mean temperature, Bonneville Dam 
water quality monitoring station 

 
USACE16 1980-2017 

     
Ssar Extended Reconstructed SST dataset 

(ERSST), polygon defined by Johnstone 
and Mantua 2014 

SSTarc *ICOADS17 1900-2017 

ERSST:  4 × 4‑degree region off 
Washington coast 

SSTwa *ICOADS17 1900-2017 

Bakun upwelling index for 45N, 125W U NOAA18 1930-2017 
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Supplementary Table 4. Distributions used as priors. 
Supplementary	Table	4.	Distributions	used	as	priors	for	the	hypermeans	of	the	

hierarchical	model.			The	standard	deviation	was	expressed	as	the	precision	for	
the	actual	model,	where	the	precision=1/variance.	

 

Parameter 

Mean of the hypermean  SD of the hypermean 

Distribution 
Mean/ 

Minimum 

Standard 
deviation/ 
Maximum  Distribution Minimum Maximum 

p1 Normal 6 5  Uniform 0.001 10 

p2 Uniform 0 10  Uniform 0.2 3 

c1 Normal 0 10  Uniform 0.2 3 

c2 Normal 0.3 10  Uniform 0.3 10 

βT Uniform -10 10  Uniform 0.002 10 

βF Uniform -10 10  Uniform 0.002 10 
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Supplementary Table 5. Freshwater model comparison. 
Supplementary	Table	5.	Freshwater	model	comparison.		Models	that	included	

covariates	(e)	that	affected	productivity	(ln(Rt/St)	=	p	+	c	×	lnSt	+	et)	are	labeled	
p2,	while	covariates	that	affected	capacity	(ln(Rt/St)	=	p	+	(c	+	et)	×	lnSt)	are	
labeled	c2.	T	refers	to	air	temperature	and	F	refers	to	flow	in	the	Salmon	River	
Basin,	described	in	Supplementary	Table	3	(TSAL	and	FSAL).	The	season	selected	
for	each	variable	is	shown	for	each	model.	We	compared	models	based	on	the	
differences	in	expected	log	pointwise	predictive	density	(ΔELPD)	and	their	
standard	errors	(se).	The	top	models	are	shown	here.	The	two	selected	
freshwater	covariate	models	(p2Tsummer+Ffall	and	p2Fsummer)	were	
combined	with	two	selected	SAR	models	(Supplementary	Table	6)	for	a	total	of	
three	LCM	models,	which	are	labeled	with	superscripts	in	this	table	(Model	1,	
Model	2,	and	Model	3	in	the	main	text).		

 
 
 

Model    ΔELPD  se 

p2Ffall   0 0 
c2Fsummer   -0.1 0.3 
p2Tsummer+Ffall1,3  -0.2 0.1 
p2Fsummer2 -0.2 0.2 
c2Tsummer+Fsummer -0.2 0.3 
c2Ffall   -0.2 0.3 
c2Tsummer+Ffall  -0.3 0.2 
p2Tsummer+Fsummer  -0.3 0.3 
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Supplementary Table 6. Marine survival model selection table. 
Supplementary	Table	6.	Marine	survival	model	selection	table.		SAR	models	selected	

(in	bold)	for	climate	projections	in	relation	to	variable	importance.	Additional	
columns	show	the	specific	model	that	includes	the	designated	variable	with	
the	lowest	AIC	(Top	model	1)	and	the	next	lowest	AIC	(Top	model	2).		The	two	
selected	SAR	models	were	combined	with	two	selected	freshwater	covariate	
models	(Table	S4)	for	a	total	of	three	LCM	models	(Model	1,	Model	2,	and	
Model	3)	labeled	with	superscripts	in	this	table.	The	season	for	each	index	was	
January‐March	(WIN),	April‐June	(SPR),	or	July‐September	(SUM).	Environmental	
covariates:		sea	surface	temperature	(SST),	coastal	upwelling	index	(U),	North	
Pacific	Gyre	Oscillation	(NPGO),	the	multivariate	ENSO	index	(MEI),	Oceanic	
Niño	Index	(ONI),	and	the	North	Pacific	Index	(NPI).			
 

