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NOTE ON THE ERROR BAR ESTIMATION

Error bar estimation in the spin population experiment

In the spin population experiment, there are mainly two types of experimental noise we are considering: one is
the intrinsic quantum fluctuation and the other is the extrinsic fluctuation of control parameters and environmental
parameters. During one round of the experiment, the system is relatively stable and we are mainly concerned with
the quantum projection noise [1]. It arises because the quantum state is not an eigenstate of the observable, say,
the spin-up state population and thus by repeating the experiment we get different outcomes even if we prepare the
same quantum state. This noise can be suppressed by increasing the number of measurements. By averaging over
500 shots in each experimental round, we get the average spin-up state population with the quantum projection noise
suppressed to 1/

√
500, which is small compared with other experimental noise.

On the other hand, the prepared quantum states can differ due to the long-term fluctuation of control parameters
and environmental parameters. This noise cannot be suppressed by increasing the number of measurements and
we regard this as the dominant error source in our experiment. These effects include fluctuation in laser intensity,
laser repetition rate, temperature, air pressure, etc. Therefore, we conduct the experiment for 20 rounds, each at
a different time with the time interval on the order of several minutes. We then use the standard deviation of the
20-round outcomes to estimate the error bar.

Error bar estimation in the phonon number experiment

When estimating the error bar of the average phonon number, we need to make an assumption about the distribution
of the experimental noise. Under the common assumption of independent and identically distributed Gaussian noise
of the experimental data, it can be shown that the fitted parameters also follow a joint Gaussian distribution (see
e.g. Theorem 2.1 of Ref. [2].), which is what we use in this work. We want to emphasize that this assumption is used
in lots of experiments when extracting parameters by fitting the experimental data, and is implicitly used in many
scientific computing softwares like MATLAB when fitting parameters.

NOTE ON THE CHOICE OF THE kmax IN THE PHONON NUMBER DISTRIBUTION FITTING

We use the lowest cutoff number that can ensure the total occupation of all the Fock states to be above 95%
as kmax in the phonon number distribution fitting. We take the phonon number distribution of the state with the
largest average phonon number in this experiment as an example to show how we choose a proper kmax. In Fig. S1a,
the extracted average phonon number is 11.54 ± 0.71 while the total occupation

∑kmax

k=0 pk is around 95.6% with a
cutoff number 23 (which can be seen from the horizontal axis). When we continue to increase the cutoff number to
24 (Fig. S1b) and 25 (Fig. S1c), the results of the phonon number distribution are nearly the same with the total
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FIG. S1: Phonon number distribution with different cutoff number kmax. The phonon number distribution with cutoff
number kmax = 23 in a, kmax = 24 in b, kmax = 24 in c and kmax = 24 in d. The error bar is one standard deviation from
the fitting program. The extracted average phonon number is 11.54 ± 0.71 while the total occupation

∑kmax
k=0 pk is around

95.6% in a. The results of the phonon number distribution are nearly the same with the total occupation around 95.9% and
the average phonon number 11.63 ± 0.73 (0.74) in b and c. However, when the cutoff number is set to 26 (d), the phonon
number distribution dramatically changes and the error bar of the occupation of the Fock states after |12〉 becomes very large,
indicating that overfitting occurs.

occupation around 95.9% and the average phonon number 11.63 ± 0.73 (0.74). However, when the cutoff number is
set to 26 (Fig. S1d), the phonon number distribution dramatically changes and the error bar of the occupation of
the Fock states after |12〉 becomes very large, indicating that overfitting occurs. Also, according to the numerical
simulation, the total occupation number above the Fock state |24〉 (including |24〉) is only 0.13%, contributing an
average phonon number around 0.03 to this state, which is much smaller than the error due to the fitting of about
0.7. Hence, this also justifies the choice of the cutoff number 23. The reason why the total occupation in our fitting is
only around 95% may be due to the state preparation and measurement error (SPAM error) during the blue-sideband
pulse analysis (described in Methods). For instance, even if we can ideally prepare the phonon ground state, i.e. only
the Fock state |0〉 is occupied and the only non-zero occupation is p0. We can easily see that p0 is the contrast of the
sinusoidal spin-up state population curve used to extract the occupation number. However, due to the SPAM error,
the contrast must be less than 1. In our system, the SPAM error is around 2% (an average of 1% dark-state detection
error and 3% bright-state detection error), which means the contrast of the spin-up state population curve is only
96%. This explains the relatively low total occupation.

