
Reviewers' comments: 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript from Xu and colleagues describes temporal changes in microbiome composition 

during the course of SARS-CoV-2 infections. The study finds that the microbiome of COVID-19 

patients can be classified into 3 or 4 categories (for throat and gut samples respectively), 

reflecting the transition from dysbiosis (Types III and IV) to a microbiota that is more similar to 

the one found in healthy individuals (Type I). A similar pattern was observed in the gut and in the 

respiratory tract. 

Overall, the manuscript addresses an important knowledge gap and brings a coherent story. 

Although the results are reasonable, I think the small number of samples prevents appropriate 

statistical tests to support the main conclusions of the paper. I understand that clinical data can be 

difficult to collect, but at very least the manuscript needs to be upfront about these limitations and 

should take them into consideration when interpreting the results. I have several major concerns 

that would need to be addressed before I can recommend this manuscript for publication. 

 

The main conclusions of this study are based on the diversity and composition of community types 

and their putative link with a dysbiosis-to-health transition. In particular, community types III and 

IV have a very low diversity and are dominated by a few seemly pathogenic species, which leads 

the authors to conclude that these samples are more severe cases of dysbiosis. However, those 

community types are also the ones with the lowest number of samples. In the respiratory tract 

dataset for example: community type IV has only 4 samples, while type II has 44, therefore it is 

logical that community type IV has a lower diversity. I suggest the diversity indices to be corrected 

for sample size before they are used as a dysbiosis marker. 

 

The other argument was that community types III and IV are dominated by pathogenic bacteria, 

especially Pseudomonas and Rothia. The paper specifically argues that “Pseudomonas is a well-

known pathogenic bacterium, and rarely found in healthy individuals.” (Line 281). This is not 

correct, Pseudomonas can be pathogenic but it is also commonly found in healthy individuals. It is 

actually one of the most common bacteria in the saliva (Ruan, et al. 2020 "Healthy Human 

Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration." Digestive 

Diseases and Sciences). Rhotia, the most abundant bacteria in community type IV, is also a 

common member of a healthy oral microbiome (Uranga et al. 2020 "Commensal Oral Rothia 

mucilaginosa Produces Enterobactin, a Metal-Chelating Siderophore." MSystems). Therefore, I 

cannot see any evidence that the community types I-IV reflect a transition from health to 

dysbiosis. 

 

There is also no information about the actual health status of the patients to support the link with 

health and dysbiosis. We can assume that the patients were admitted to the hospital in poor 

health and progressively got better, but I would expect that the improvement is not linear (i.e. did 

any of the patients got worse during their stay at the hospital, before getting better?) 

 

The number of samples from dysbiotic-like community types are very small. In the respiratory 

tract for example, community type IV was only observed in 3 patients, including the one with 

severe symptoms. Overall, these numbers preclude making meaningful statistical tests to confirm 

if community types are associated with COVID-19 transition stages. I suggest considering using a 

continuous variable (rather than categories) to associate community diversity with COVID-19 

progression, which might give more statistical power to address the study’s questions. 

 

 

I found some inconsistencies in the description of the sampling that needs clarification: 

The paper reads “A total of 63 subjects, including 35 laboratory-confirmed COVID-19 patients, 10 

SARS-CoV-2 negative patients with various diseases (non-COVID-19) and 15 healthy adults were 

enrolled in this study”. 35 + 15 + 10 = 60, so what are the 3 extra subjects? 



More importantly - Supplementary figure 1 indicates that some of the COVID-19 patients (e.g. 

p05, p11) never tested positive for COVID-19, yet they seem to be considered COVID-19 patients 

in the analyses(Figure 1). Please explain. Patients 05 and 11 are the only ones where community 

type IV was observed in early stages of disease, so this obviously needs clarification. 

Supplementary methods are mentioned in the text (line 73) but were not provided. 

 

 

Specific comments: 

 

The paper states that all patients (except p09) had mild symptoms. Is it a normal procedure to 

hospitalize patients with mild symptoms? 

 

 

L 82- 83: “The vast majority of the specimens of COVID-19 patients were divided into four 

community types, called I-IV, and 6 specimens were included in the NP type”. I did not understand 

this analysis. Was this a cross-validation? How did you proceed with the 6 specimens that were 

classified as “non-COVID-19 patients”? 

 

Paragraph starting in L 108: I think this is an overinterpretation of the result. For example: 

“Prominent microbiome community type shifts from early lower-diversity community types (NP, IV 

or II) towards later higher-diversity types (II or I) were observed in 9/24 COVID-19 adults who 

had specimens at two or more time points.” In other words – these transitions were observed in 

only 37% of the data. The graphs show that the results are not that obvious, and community shifts 

are far from “prominent”. 

 

Section starting on L 128: 

Were anal swabs also collected for healthy and non-covid-19 patients? 

 

L 164 – 166: How were those bacterial genera selected? 

 

L 197 – 200: I think this is an overstatement. It can be observed that some bacterial genera co-

occur, but there too few samples and time points to make inferences about community succession. 

I suggest to also correct these networks for sample size. The authors could build networks of 

groups II and I with just 4 samples for example, to confirm that the increased complexity in these 

groups is not an artifact of sample size. 

 

L 313: the manuscript states “Lastly, fecal microbiota transplantation may be considered as 

another treatment choice.” This is a dangerous statement to make. Considering the current 

circumstances, I can imagine people may try to perform fecal transplants at home to treat COVID-

19 after reading this. There is no data in this manuscript to support that fecal transplants can be 

used to treat COVID-19. 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

In the present study, the authors used throat and anal samples from 35 COVID-19 adults and 15 

controls to profile changes of the microbiome composition associated with COVID-19 infection by 

16S rRNA gene sequencing. 