 

 

In-river fish
Rank Variable Importance Topmodel 1 Topmodel 2

1 SSTwa.sum 0.24 SSTarc.win + SSTwa.sum 1,2
SSTwa.sum + ONI.spr

2 SSTarc.spr 0.24 SSTarc.spr + SSTwa.aut SSTarc.spr + U.spr 3

3 SSTarc.win 0.18 SSTarc.win + SSTwa.sum SSTarc.win + NPI.spr

4 SSTwa.spr 0.16 SSTwa.spr + NPI.sum SSTwa.spr + MEI.sum

5 NPI.spr 0.13 NPI.spr + ONI.sum SSTarc.win + NPI.spr

6 U.spr 0.09 SSTarc.spr + U.spr SSTarc.win + U.spr

Transported fish

Rank Variable Importance Topmodel 1 Topmodel 2

1 SSTarc.win 0.14 SSTarc.win 1,2
SSTarc.win + SSTwa.sum

2 SSTwa.sum 0.12 SSTwa.sum 3
SSTarc.win + SSTwa.sum

3 SSTwa.win 0.1 SSTwa.win + NPI.sum SSTwa.win + NPGO.aut
4 SSTwa.spr 0.1 SSTwa.spr + U.win SSTwa.spr + NPGO.sum
5 NPI.win 0.09 MEI.sum + NPI.win SSTwa.sum + NPI.win
6 NPGO.aut 0.09 SSTwa.win + NPGO.aut NPGO.aut
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Supplementary Figures 
Supplementary	Fig.	1.	Prior	and	posterior	distributions	of	parameters.				
Supplementary Fig. 1. Prior and posterior distributions of parameters.    
	

	
The	prior	(blue)	and	posterior	(red)	distributions	of	parameters	resulting	from	the	

calibration	process.	Parameter	names	are	from	equation	(S2)	and	Appendix	
S2.	The	populations	were	most	differentiated	in	the	spawner	to	parr	
parameters	(p1	and	c1)	and	ocean	survival	(s0).	The	other	maturation	
parameters	were	similar	to	Zabel,	et	al.	19.		Boxes	show	the	interquartile	range	
across	simulations,	while	the	whiskers	extend	to	1.5	times	the	interquartile	
range.	The	horizontal	line	shows	the	median	value.			
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Supplementary	Fig.	2.	Covariance	of	environmental	variables.				
Supplementary Fig. 2. Covariance of environmental variables.    
	

	
	
	
Descriptions	of	covariates	and	acronyms	are	shown	in	Supplementary	Table	2.	

Correlation	coefficients	were	generated	by	TMB	model	builder	based	on	data	
available	from	1966‐2015.	
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Supplementary Methods  
 
 
Submodels for individual life stages 
 
 We used a modified 2-stage Gompertz equation to model recruits per spawner in a 
manner that accounted for density dependence.  The Gompertz equation is: 
 

𝑙𝑛 ൬
ௌ௣ೖ,೟శೣ

ௌ௣ೖ,೟
൰ ൌ 𝑝 ൅ 𝑐 ∙ 𝑙𝑛൫𝑆𝑝௞,௧൯ ൅ 𝜀௧      [S1] 

 
where spawners from year t and population k are Spk,t, recruits are the returning adult 
progeny in year t + x (x = 3,4,5), p is a productivity term and c is a capacity term, and εt is 
a normally distributed error term.  This can be converted to a 2-stage model simply by 
multiplying the individual Gompertz equations together, G = G1 × G2, where the 
subscripts 1 and 2 reflect life stages.  We further modified the equation by allowing p and 
c from the individual life stages to be functions of environmental factors (flow and 
temperature). 
 
Spawner‐to‐parr	and	parr‐to‐smolt	stages	

 We fit adult recruits per spawner for eight populations in a hierarchical Bayesian 
framework using multiple likelihood equations which reflected stages that could be 
directly compared with data (Table S1).  We fit a 2-stage Gompertz function (G1 and G2) 
for spawner‑to‑smolt productivity combined with survival rates estimated independently 
for later stages. The recruitment function was: 
 