NOTE ON THE CORRECTION FOR THE LAMB-DICKE APPROXIMATION

All of our discussions in the main text are based on the condition that the single trapped ion is in the Lamb-Dicke
regime. In this regime, the extension of the ion’s wave function is much smaller than the laser’s wavelength, or this
limitation can be written as η

√
2n̄+ 1 � 1 [3], where η is the Lamb-Dicke parameter and n̄ is the average phonon

number of the motional state. In our system, the Lamb-Dicke parameter is around 0.07. However, in our experiment,
the maximum average phonon number exceeds ten, which means η

√
2n̄+ 1 is around 0.3, making the non-linear

terms of η a non-negligible effect to the entire model Hamiltonian. In the following, we consider the corrections to
the numerical results of the two order parameters due to the non-linear effect.

When we consider the non-linear terms, the total Hamiltonian of the QRM simulated by a single trapped ion reads
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FIG. S2: The spin-up state population and the average phonon number versus the sideband Rabi frequency
with/without non-linear effect. Here we set the experimental parameters the same as the main text with δb = 2π×52.0 kHz,
δr = 2π × 48.0 kHz, thus the ratio parameter R = 25. The total quench time τq = 2 ms with the sideband Rabi frequency
increases linearly from zero to Ωmax = 2π×14.2 kHz. The Lamb-Dicke parameter is η = 0.07. a and b are Fig. 2 and Fig. 3a in
the main text with an additional numerical result of the non-linear QRM, respectively. We can see clearly that in the normal
phase, the phonon number is small enough that both the two order parameters in the non-linear model (NLM) show good
consistency with those in the linear model (LM). In the superradiant phase, with the increase of the average phonon number,
the non-linear effect becomes more and more significant and causes a non-negligible deviation of the two order parameters
between the NLM and the LM.

[4]:

ĤNQRM =
ωa

2
σ̂z + ωf â

†â+ λ (σ̂+ + σ̂−)
(
f̂ â+ â†f̂

)
, (S1)

where the non-linear effect is embodied in the function [5]

f̂(â, â†) = e−η
2/2

∞∑
l=0

(
−η2

)l
l!(l + 1)!

â†lâl. (S2)

When we only consider the first expansion term, i.e. l = 0 and neglect the term e−η
2/2, the Hamiltonian reduces to

the linear QRM. Here, we implement a numerical simulation additionally considering an l = 1 term.
As shown in Fig. S2, with the same experimental parameters as in the main text, we simulate the effect on the spin-

up state population and the average phonon number during the quench dynamics. As we can see, in the normal phase,
the phonon number is small enough that both the two order parameters in the non-linear model (NLM) show good
consistency with those in the linear model (LM). In the superradiant phase, with the increase of the average phonon
number, the non-linear effect becomes more and more significant. In our simulation, we find that the maximum
relative deviation of the average phonon number between the NLM and the LM (|n̄LM − n̄NLM|/n̄LM) is about 17 %.
However, the deviation near the critical point is only about 2 %, which is small enough compared with other errors
discussed in the Methods.

In conclusion, the non-linear terms in the simulated QRM causes a small but non-negligible deviation when the
average phonon number is large (& 10). However, because they are still smaller than the leading term, we expect the
qualitative behavior of the quantum phase transition, in particular the universal class near the phase transition point,
to be unaffected.