The authors claim to show alterations of respiratory and intestinal communities associated with the 

viral infection, which may potential impact on the outcome. Moreover, they claim having 

uncovered a new airway-gut microbial axis. 

 

The authors address interesting and important questions. However, I have serious concerns 

regarding lack of statistical power, choice of statistical methodology, lack of external validation and 



often times highly speculative or erroneous conclusions from the present results. Specific 

comments are listed below. 

 

 

I have serious doubts that throat swabs represent “the respiratory microbiota”, wouldn’t 

specimens collected form deeper respiratory tract localizations better represent the airway 

microbiota (although I acknowledge that these are more difficult to collect). 

 

Wot 35 cases and only 15(!) controls the study is severely limited by the sample sizes and the 

representability of the given results is highly questionable. 

 

The community typing using DMM modelling is highly problematic as the models were trained on a 

very small cohort – and the validity of the inferred community types needs to be validated in an 

(sufficiently large) independent cohort before further downstream results are inferred based on 

assumptions derived from this model. 

 

The separation in the ordination plots between the “community types” is not surprising given that 

given that the very inferred or separated beforehand on the same cohort with a different method 

(DMM), this only shows that the methods comply. The clusters could show up simply by chance, 

the reliability of the clusters/community types has to proofed using an independent cohort. 

 

Line 90, why were “the top 30 genera” chosen to represent the community types? This seems 

arbitrary to me, why not e.g. 50? Why isn’t the number of genera rather chosen based on 

abundance or persistence, e.g. genera with at least 0.1% (or 1%) mean relative abundance and 

presence in at least 50% of the samples, this would be a more convincing definition of a kind of 

core microbiota. 

 

The inference of any function or medical implication of identified bacteria here is highly 

problematic as the authors work with 16S data. E.g., line 96 ff. Pseudomans is not necessarily 

pathogenic – as by far not species or strains belonging to this genus exhibit pathogenic properties. 

 

Line 164, the choice of “representative bacteria” is highly problematic, as indeed the functional 

relevance of throat bacteria in general, let alone in the context of COVID-19, is uncertain. Also, the 

term “probiotics” for Bifidobacterium and Faecalibacterium is inadequate, only certain strains of 

certain Bifidobacterium species are entailed in some commercially available probiotics, a (next-

generation) probiotic potential of F. prausnitzii remains to be proven convincingly yet. 

 

Generally, the throughout the text there is an uncritical use of the attribution of being beneficial or 

pathogenic, to date this ascription is possible for only very few bacteria based on genus-level 

taxonomic resolution alone. 

 

The whole part on bacterial cooccurrence networks is highly dubious. As microbiome data 

generated by 16S sequencing is of compositional nature appropriate correlation methods have to 

used here, such as SparCC https://bitbucket.org/yonatanf/sparcc/src/default/ 

 

At least before spearman correlation the 16S data should be transformed according to the 

centered log ratio transformation. 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.02224/full?report=reader 

 

Also, the conclusion that any statistically significant correlations indicate “bacterial translocation” 

(line 194) is highly speculative. This hypothesis needs to be addressed with more sophisticated 

methods. 

 

From the given study design and based on the statistical methods applied, it cannot be concluded 

that microbiota is altered by COVID-19 and restored upon resolution of infection. First, because 



criteria for alteration in this context are very difficult to define, and second because in order to 

show that a longitudinal study is required to show changes in microbial composition during and 

after infection. 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

This is an interesting paper in an emerging field, and seeks to answer an important question 

concerning the gut-lung axis. The primary claims of the paper are that the throat and gut 

microbiota of COVID-19 infected adults can be characterised into different community types, 

beginning with a low diversity population soon after infection and a restoration back to diverse 

microbiota that in synchronous in the respiratory tract and the gut. 

Overall, the researchers have done very well to draw conclusions from a limited dataset to provide 

timely information to assist with the current pandemic. Their attention to the precise details of the 

data and their longitudinal sampling is commendable. This work is very interesting and could 

provide valuable insight into the field and the long-term consequences of this novel disease, but 

additional considerations may help to improve the confidence of these conclusions: 

 

Major Comments: 

-Patient characteristics of healthy adults and non-COVID-19 patients should be included as 

supplementary information. 

-Care should be taken describing the results of throat swabs. The authors describe the sampling as 

coming from the “posterior oropharynx” (Line 323) which is only one part of the upper respiratory 

tract. Referring to results more generally as “respiratory tract” may give the impression that 

results are associated with changes in the lower respiratory tract, particularly given references to 

the airways and lung throughout the discussion (e.g. lines 288-291) 

-Line 83: It was noted that 6 COVID samples clustered with the NP type samples. Was there 

anything to distinguish these samples from other COVID samples? 

-Authors discuss a return from low diversity to high diversity community types over time in throat 

samples, yet this was only observed in 9/24 patients (Line 112) while a reverse pattern was 

observed in four patients (Line 118-119). To my mind, this does not appear to demonstrate a clear 

trend that these patterns are consistent features of COVID-19 and additional sampling may be 

required to validate these findings. Alternatively, authors may be able to place additional emphasis 

on the association between the community types and time since appearance of symptoms in 

samples which were not a part of the longitudinal series but nevertheless support the hypothesis 

(e.g. p34, p18, p21, p28 in Fig 1e) 

-Line 124-125: “These results indicate that the change of the respiratory microbiome might be 

closely associated with disease progression in COVID-19”. The strength of this statement could be 

substantially improved by matching community types to some measure of clinical severity (e.g. 

symptom score, viral load, oxygen saturation, etc.) if this data is available. 

-Line 161-163: Could the lack of correlation between community divergence and other parameters 

be due to the relatively small sample size available? 