Ln(Spk,t+x /Spk,t) ~ G1,k(Spk, ,t, p1,c1) × G2,k(N1,k,t,p2,c2,Tt+1,Ft+1) ×  

βeta(Smainstem,t+2,σt+2) × βeta(Ssar,t+2, τt+2) × βeta(Supstream,t+x,k υt+x) × Sprespawn   [S2] 

 
where N1 is the number of fish alive at the end of year 1, T and F are seasonal mean 
temperature and flow, respectively, in the parr year (t + 1). Descriptions of environmental 
covariates are in Table S2.  Smolt migration through the mainstem Snake and Columbia 
Rivers (Smainstem) and ocean (Ssar) survival are tied to juvenile migration year (t + 2).  Each 
βeta distribution has a standard error associated with the original model estimate 
(Smainstem: σ, Ssar: τ, Supstream: υ).  Upstream migration survival (Supstream) is associated with 
the year of spawning migration, t + x (x = 3, 4, 5).    
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 We fit equation S2 using maximum likelihood, assuming ln(Spk,t+x / Spk,t ) 
(recruits/spawner) was normally distributed.  In our model fits, parr abundance (N1) was a 
latent variable, but G2,k(N1,k,t,Tt,Ft) = ln( Stributary,k,t ), where k represents the specific 
population.  We solved equation (S1) simultaneously with equation (S2), from PIT-tag 
survival data using  
 

𝐺ଶ,௞൫𝑁ଵ,௞,௧ , T௧ ,𝐹௧൯ ൌ ln ሺ𝑁ଶ,௞,௧ାଵ/𝑁ଵ,௞,௧ሻ0      

ൌ 𝑝௞ ൅ 𝑐௞ ln൫𝑁ଵ,௞,௧൯ ൅ 𝐵ி,௞F௧ ൅ 𝐵்,௞T௧൅ε௞,௧      [S3] 

 
 Each population had its own coefficients for temperature BT and flow BF, but they 
were drawn from their respective hypermeans, as were the rest of the G1 and G2 
parameters.20   Bk ~ N(B,σ), where Bk is the vector of population‑specific coefficients p1,k, 
p2,k, c1,k, c2,k, βT,k, βF,k,  and B and σ are vectors of hypermeans and their standard 
deviations.   
 

We conducted these analyses using JAGS software via the R2JAGS package 21 in 
R 22.  For each candidate model, we generated three separate Markov chain Monte Carlo 
(MCMC) chains of 5 million iterations each. We discarded the first half of each chain. 
The remaining samples were thinned to every 500th sample, producing 3 chains with 
length 5000 samples, for a total 15,000 maximum likelihood estimates for each 
parameter. We assessed convergence of the chains using the Gelman and Rubin’s 
convergence diagnostic (gelman.diag function in the coda package). The multivariate 
potential scale reduction factor was <1.0125 for all initial models (6 models, in which 
covariates included summer temperature and one of spring, summer or fall flow, and 
covariates were incorporated into either the productivity or the capacity terms). We also 
examined Heidelberger and Welch’s convergence diagnostics. To ensure all chains were 
long enough, we re-ran all models with a single chain that was 15 million iterations. All 
of the parameters in all models passed this diagnostic, except for the two models that 
included both summer temperature and summer flow. They still had one parameter each 
that failed the Heidelberger and Welch convergence diagnostic (at eps=0.1 and 
pvalue=0.05). Although visual examination of the chains and density distributions looked 
satisfactory, we did not use these models in further analysis. 

 
Priors for the hypermeans were either normally (p1, c1, c2) or uniformly (p2, Bt, 

Bf) distributed with means informed by non-Bayesian maximum likelihood estimates 
(Table S3). We used a uniform distribution for all standard deviations of the hypermeans. 
In essence, we selected priors that widely spanned all of the population estimates for each 
parameter. Initial values were near the middle of the prior hypermean distributions, and 0 
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for the environmental coefficients. The posterior distributions resulting from these model 
fits were used as priors in the tuning step described below. 
 
 To determine the best environmental covariates for the parr to smolt stage (G2), 
we compared the estimated pointwise predictive error of alternative models using a 
leave-one-out cross-validation method.  We applied the Pareto smoothed importance 
sampling method for Bayesian models implemented using the LOO package in R, 
loo_compare function, 23  Covariates included summer air temperature (Tsu), summer 
flow (Fsu), and fall flow (Ffall).   
 