NOTE ON THE SCALING ANALYSIS

Scaling analysis with spin population

We note in Ref. [6], spin population is used to analyze the scaling effect of the QPT in the QRM. However, some
of the experimental parameters and conditions in Ref. [6] are rather stringent for our system. There are mainly three
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FIG. S3: Scaling analysis with spin-up state population. a. The Ss(G)-G plot, where Ss(G) ≡ 2P (↑)|g − 1|−1 and

G ≡ R|g − 1|3/2 with g the coupling strength and P (↑) the spin-up state population. The blue, yellow and green points are
numerical simulation results and the red curve is an analytical line with a slope −2/3, which is a critical exponent [6]. The
numerical results agree well with the analytical line except the numerical result with R = 100. This is because when the ratio
R is too large, the carrier term in the trapped-ion simulation will cause the simulated Hamiltonian to deviate from the real
QRM model [6]. The black points with error bar are calculated from the experimental results with R = 25. The error bar
is estimated as the error bar of the spin-up state population P (↑) multiplied by the corresponding |g − 1|−1. b. The four
experimental data presented in a near the critical point gc = 1, with their raw values of (g, P (↑)) being (0.994, 0.0453±0.0123),
(0.984, 0.0369 ± 0.0085), (0.975, 0.0339 ± 0.0064), (1.065, 0.0462 ± 0.0071) respectively. Although in the log-plot, these points
seem to nicely follow a trend with the red line and their error bars are not that large compared to the difference of these points,
the difference between the raw data points is on the same order as the raw data error bars. We believe the trend indicated by
the four black points is just dominated by the dependence of Ss(G) and G on |g − 1|.

conditions that are currently not achievable in our system. First, in Ref. [6] the bosonic mode frequency ω̃0/2π (ωf/2π
in our notation) is set to 200 Hz to realize large frequency ratio R of 50 to 400 under realistic coupling strength. This is
comparable to the trap frequency fluctuation (around 150 Hz) and even smaller than the fluctuation of the estimated
AC Stark shift (around 400 Hz, see Methods) in our system, and therefore will lead to large error. Second, under
such large frequency ratios, the required adiabatic evolution time of about 250 ms is too long compared to our qubit
coherence time under Raman laser of about 40 to 60 ms. Finally, Ref. [6] proposes a standing wave configuration for
the laser beams in order to suppress the influence of the carrier term under large frequency ratio, but our setup uses a
traveling wave configuration which is more common in current ion trap experiments. The standing wave configuration
needs four laser beams instead of the two beams in the traveling wave configuration. It is not easy to change our
current configuration to four beams. We believe these technical challenges can be overcome with (1) choosing a
more appropriate bosonic mode frequency (e.g 1 kHz) with a still achievable coupling strength (300 kHz carrier Rabi
rate); (2) suppressing the system noises by improving the RF amplitude stabilization system and choosing a more
appropriate repetition rate of the Raman laser; (3) improving the coherence time of the system (including the motional
coherence time).

Given the current condition of our system, we choose a moderate ratio R = 25 to implement the spin population
experiment and show the overall behavior in Fig. 2 in the main text. Here we further supplement some experimental
data around the critical point together with a numerical simulation according to Ref. [6]. We summarize the results
in Fig. S3a. The figure is a Ss(G)-G plot where Ss(G) ≡ 2P (↑)|g − 1|−1 and G ≡ R|g − 1|3/2 with g the coupling
strength and P (↑) the spin-up state population. The blue, yellow and green points are numerical simulation results
and the red curve is an analytical line with a slope −2/3 (note that according to Ref. [6], the asymptotic behavior
of Ss(G) is limG→0 Ss(G) ∝ G−2/3, i.e. there is a universal critical exponent -2/3). The numerical results agree well
with the analytical line except the numerical result with R = 100. This is because when the ratio R is too large, the
carrier term in the trapped-ion simulation will cause the simulated Hamiltonian to deviate from the real QRM model
and this is why Ref. [6] propose a standing-wave laser configuration to suppress the influence of the carrier term. The
black points with error bar are calculated from the experimental results with R = 25. The error bar is estimated
as the error bar of the spin-up state population P (↑) (which is the raw data taken from the experiment) multiplied
by the corresponding |g − 1|−1 which is supposed to be accurate. The four experimental points (from left to right)
are all very close to the critical point gc = 1, where their raw data values of (g, P (↑)) are (0.994, 0.0453 ± 0.0123),
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FIG. S4: Finite-ratio scaling of the average phonon number near the critical point. The red points are the numerical
results with the system size indicated by the ratio R = ωa/ωf ranging from 5 to 1000 and the fitting result shows that the slope
of the fitting linear line is 0.48. The blue points with error bar are the experiment results. Under the current achievable ratio
R, the difference between these points is on the same order of magnitude as the error bar, indicating they are vulnerable to
the experimental noises.