-Line 182-184: Authors discuss the hypothesis that co-occurrence networks between bacteria 

reflect crosstalk between the gut and lungs as a result of bacterial translocation, which is later 

described as a result of damage to the respiratory and gastrointestinal mucosa (Lines 194-195; 

Lines 261-262). Other processes may also explain these co-occurrences including (1) bacteria 

migrating from the oropharangeal site to the gut via swallowing and passage through the 

gastrointestinal tract (especially as several oral taxa are implicated) or (2) induction of immune 

responses at both sites which apply similar selective pressures to the microbiota. Could the 

authors please address these hypotheses. 

-Similarly, is there any evidence available for a breakdown of mucosal barriers which may support 

the hypothesis of the authors (e.g. serum LPS or citrulline, etc.)? This may not be possible given 

the status of the patients but could provide valuable support for the hypothesis. 



-Line 202-204: Increasedd Bifidobacterium and Faecalibacterium in throat samples were noted as 

evidence of restoration in microbiome composition, yet to the best of my knowledge these genera 

are not considered to be a normal part of the oropharangeal microbiome. Can the authors please 

provide some citations to demonstrate that these genera are representative of a healthy 

oropharangeal microbiome. 

-Increases in Bifidobacterium and Faecalibacterium are noted as signs of improvement and 

restoration (e.g. Lines 164-170; 202-204) but the authors note several other commensal genera 

such as Bacteroides, Roseburia, Blautia, and Coprococcus, while other probiotic strains such as 

Lactobacillus are also prominent members of the microbiota. Can the authors explain why they 

chose to focus on Bifidobacterium and Faecalibacterium specifically, and not other probiotic 

genera? If other genera do not display similar patterns, does this perhaps indicate that the 

restoration of the microbiota is incomplete and may have long-term consequences? 

-Line 228-230: The authors indicate that inconsistencies in changes observed during longitudinal 

sampling indicate that diversity characteristics of the throat microbiome were affected by COVID-

19. Can the authors please explain why they determined this direction of causality (i.e. is it 

possible that diversity characteristics may have rather influenced the progression of COVID-19 and 

not vice versa). 

-Line 268-272: It is stated that the gut microbiome appeared to have a faster restoration to 

increased bacterial diversity, but this phenomenon did not appear to be described in the results 

section. Indeed, Figure 3a seems to suggest that the progression to more diverse community 

types was occurring at the same time in the two body sites. Could the authors please provide 

clarity for the justification of this statement. 

-Similarly, in Lines 270-272 the authors describe bacterial crosstalk which promotes restoration of 

the respiratory microbiota. How do the authors propose that bacteria are translocated from the gut 

to the oropharynx, particularly if mucosal integrity is beginning to recover concurrent with 

restoration of the microbiome? 

 

 

 

 

Minor comments: 

-Title should be revised to make it clear that this work specifically investigated bacterial 

communities, and not the broader microbiome (including viruses, archaea and fungi) 

-Line 30: It may not be accurate to say that this paper “addresses the question” of whether 

microbiomes “affect disease progression”. Although the authors show longitudinal changes, they 

do not demonstrate causality or a functional role and should be cautious of over-emphasising their 

results 

-Line 36: replace “they had a” with “their 

-descriptions of “bacterial interactions” (e.g. line 36, line 193, etc) may be interpreted to mean 

that the authors have evidence of bacterial cells interacting, whereas the analysis performed only 

demonstrated correlations and co-occurrence. Revised word should be considered to avoid any 

confusion 

-Lines 49-55: Sentence is long and difficult to follow. Consider breaking it up into smaller 

sentences 

-Line 61: delete “but” 

-Please avoid using “significantly” where statistical analysis has not been applied (e.g. line 122 

refers to a change in a single sample). Consider perhaps using “substantially” or a similar word to 

emphasis the magnitude of changes. 

-Line 166: The authors state that that relative abundances of commensals “appeared to be” 

correlated. This term is ambiguous – if a correlation was statistically significant then the result 

shouls be stated more conclusively. If it was merely identified as an association or trend then the 

term “correlated” should be avoided as this is a specific type of statistical analysis. 

-Line 210: reference to “near-normal microbiota” may be difficult to define, especially in the gut 

samples where no samples were available from healthy controls. Perhaps rephrasing to “more 

diverse” or “greater abundance of commensals” may be a more accurate description 



-Line 217-219: authors describe that the respiratory microbiome is more easily affected by the 

infection, but also admit that this has not been examined yet. The first half of this sentence should 

be rephrased to demonstrate this is a hypothesis and not a know phenomenon 

-please describe how “mild” and “severe” cases of COVID-19 were distinguished in patients 

-Line 233: please change “baseline” to “early infection” or similar, to avoid any ambiguity about 

whether the samples were collected prior to infection. 

-Line 265: it seems contradictory to state that the gut microbiome is both “more stable” and 

“more plastic: than the respiratory microbiota. Please clarify 

-Line 306: please change “will be particularly useful” to “may be useful” as SCFA production is 

influence by factors other than microbiome composition (e.g. diet, cross-feeding, etc.) 

-Line 303 and 310: Please capitalise Pseudomonas 
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Response to reviewers’ comments 

Reviewer #1 (Remarks to the Author): 

The manuscript from Xu and colleagues describes temporal changes in microbiome 
composition during the course of SARS-CoV-2 infections. The study finds that the 
microbiome of COVID-19 patients can be classified into 3 or 4 categories (for throat 
and gut samples respectively), reflecting the transition from dysbiosis (Types III and 
IV) to a microbiota that is more similar to the one found in healthy individuals (Type 
I). A similar pattern was observed in the gut and in the respiratory tract. 
Overall, the manuscript addresses an important knowledge gap and brings a coherent 
story. Although the results are reasonable, I think the small number of samples prevents 
appropriate statistical tests to support the main conclusions of the paper. I understand 
that clinical data can be difficult to collect, but at very least the manuscript needs to be 
upfront about these limitations and should take them into consideration when 
interpreting the results. I have several major concerns that would need to be addressed 
before I can recommend this manuscript for publication. 
Authors: Thank you for your crucial comments and suggestions. We agree that the 
small number of patients is a major limitation of our paper, and appreciate your 
understanding in the difficulty of sample collection. We discussed this carefully in the 
Discussion section of the revised MS.  
 