 Multiple models had similar fits, i.e., the difference in expected log pointwise 
predictive density (ELPD), or ΔELPD, was less than the standard error (se) on estimates 
of ΔELPD (Table S4).  However, the covariates they included had different climate 
trends.  We selected models that were most illustrative in potential for divergent 
responses to climate change.  We therefore explored implications for life-cycle 
projections of two different freshwater covariate models.  In Model 1, Tt was summer air 
temperature and Ft was fall stream flow, while model 2 included summer stream flow 
only (BT = 0).  
 
Downstream	survival	(Smainstem)	

 We used the COMPASS model to estimate juvenile migration survival through 
the Lower Snake and Columbia Rivers from Lower Granite to Bonneville Dam (Smainstem), 
as well as to estimate arrival day at Bonneville.24  COMPASS models downstream travel 
time, passage route, and survival of salmonid smolts.  The model comprises eight dams 
and eleven riverine reaches, from Lower Granite pool on the Snake River to Bonneville 
Dam tailrace on the Columbia River.  Each dam and riverine reach has associated 
algorithmic equations that use environmental covariates including flow, temperature, and 
spill to predict fish survival and migration rate in riverine reaches and the proportion of 
fish that use the spillway, turbine or bypass passage route at dams.   
 
 Survival at dams is based on the proportion of fish that pass via each passage 
route, with survival through each route based on estimates of survival from dam passage 
studies.  The model runs on a sub-daily timestep, and uses environmental inputs on a 
daily level to update its equations for each timestep.   
 
 Fish are added at the top segment of the COMPASS model (Lower Granite pool) 
according to an empirically-based release distribution, and then the model advances 
sequentially via timesteps, moving the fish downstream using the migration rate equation 
and applying mortality in each timestep according to mortality rate equations.  The 
version of the COMPASS model used for this analysis was calibrated for Snake River 
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stocks of Chinook salmon, using PIT‑tag data from 1998 through 2017 10.  Separate 
survival and migration rate equations were calibrated for riverine reaches of the Snake vs. 
the Columbia River.   
 
 We created a linear model of median arrival timing at Lower Granite Dam versus 
mean water temperature and flow in Lower Granite Pool.  We used estimated historical 
arrival distributions from 1998-2019 using PIT tag data (methods from25, data from11) to 
estimate the historical dates of median smolt arrival at Lower Granite Dam.  For each 
year 1998-2019 we created averages of flow and water temperature for each month 
February through May as well as bimonthly and whole-season averages (data from16). 
We tested all of these average temperature and flow variables as predictors of median 
arrival timing, and selected the best-fitting model that contained a single flow predictor 
and a single temperature predictor. The best-fitting model used mean flow in March and 
mean temperature in April: 

𝑀 ൌ 151.99 െ 0.0798 ൈ 𝐹ெ஺ோ െ 3.049 ൈ 𝑇஺௉ோ 
 

where M is the median date of smolt arrival at Lower Granite Dam, FMAR (P=0.017) is 
mean March flow in Lower Granite Pool, and TAPR (P=0.018) is mean April water 
temperature in Lower Granite Pool.  The adjusted R2 for the model over the 1998-2019 
dataset was 0.38. 
 
 We created an average across-year distribution of daily smolt arrival timing at 
Lower Granite Dam using the estimated historical distributions from 1998-2019.  We 
centered the yearly distributions based on their individual median arrival days and then 
averaged daily arrival proportions across the distributions.  For a given hypothetical year 
in the prospective model runs this average distribution was shifted according to the 
median arrival day predicted by the median arrival timing model.  The resulting average 
arrival distribution was then used as the daily release distribution at Lower Granite Dam 
for the modeling of downstream smolt survival and migration. 
 
Smolt‐to‐adult	return	ocean	survival	(SSAR)	

 We used a mixed-effects logistic regression model to determine effect of date of 
ocean entry and environmental covariates on the probability that an individual fish would 
return as an adult to Bonneville Dam.  Our estimate of survival for fish entering on date j 
in year t was a combination of fixed effects for average survival (𝜇) and a vector of 
coefficients (𝛃) related to observed annual ocean conditions in year t (𝐱௧), as well as 
random effects related to year (𝑤௧), day of year (𝑣௝), and the interaction between year and 
day (ℎ௝௧). 
 