(0.984, 0.0369± 0.0085), (0.975, 0.0339± 0.0064), (1.065, 0.0462± 0.0071) respectively. Although in the log-plot, these
points seem to nicely follow a trend with the red line and their error bars are not that large compared to the difference
of these points, the difference between the raw data points is on the same order as the raw data error bars (see
Fig. S3b). We believe the difference between the raw data points can be easily washed out due to experimental noises
(e.g. the fluctuations of trap frequency and AC Stark shift) because they are too close to the same point. Hence, we
believe the trend indicated by the four black points is just dominated by the dependence of Ss(G) and G on |g − 1|.
In conclusion, the precision of the current experiment prevents us from observing the universal scaling law with spin
population.

Scaling analysis with average phonon number

We present a numerical simulation of the finite-ratio scaling of the average phonon number near the critical point
gc = 1 and show the result in Fig. S4. The red points are the numerical results with the system size (indicated by
the ratio R ≡ ωa/ωf) ranging from 5 to 1000 and the fitting result shows that the slope of the fitting line is 0.48. The
blue points with error bar are the experimental results. Under the current achievable ratio R, the difference between
these points is on the same order of magnitude as the error bar, indicating they are vulnerable to the experimental
noises. Thus these points cannot be used to extract the critical exponent. Also, we note that the fitted slope of
0.48 from the numerical simulation data actually deviates from the true critical exponent 1/3 in the regime R → ∞
in analytic calculation (see Ref. [7]). In order to see this precise exponent, the ratio R in the numerical simulation
needs to exceed 105. Due to such large ratio, the adiabatic ground state preparation may need a duration orders of
magnitude larger than the coherence time of the system. Hence it is not achievable for our system currently to observe
the precise scaling effect and to extract the critical exponent with average phonon number. We can only observe the
overall behavior of the phonon number variation curves with three different ratios (5, 15 and 25), and as expected the
curve becomes sharper with larger ratio (see Fig. 4a in the main text).

NOTE ON THE RAMSEY INTERFEROMETRIC MEASUREMENT FOR MOTIONAL COHERENCE

We use the commonly used Ramsey method [8] to measure the motional coherence time with or without the line-
trigger on. We apply two pi/2 blue-sideband pulses with a time interval τ in between and then measure the spin
population. By varying the time interval τ , we obtain the Ramsey fringes shown in Fig. S5. We fit the result by an
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FIG. S5: The motional coherence time measured by the Ramsey method. a. Without the line-trigger on, the Ramsey
fringes decay fast and the estimated coherence time is around 0.7 ms. b. With the line-trigger on, the Ramsey fringes decay
much slower and the estimated coherence time is around 5.5 ms

attenuated sinusoid curve Ae−t/τd cos(ωt+ φ) where A, τd, ω and φ are the fitting parameters. The coherence time τd
is extracted from the fitted curve. In Fig. S5a, the estimated coherence time is around 0.7 ms and in b, the estimated
coherence time is around 5.5 ms. As we can see, the line-trigger can significantly improve the motional coherence
time.
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