The main conclusions of this study are based on the diversity and composition of 
community types and their putative link with a dysbiosis-to-health transition. In 
particular, community types III and IV have a very low diversity and are dominated by 
a few seemly pathogenic species, which leads the authors to conclude that these samples 
are more severe cases of dysbiosis. However, those community types are also the ones 
with the lowest number of samples. In the respiratory tract dataset for example: 
community type IV has only 4 samples, while type II has 44, therefore it is logical that 
community type IV has a lower diversity. I suggest the diversity indices to be corrected 
for sample size before they are used as a dysbiosis marker. 
Authors: As suggested, we employed the Margalef's index (Clifford HT, Stephenson 
W. 1975. An introduction to numerical classification. London: Academic Press; 
Perspectives in marine Biology: 323-349) for comparing the a-diversity difference 
among community types. The Margalef's index is created to compensate for the effects 
of sample size by dividing the number of species in a sample by the natural log of the 
number of organisms collected. The sample size-controlled diversities reflected by 
Margalef's index are similar to those observed in our previous analyses (Fig. R1), 
indicating that sample size has minor influence on the microbiome diversity. We added 
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the results of sample size-controlled diversities in both supplementary Fig. S3 and 
revised MS (Lines 89-90). 

 
Fig. R1. Comparison of the microbiome diversity with (B) and without (A) sample size-

controlled analyses.    

 
The other argument was that community types III and IV are dominated by pathogenic 
bacteria, especially Pseudomonas and Rothia. The paper specifically argues that 
“Pseudomonas is a well-known pathogenic bacterium, and rarely found in healthy 
individuals.” (Line 281). This is not correct, Pseudomonas can be pathogenic but it is 
also commonly found in healthy individuals. It is actually one of the most common 
bacteria in the saliva (Ruan, et al. 2020 "Healthy Human Gastrointestinal Microbiome: 
Composition and Function After a Decade of Exploration." Digestive Diseases and 
Sciences). Rothia, the most abundant bacteria in community type IV, is also a common 
member of a healthy oral microbiome (Uranga et al. 2020 "Commensal Oral Rothia 
mucilaginosa Produces Enterobactin, a Metal-Chelating Siderophore." MSystems). 
Therefore, I cannot see any evidence that the community types I-IV reflect a transition 
from health to dysbiosis. 
Authors: We thank the reviewer for correctly indicated that Pseudomonas and Rothia 
are normally non-pathogenic and can be detected in healthy individuals. We carefully 
checked the raw data and performed a blasting analysis against 
rRNA_typestrains/16S_ribosomal_RNA database from NCBI. The result showed that 
the identified Pseudomans species had highest sequence similarity (100%) to the non-
pathogenic species Pseudomonas lactis (Fig. R3 in page 12). Pseudomonas lactis was 
initially isolated from bovine raw milk (Fig. R4 in page 13).  

With respect to Rothia spp., they are Gram-positive coccobacilli that cause a wide 
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range of serious infections, especially in immunocompromised hosts. Although some 
Rothia species (e.g. R. dentocariosa, R. aeria, R. nasimurium, and R. amarae) are part 
of the normal flora of the human oropharynx and upper respiratory tract, they are more 
commonly associated with various diseases (e.g. dental caries, periodontal disease, 
bacteremia, endocarditis, meningitis, peritonitis, bone and joint infections, pneumonia, 
skin and soft tissue infection, endophthalmitis, etc.) (Rothia bacteremia: a 10-year 
experience at Mayo Clinic, Rochester, Minnesota. J Clin Microbiol, 2014, 52(9):3184–
3189.). In particular, invasive infections occur predominantly in immunocompromised 
hosts, but rarely in healthy hosts. In this study, the identified Rothia species had the 
highest > 99% sequence similarity to Rothia mucilaginosa that is often associated with 
various diseases (e.g. bacteremia) (Fig. R2 below) (Ramanan P, Barreto JN, Osmon DR, 
Tosh PK. Rothia bacteremia: a 10-year experience at Mayo Clinic, Rochester, 
Minnesota. J Clin Microbiol. 2014 Sep;52(9):3184-9.). These bacteria are less common 
in healthy individuals as observed in some previous studies (Lloyd-Price, J., Abu-Ali, 
G. & Huttenhower, C. The healthy human microbiome. Genome Med, 2016, Apr 
27;8(1):51).  

In this study, we found that healthy controls and most COVID-19 patients carried 
very low abundance of Pseudomonas and Rothia, and therefore a high abundance of 
Pseudomonas lactis (often in bovine raw milk) and Rothia in community type III and 
IV are consistent with a probable disruption of homeostasis, as the result of 
inflammation that is known to exist in most COVID-19 patients. In view of the concerns 
and the knowledge in literature, we modified our description on the significance of the 
variation of these bacterial species in the revised manuscript. .  

 
 Fig. R2. The blasting results of Rothia species. 
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There is also no information about the actual health status of the patients to support the 
link with health and dysbiosis. We can assume that the patients were admitted to the 
hospital in poor health and progressively got better, but I would expect that the 
improvement is not linear (i.e. did any of the patients got worse during their stay at the 
hospital, before getting better?) 
Authors: The reviewer is quite right to make these assumptions. To clarify the health 
status of patients, we added a supplementary table S4 to show the dynamic changes of 
clinical parameters of 13 COVID-19 patients, and added correlation analyses between the 
health status (clinical parameters) and the microbiome changes (please see new 
supplementary Fig. S10: below) in 8 patients.  