𝑙𝑜𝑔𝑖𝑡൫𝑠௝௧൯ ൌ 𝜇 ൅ 𝛃𝐱௧ ൅ 𝑣௝ ൅ 𝑤௧ ൅ ℎ௝௧      [S4] 
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 Date and year random effects were described by an auto-regressive lag 1 (AR1) 
process, where 𝜌௩ and 𝜌௪ were the correlations between date and year time-steps, 
respectively, and 𝜙௩ and 𝜙௪ were standard deviations of the random effects. 
 

𝑣௝ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙൫𝜌௩𝑣௝ିଵ,𝜙௩൯     [S5] 
𝑤௧ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙ሺ𝜌௪𝑤௧ିଵ,𝜙௪ሻ     [S6] 

 
 The interaction between date and year was a two-dimensional AR1 process, 
where 𝐡௧ was a vector of date effects within year t, 𝜌௧ was the correlation between 
vectors in years t and t - 1, and 𝚺 was the covariance matrix describing AR1 process for 
date within a year,   
 

𝐡௧~MVNሺ𝜌௧𝐡௧ିଵ,𝚺ሻ     [S7] 
 
The covariance matrix, 𝚺, is described by the variance on the diagonal of the matrix, and 
the correlation between day effects on the off diagonal, 

Σሺj, j ൅ δሻ ൌ ఙ೓
మ

ቀଵି൫ఘೕ൯
మ
ቁሺଵିሺఘ೟ሻమሻ

൫𝜌௝൯
ఋ

    [S8] 

 
where 𝛿 is the number of days between j and 𝑗 ൅ 𝛿, 𝜌௝ is the correlation between days, 
and 𝜎௛

ଶ is the variance in the day by year interaction effect.    
 
 We considered all four seasonal indices of seven environmental covariates:  
SST averaged over the entire migration route (SSTARC), SST within 4°C along the 
Washington coast (SSTWA), and the strength of upwelling (coastal upwelling index, cui).  
We also examined the North Pacific Gyre Oscillation (NPGO), the multivariate ENSO 
index (MEI), Oceanic Niño Index (ONI), and the North Pacific Index (NPI).  We 
compared models with 0, 1, and 2 ocean covariates separately for in-river and transported 
fish.  Models with no covariates were not supported, and all of the top models also 
included a day effect and a day × year interaction.  
 
 Fish that migrated volitionally through the hydropower system (in-river fish) were 
treated separately from fish transported through the system on barges.  We selected two 
high-ranking models for in-river and transported fish that captured the variety of trends 
available from GCM projections.  To select models, we first calculated model weights as 
the relative likelihood of the model as a proportion of the sum of likelihoods across all 
models, using Akaike information criterion AIC, 26  We then calculated the importance of 
individual variables (the sum of weights of all models that include that variable).   
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 The four variables with highest importance based on AIC weights for in-river 
migrating fish were SSTARC (winter and spring) and SSTWA (spring and summer), shown 
in Supplementary Table 6.  Spring NPI and upwelling (U) were next for in-river fish. For 
transported fish, SSTARC and SSTWA, were also the most important variables, followed by 
NPI and NPGO.   
 
 In considering which models to include in our simulations, we wanted to account 
for the possibility that some indices of ocean productivity could increase over time.  We 
accomplished this by selecting another relatively high-performing model that included 
coastal upwelling.  We thus selected two high-ranking models for in-river and transported 
fish (modeled separately), both of which captured the variety of trends projected for 
climate indices.  All models included a random day effect and a random day × year 
interaction. 
 
Upstream	survival	(Supstream)	

 The adult migration survival model is described more fully by Crozier et al. 2020.  
Briefly, we used generalized additive mixed models (GAMMs) to evaluate the effects of 
covariates on spring/summer Chinook salmon survival.  We split migration through the 
hydrosystem into two reaches:  a Columbia reach from Bonneville to Ice Harbor Dam, 
and Snake reach from Ice Harbor to Lower Granite Dam.  We fit separate models by 
reach because of distinct characteristics of temperature and flow in the Columbia and 
Snake rivers.   
 