Overall, almost all patients included in this study (except patient P09) had mild 
symptoms when they were hospitalized and during hospitalization. Patient P09 appeared to 
have deteriorated clinically during hospitalization.  
 
The number of samples from dysbiotic-like community types are very small. In the 
respiratory tract for example, community type IV was only observed in 3 patients, 
including the one with severe symptoms. Overall, these numbers preclude making 
meaningful statistical tests to confirm if community types are associated with COVID-
19 transition stages. I suggest considering using a continuous variable (rather than 
categories) to associate community diversity with COVID-19 progression, which might 
give more statistical power to address the study’s questions. 
Authors: We agree that the small sample (patient) numbers (especially those with 
community type IV) is a major limitation of this study, and it is hard to draw a strong 
association between community types and COVID-19 transition stages.  

As suggested, we added the dynamic change of microbiome diversity over time in new 
supplementary Fig. S5-S6. The dynamics of microbiome compositions over time have been 
previously shown in supplementary Fig. S4, S7, and Fig. 4. The microbiome diversity did 
not show consistent trend among these patients (new supplementary Fig. S6), indicating 
individual variability of microbial community diversities associated with COVID-19. 
Therefore, we toned down our conclusion (association between community types and 
clinical recovery of COVID-19), and interpreted our results with caution.  



5 

 

New supplementary Fig. S5. Dynamic changes of alpha-diversity since appearance of 

symptoms in COVID-19 patients. 

A 
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B 

 

New supplementary Fig. S6. Dynamic changes of microbiome diversity during COVID-19 in 

eight patients. A: Richness, B: Peilou evenness. 

 
I found some inconsistencies in the description of the sampling that needs clarification: 
The paper reads “A total of 63 subjects, including 35 laboratory-confirmed COVID-19 
patients, 10 SARS-CoV-2 negative patients with various diseases (non-COVID-19) and 
15 healthy adults were enrolled in this study”. 35 + 15 + 10 = 60, so what are the 3 extra 
subjects? 
Authors: We thank the reviewer for pointing out errors in counting. We have checked the 
numbers to make sure their consistency in the revised manuscript.  
 
More importantly - Supplementary figure 1 indicates that some of the COVID-19 
patients (e.g. p05, p11) never tested positive for COVID-19, yet they seem to be 
considered COVID-19 patients in the analyses (Figure 1). Please explain. Patients 05 
and 11 are the only ones where community type IV was observed in early stages of 
disease, so this obviously needs clarification. 
Authors: First, all recruited patients were confirmed to have COVID-19 infection by the 
local CDC. The criterion for diagnosis of COVID-19 infection was positive for two or 
more different SARS-CoV-2 genes by RT-qPCR assay.  

During the pandemic, China national and local CDC are responsible for prevention, 
control and management of COVID-19 infection. Some of the recruited patients (e.g. 
P05, P11, P13, P25, P27 etc.) were initially found/confirmed by local CDC in Nantong 
city, and then admitted, as required, to Nantong Third Hospital Affiliated to Nantong 
University for treatment and quarantine. At the time of sampling, some patients have 
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recovered and become test-negative. Alternatively, the particular samples tested might 
have been false-negative.  
 We added more information on these patients in supplementary Fig. S1. In addition, we 
mentioned that community type IV was observed in early stages of disease in only two 
patients P05 and P11 although SARS-CoV-2 RNA has become negative in their throat 
swabs.  
 
Supplementary methods are mentioned in the text (line 73) but were not provided. 
Authors: More detailed methodology is provided in the “Methods” section of the main 
text, rather than in a Supplementary file. We deleted “See Supplementary Methods” from 
this sentence.  
 
Specific comments: 
The paper states that all patients (except p09) had mild symptoms. Is it a normal 
procedure to hospitalize patients with mild symptoms? 
Authors: Yes, in China, all confirmed patients (including asymptomatic, mild or severe 
cases) are required to be admitted to designated hospitals for treatment and/or quarantine.  
 
L 82- 83: “The vast majority of the specimens of COVID-19 patients were divided into 
four community types, called I-IV, and 6 specimens were included in the NP type”. I 
did not understand this analysis. Was this a cross-validation? How did you proceed with 
the 6 specimens that were classified as “non-COVID-19 patients”? 
Authors: In our study, we included 10 SARS-CoV-2 RNA negative patients who were 
hospitalized because of other diseases, and designated them as non-COVID-19 patients 
(NP). In the DMM cluster analysis, samples of the NP group clustered together to form 
an independent cluster, and showed a community feature distinct from the groups of 
healthy control or COVID-19 patients.  

To characterize each cluster, group distribution was analyzed and compared (new 
supplementary Fig. S2). The H cluster that only contains healthy controls represents 
normal throat microbiome. In the NP cluster, there was a significantly higher proportion 
of NP patients (55.6%) than COVID-19 patients (33.3%) and healthy controls (11.1%) 
(P<0.01). Thereby, the NP cluster is more likely representative of a diverse microbiome 
status associated with various other diseases (new supplementary Fig. S2). Whereas the 
COVID-19 patients are more homogeneous at a given disease stage, and their 
microbiome was mainly predominated by community type II regardless of in throat 
swabs (56.6%) and in anal swabs (53.3%).      
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New supplementary Fig. S2. Group distribution characteristics of each community cluster. 

 
Paragraph starting in L 108: I think this is an over-interpretation of the result. For 
example: “Prominent microbiome community type shifts from early lower-diversity 
community types (NP, IV or II) towards later higher-diversity types (II or I) were 
observed in 9/24 COVID-19 adults who had specimens at two or more time points.” In 
other words – these transitions were observed in only 37% of the data. The graphs show 
that the results are not that obvious, and community shifts are far from “prominent”. 
Authors: We appreciate this critical crucial comment, and toned down our conclusion 
accordingly in the revised manuscript.  
 
Section starting on L 128: 
Were anal swabs also collected for healthy and non-covid-19 patients? 
Authors: The anal swabs were not collected from healthy and non-COVID-19 patients.  
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L 164 – 166: How were those bacterial genera selected? 
Authors: The top indicator bacteria with at least 0.5 indicator values were selected from 
each cluster (Fig. 1d and 2d), and subjected to analyses with several core functional bacteria 
(e.g. Faecalibacterium, Lactobacillus and Bifidobacterium) in gut.  
 
L 197 – 200: I think this is an overstatement. It can be observed that some bacterial 
genera co-occur, but there too few samples and time points to make inferences about 
community succession. I suggest to also correct these networks for sample size. The 
authors could build networks of groups II and I with just 4 samples for example, to 
confirm that the increased complexity in these groups is not an artifact of sample size. 
Authors: This is a reasonable comment. According to the suggestion, we reanalyzed   
the 16S datasets from all 74 samples of 13 COVID-19 patients (corresponding to old 
Supplementary Fig. S3 or new Supplementary Fig. S4) by log transform the raw data before 
performing spearman correlation test. A total of 153 co-occurred pairs with |r| > 0.7 under 
FDR-adjusted P < 0.05 were identified and visualized by Cytoscape version 3.8.0. We 
presented the new co-occurrence networks in the revised manuscript. In the new co-
occurrence networks, we found that 1) there were cross-talks of microbial compositions 
between and within host niches; 2) there was a competitive relationship between Gut-type-
II and Gut-type-I mediated by significantly negative correlation between gut bacterial 
genera Neisseria and Bacteroides; 3) Bacteroides may modulate the cross-talk between 
Throat-type H and Gut-type-I (shown in page 15).  
 

L 313: the manuscript states “Lastly, fecal microbiota transplantation may be 
considered as another treatment choice.” This is a dangerous statement to make. 
Considering the current circumstances, I can imagine people may try to perform fecal 
transplants at home to treat COVID-19 after reading this. There is no data in this 
manuscript to support that fecal transplants can be used to treat COVID-19. 
Authors: We appreciate the reviewer’s critical comment and therefore deleted this 
sentence from the revised manuscript.  
 
 

Reviewer #2 (Remarks to the Author): 

In the present study, the authors used throat and anal samples from 35 COVID-19 adults 
and 15 controls to profile changes of the microbiome composition associated with 
COVID-19 infection by 16S rRNA gene sequencing. 
The authors claim to show alterations of respiratory and intestinal communities 
associated with the viral infection, which may potential impact on the outcome. 
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Moreover, they claim having uncovered a new airway-gut microbial axis. 
The authors address interesting and important questions. However, I have serious 
concerns regarding lack of statistical power, choice of statistical methodology, lack of 
external validation and often times highly speculative or erroneous conclusions from 
the present results. Specific comments are listed below. 
Authors: We thank the reviewer for these critiques. We have carefully revised our 
manuscript according to all comments and suggestions as detailed below.   
 
I have serious doubts that throat swabs represent “the respiratory microbiota”, wouldn’t 
specimens collected form deeper respiratory tract localizations better represent the 
airway microbiota (although I acknowledge that these are more difficult to collect). 
Authors: We revised the text to be more precise. Specifically, “respiratory microbiota” 
was more clearly written as “upper respiratory microbiota” in the revised manuscript.   
 
Wot 35 cases and only 15(!) controls the study is severely limited by the sample sizes 
and the representability of the given results is highly questionable. 
Authors: We agree that sample size is a limitation of this study. Despite the small 
sample size, we discovered 13 of 19 healthy controls (throat swabs) can yield 
microbiomes clustered clearly different from that of other groups in the DMM 
modelling analysis (Fig. 1a and 1b). However, we discussed this issue and cautioned 
the readers that our results may not be representative of all patient groups.   
 
The community typing using DMM modelling is highly problematic as the models were 
trained on a very small cohort – and the validity of the inferred community types needs 
to be validated in an (sufficiently large) independent cohort before further downstream 
results are inferred based on assumptions derived from this model. 
Authors: Even with small sample size, this type of analyses have yielded interesting 
information previously. In the original paper that describes DMM modelling method 
(Holmes I, Harris K, Quince C. 2012. Dirichlet Multinomial Mixtures: Generative 
Models for Microbial Metagenomics. PLoS ONE 7: e30126.), the authors used two 
datasets to test the DMM availability. Based on the small dataset (78 samples) of 
inflammatory bowel disease (IBD) phenotypes, the authors found ileal Crohn’s disease 
(ICD) was associated with a more variable community. In another study (Vandeputte D, 
et al. 2016. Stool consistency is strongly associated with gut microbiota richness and 
composition, enterotypes and bacterial growth rates. Gut 65: 57-62.), the authors used 
16S DNA datasets from faecal samples of 53 healthy women for performing DMM 
modeling analysis and found strong associations between stool consistency and 
enterotype distribution. In our study, 112 throat swabs and 45 anal swabs were used to 
investigate the upper respiratory and gut microbial community type distribution in 
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COVID-19 patients, respectively. We believed that the obtained results are reliable. Of 
course, we would like in the future to validate our current results with an increased 
sample size. 
 
The separation in the ordination plots between the “community types” is not surprising 
given that the very inferred or separated beforehand on the same cohort with a different 
method (DMM), this only shows that the methods comply. The clusters could show up 
simply by chance, the reliability of the clusters/community types has to proofed using 
an independent cohort. 
Authors: We thank the reviewer for concurring the methodology is sound. In DMM 
modeling (Holmes I, Harris K, Quince C. 2012. Dirichlet Multinomial Mixtures: 
Generative Models for Microbial Metagenomics. PLoS ONE 7: e30126; Ding T, 
Schloss PD. 2014. Dynamics and associations of microbial community types across the 
human body. Nature 509: 357-360.), the reliability of clusters is defined by both the 
minimum Laplace approximation value and the maximum posterior probability (at least 
0.90).  