 The continuous covariates we tested included temperature (T) and flow (F) on the 
day of entry into each reach, harvest (catch, C) recorded in the Columbia River Zone 6 
fishery in the Columbia reach, and cumulative temperature accumulation (degree days 
i.e., mean temperature times travel time) from Bonneville to Ice Harbor Dam (TBO-IH) as a 
predictor of survival through the Snake reach. We fit each covariate using thin plate 
regression splines27 with a maximum of 4 knots for temperature and flow, and 3 knots for 
catch and cumulative temperature. We also included four factor variables: population, 
whether the fish was of hatchery (H) or wild origin, whether the fish migrated downriver 
as a juvenile in-river or was barged (J), and age of adult return (A). Finally, we included a 
random effect for migration year (y).  
 
 We compared all combinations of covariates and selected the model with the 
lowest AIC. The final model for survival through the Columbia reach (Scolumbia) that 
includes smoothers for temperature, s(T), flow, s(F) and catch, s(C) was 
 

Scolumbia ~ s(TBO) + s(FBO) + s(C) + H + J + A + y    [S9] 
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The final model for the Snake reach was 
 

Ssnake ~ s(TBO-IH) + s(TIH) + s( FIH) + H + A + y.     [S10] 
 
The final model for the Salmon reach was 
 

Ssalmon ~ s(TBO-LG) + s(TSal) + s( FSal) + H + A + y.     [S11] 
 
 
 
 
 
Aggregation of downstream and upstream survival models to annual time step 

for climate scenarioscenarios 
 
Downstream	survival	(Smainstem)	

 To link the sub-daily timestep used by the COMPASS model to the environmental 
conditions produced in our climate scenarios and explore a broader combination of 
temperatures and flows than was observed in the historical record, we replicated and 
modified the historical time series of conditions in the mainstem Columbia and Snake 
River to meet certain conditions. We first aggregated each of the 80 years of historical 
daily time series (1929‑2008) used by the Army Corps of Engineers ACOE, 15 into spring 
mean temperatures and flows (1 April‑30 June) at Lower Granite Dam for each year 
(hereafter, the “annual mean”). This was the 80-year time series entered into the 
covariance matrix model used to simulate the stationary climate.  
 
 We then identified the range of mean spring temperatures and flows generated in 
the climate scenarios. From the annual means, we selected 8 flows (20, 50, 100, 150, 200, 
250, 300, and 350 kcfs) and 10 temperatures (9‑18°C) to span this range, and created an 
8 × 10 matrix of flow-by-temperature combinations.  We then modified each year in the 
USACE historical daily time series by adding (or subtracting) a fixed number of degrees 
to all days until the mean temperature in the daily record matched the specified mean in 
the matrix.  
 
 Daily flows were scaled by a fixed proportion until they matched the specified 
flow in each cell of the matrix. Thus each of the 80 cells in the matrix contained 80 
replicate years adjusted to meet the specified mean annual flow and temperature criteria. 
For each of these 80 × 80 = 6400 time series of daily temperatures and flows, the 
COMPASS model estimated annual survival and the arrival timing distribution at 
Bonneville Dam.   
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 The distribution of juvenile arrival dates at Lower Granite Dam used to initiate 
these COMPASS runs was based on the average proportion of smolts arriving per day at 
Lower Granite Dam from 1998 to 2019.  The median of this distribution varied in 
simulation runs, but the overall shape was constant.  We fit a linear regression model of 
median arrival day per year 1998-2019 vs. annual metrics of water temperature and flow 
at Lower Granite Dam.   
 

 We compared models that included monthly means from February through May 
as well as bimonthly and whole-season averages (February-May).  We selected the 
best-fitting model by AIC that contained a single flow predictor and a single temperature 
predictor (𝐷௅ீோ ൌ 151.99 െ 0.0798 ൈ 𝐹ெ஺ோ஼ு െ 3.049 ൈ 𝑇஺௉ோூ௅).  For each simulation 
year in the COMPASS climate grid, we used this model to predict the median day of 
arrival in that year, and shifted the overall arrival distribution such that its median 
matched the predicted median. 
 
 Flow, spill, reservoir elevation, water temperature, and dissolved gas for this 
study were all modeled by the USACE as the Preferred Alternative for the NOAA 2020 
Biological Opinion 2. It is worth noting that the Preferred Alternative stipulates turbine 
replacements at Ice Harbor, McNary, and John Day Dams with substantially lower fish 
mortality than the existing turbines; this reduction in turbine mortality was modeled in 
COMPASS. 
 