In fact, all our samples were classified as different clusters by using the minimum 
Laplace approximation value and posterior probabilities equal to 1. Of course, it would 
be better if another independent cohort is used to test the generalizability and reliability 
of our findings in future studies.  
 
Line 90, why were “the top 30 genera” chosen to represent the community types? This 
seems arbitrary to me, why not e.g. 50? Why isn’t the number of genera rather chosen 
based on abundance or persistence, e.g. genera with at least 0.1% (or 1%) mean relative 
abundance and presence in at least 50% of the samples, this would be a more convincing 
definition of a kind of core microbiota. 
Authors: We selected the top genera number based on what is needed to form a separate 
community. We agree the selection is a bit arbitrary. To address, we also performed 
analyses with varying genera numbers.  

In throat microbiota, the top 30 genera contributed to 66% of cumulative differences 
that are similar to total variations of all bacterial genera applied to DMM modeling. In 
anal microbiota, the top 30 genera reached up to 68% of cumulative differences. Those 
descriptions can be seen from “Indicator analysis in throat and gut community types” 
section in Methods. We also added related descriptions in the text of revised MS (Lines 
100-114). 

We also compared the difference between top30 (contributed to 66% of cumulative 
differences) and top40 genera (contributed to 72% of cumulative differences) for the 
identification of indicators of each throat microbial cluster. We found that the results 
were similar (Fig. R3) because five new identified indicators from the top40 genera had 
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the average or median abundances higher than 1% only in 3-13% of samples but not in 
at least 50% of samples. So, those top30 genera representing at least 66% of cumulative 
differences is reliable to identify the indicator of throat & gut microbial clusters. 

 
Fig. R3. Comparison of the indicator bacteria identified from top 30 and top 40 genera. 

 
The inference of any function or medical implication of identified bacteria here is 
highly problematic as the authors work with 16S data. E.g., line 96 ff. Pseudomans is 
not necessarily pathogenic – as by far not species or strains belonging to this genus 
exhibit pathogenic properties. 
Authors: We agree with the limitation when only 16S data were used. After checking 
the raw data by blasting analysis against rRNA_typestrains/16S_ribosomal_RNA 
database from NCBI, we found that the identified Pseudomans species had highest 
sequence similarity (100%) to the non-pathogenic species Pseudomonas lactis (Fig. 
R4). Pseudomonas lactis was initially isolated from bovine raw milk (von Neubeck M, 
et al. Pseudomonas lactis sp. nov. and Pseudomonas paralactis sp. nov., isolated from 
bovine raw milk. Int J Syst Evol Microbiol. 2017 Jun; 67(6):1656-1664). Accordingly, 
we revised the related results and conclusions.  
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Fig. R4. The blasting results of Pseudomans species. 

 
Line 164, the choice of “representative bacteria” is highly problematic, as indeed the 
functional relevance of throat bacteria in general, let alone in the context of COVID-
19, is uncertain. Also, the term “probiotics” for Bifidobacterium and Faecalibacterium 
is inadequate, only certain strains of certain Bifidobacterium species are entailed in 
some commercially available probiotics, a (next-generation) probiotic potential of F. 
prausnitzii remains to be proven convincingly yet.  
Authors: We agree with the reviewer. First, in the revised MS, we selected the top 
indicator bacteria with > 0.5 indicator values from each cluster (Fig. 1d and 2d) and several 
major core functional bacteria (e.g. Faecalibacterium, Lactobacillus and Bifidobacterium) 
in gut as the representative bacteria, and re-performed the analysis.  

Second, the majority of the species of Bifidobacterium and Faecalibacterium are 
beneficial to host health. Anti-Inflammatory roles of gut bacteria Faecalibacterium 
prausnitzii have been revealed and confirmed by a series of studies (Sokol et al. 2008; 
Heinken et al. 2014; Miquel et al. 2015; Lopez-Siles et al. 2017; Martín et al. 2017). At 
least, these studies suggested benefical roles of gut bacteria Faecalibacterium 
prausnitzii to host health, although some of these bacteria may not be called as 
probiotics. Accordingly, we revised the term “probiotics” as “potential beneficial 
bacteria”.  
References:  
a) Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJM, Thiele I. 2014. A functional 

metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 
196(18):3289-302. doi:10.1128/jb.01780-14. 

b) Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M. 2017. Faecalibacterium 
prausnitzii: from microbiology to diagnostics and prognostics. The ISME Journal 11: 841-852. 

c) Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, 
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Azevedo V, Chatel JM et al. 2017. Functional Characterization of Novel Faecalibacterium 
prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. 
prausnitzii as a Next-Generation Probiotic. Front Microbiol 8:1226 

d) Miquel S, Leclerc M, Martin R, Chain F, Lenoir M, Raguideau S, Hudault S, Bridonneau C, 
Northen T, Bowen B et al. 2015. Identification of Metabolic Signatures Linked to Anti-
Inflammatory Effects of Faecalibacterium prausnitzii. mBio 6(2):e00300-15.  

e) Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon 
S, Bridonneau C, Furet J-P, Corthier G et al. 2008. Faecalibacterium prausnitzii is an anti-
inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease 
patients. Proc Natl Acad Sci USA 105: 16731-16736. 

 
Generally, the throughout the text there is an uncritical use of the attribution of being 
beneficial or pathogenic, to date this ascription is possible for only very few bacteria 
based on genus-level taxonomic resolution alone. 
Authors: We agree with the reviewer. “Pathogenic” may be a relative concept. Some 
bacteria in healthy individuals might be pathogenic in immunocompromised 
individuals or under inflammatory status. For caution, we used relatively more neutral 
terms (e.g. potential pathogenic bacteria) in the revised MS.  
 