 These runs used a universal transportation start date of 20 April at all three 
transport dams: Lower Granite, Little Goose, and Lower Monumental.  After this date, all 
fish predicted to enter the bypass system at these dams were considered transported by 
the COMPASS model.  The COMPASS model predicts the proportion of fish passing a 
dam that will enter the bypass system as a function of percent spill, flow, and potentially 
also day of year or water temperature (depending on the dam). They were removed from 
the river at the transport point and added to the tailrace of Bonneville Dam 2 days later.  
A uniform survival rate of 0.98 during transportation was assumed.  In each simulation, 
COMPASS produced arrival time distributions for in-river and transported smolts at 
Bonneville Dam, which were then input into the SAR model. 
 
Upstream	survival	(Supstream)	

 To simulate upstream survival under differing climate scenarios, we also needed 
to model arrival date at Bonneville Dam and travel time through the hydrosystem.  We 
used a 2-dimensional mixture model to recreate the bimodal distribution of spring and 
summer-run populations comprising the Snake River spring/summer Chinook ESU: 
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DBON ~ p × N(μsp(E),σsp) +(1- p) × N(μsu (E),σsu)    [S12] 

 
 We simulated the entire ESU at once for each simulation year, where DBON is the 
arrival day at Bonneville Dam, p is the proportion of spring‑run adults (sp), and 1 ‑ p is 
the proportion of summer‑run adults (su).  For each run, the mean μ was modeled as a 
linear function of a single environmental covariate, E, while the standard deviation σ was 
a constant.  To determine the best covariate for E, we compared monthly and bi-monthly 
mean flows and temperatures at Bonneville Dam from March to June as predictors of 
mean arrival day through model selection. The best model by AICc included April-May 
mean flow for spring run and April mean flow for summer run.   
 
 We accounted for uncertainty in parameter estimates by drawing each parameter 
from a multivariate normal distribution based on the coefficient covariance matrix in each 
simulation year.  Six populations included in the LCM models were treated as spring-run 
(Bear Valley, Big Creek, Camas Creek, Loon Creek, Marsh Creek, and Sulphur Creek) 
and two populations were treated as summer-run (Secesh River and Valley Creek), 
following the analysis of Crozier, et al. 28 
 
 For travel time, we used the mixture model described in Crozier et al.29  Hourly 
temperatures and flows at each fishway, tailrace, and reservoir influenced mean travel 
time through each segment of the migration under each climate scenario. We then applied 
the conditions associated with each fish throughout its migration to the GAMM to 
estimate survival under each scenario. For all non-environmental covariates, we 
randomly sampled with replacement from observed distributions in the 2004-2017 PIT 
data.  
 We used these model chains to predict survival under simulated climate scenarios. 
The climate scenarios consisted of daily time series generated by the Bonneville Power 
Administration (BPA30 with temperature modeled using methods described by 
Yearsley4).  Historical climate was represented by a 70‑year reference period 
(1929-1998), which was then perturbed using the hydrid-delta method31 with mean 
monthly temperatures and flows from GCMs for the 2040s.  
 
 Two GCMs had been selected by BPA to span the outcomes of greatest concern 
for hydrosystem planning:  a warm/dry scenario (ECHO_G with emissions scenario B1, 
“dry”) and a hotter/wet scenario (MIROC 3.2 with emissions scenario A1B, “wet”).  See 
Hamlet, et al. 31 for additional information on naturalized routed flows and climate model 
selection.  
 
 We thus had 3 climate scenarios (historic, wet, dry) each consisting of a 70-year 
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time series of daily mean temperatures and flows throughout the hydrosystem.  We 
looped through each of these scenarios 10 times, with timing and survival models for 
100 fish per year to account for heteroscedasticity.  Each of these 2100 simulation years 
thus produced an annual survival probability for spring-run and summer-run fish 
separately, based on their initial bimodal arrival times at Bonneville Dam.  
 
 We tied these annual survival estimates to our life-cycle model by summarizing 
the environmental conditions of each simulation year with the annual mean April-June 
temperature and flow conditions at Lower Granite Dam.  We treated the 2100 simulation 
years as independent representations of annual survival.  We binned annual temperature 
and flow conditions in the same manner as for juvenile mainstem survival, and randomly 
drew one adult survival simulation year from the appropriate bin for each time step in the 
life-cycle model.  
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