The whole part on bacterial cooccurrence networks is highly dubious. As microbiome 
data generated by 16S sequencing is of compositional nature, appropriate correlation 
methods have to used here, such as SparCC 
https://bitbucket.org/yonatanf/sparcc/src/default/ 
Authors: As suggested, we re-performed the co-occurrence network analysis using the 
16S data normalized by the centered log ratio transformation as described below. 
 
At least before spearman correlation the 16S data should be transformed according to 
the centered log ratio transformation. 
https://www.frontiersin.org/articles/10.3389/fmicb.2017.02224/full?report=reader 
Authors: As suggested, we transferred the 16S datasets from all 74 samples of 13 
COVID-19 patients according to the centered log ratio transformation before 
performing spearman correlation. A total of 153 co-occurred pairs with |r| > 0.7 under 
FDR-adjusted P < 0.05 were identified and visualized by Cytoscape version 3.8.0. In 
new co-occurrence network, we found 1) obvious cross-talks of microbial compositions 
between and with niches; 2) a competitive relationship between Gut-type-B and Gut-
type-A mediated by significantly negative interaction between gut bacterial genera 
Neisseria and Bacteroides, which might determine the microbiome shift from Gut-type-
B to Gut-type-A during the progress of COVID-19; 3) Bacteroides may modulate the 
cross-talk between Throat-type H and Gut-type-A, which might be beneficial for the 
restoration of throat and gut microbiota associated with COVID-19. The new results 
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have been updated in the revised MS.  

 
New Fig. 5 in the main text. Co-occurrence networks of gut and throat microbiota within 13 

COVID-19 patients. 

 
Also, the conclusion that any statistically significant correlations indicate “bacterial 
translocation” (line 194) is highly speculative. This hypothesis needs to be addressed 
with more sophisticated methods. 
Authors: We added some new results (e.g. serum LPS levels) and explanations in the 
revised MS, and toned down some conclusions including those on bacterial 
translocation.   
 
From the given study design and based on the statistical methods applied, it cannot be 
concluded that microbiota is altered by COVID-19 and restored upon resolution of 
infection. First, because criteria for alteration in this context are very difficult to define, 
and second because in order to show that a longitudinal study is required to show 
changes in microbial composition during and after infection. 
Authors: Alteration in gut microbiota of COVID-19 patients have been previously 
reported (Zuo et al. 2020; Gu et al. 2020). In this study, by comparing with the healthy 
controls, we clearly found that the upper respiratory tract microbiotas of COVID-19 
patients are altered in multiple levels of α-diversity (Fig. 1c), β-diversity (Fig. 1b), 
bacterial community types (Fig. 1a), and indicator bacteria (Fig. 1d), which are 
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consistent with and support previous observations. In particular, we observed the 
dynamic changes of the microbiota profiles at both upper respiratory tract and gut 
during acute infection and recovery phase of COVID-19. It is clear that the bacterial 
community types (along with the α-diversity and indicator bacteria) have changed over 
time since COVID-19 infection. In particular, the most prevalent microbial community 
type associated with COVID-19 patients is Throat-Ⅱ, significantly distinct from that in 
healthy controls. Similarly, Gut-Ⅱ significantly associated with COVID-19 patients is 
significantly different from known healthy gut microbial community structures 
(Arumugam et al. 2011; The Human Microbiome Project Consortium, 2012; Zhang et 
al. 2014). 
References:  
f) Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, Wan Y, Chung ACK, Cheung CP, Chen 

N, Lai CKC, Chen Z, Tso EYK, Fung KSC, Chan V, Ling L, Joynt G, Hui DSC, Chan FKL, 
Chan PKS, Ng SC. Alterations in Gut Microbiota of Patients With COVID-19 During Time of 
Hospitalization. Gastroenterology. 2020 Sep;159(3):944-955.e8.;  

g) Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, Guo F, Zhang X, Luo R, Huang C, Lu H, Zheng 
B, Zhang J, Yan R, Zhang H, Jiang H, Xu Q, Guo J, Gong Y, Tang L, Li L. Alterations of the 
Gut Microbiota in Patients with COVID-19 or H1N1 Influenza. Clin Infect Dis. 2020 Jun 
4:ciaa709. 

h) The Human Microbiome Project Consortium. 2012. Structure, function and diversity of the 
healthy human microbiome. Nature 486: 207-214. 

i) Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, 
Bruls T, 

j) Batto J-M et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. 
k) Zhang Z, Geng J, Tang X, Fan H, Xu J, Wen X, Ma Z, Shi P. 2014. Spatial heterogeneity and 

co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J 8: 881-893. 
 
 

Reviewer #3 (Remarks to the Author): 

This is an interesting paper in an emerging field, and seeks to answer an important 
question concerning the gut-lung axis. The primary claims of the paper are that the 
throat and gut microbiota of COVID-19 infected adults can be characterised into 
different community types, beginning with a low diversity population soon after 
infection and a restoration back to diverse microbiota that in synchronous in the 
respiratory tract and the gut. 
Overall, the researchers have done very well to draw conclusions from a limited dataset 
to provide timely information to assist with the current pandemic. Their attention to the 
precise details of the data and their longitudinal sampling is commendable. This work 
is very interesting and could provide valuable insight into the field and the long-term 
consequences of this novel disease, but additional considerations may help to improve 
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the confidence of these conclusions: 
Authors: We thank the reviewer for these positive comments.  
 
Major Comments: 
-Patient characteristics of healthy adults and non-COVID-19 patients should be 
included as supplementary information. 
Authors: We provided the clinical information of the COVID-19 patients whenever 
possible, with the caveat that some demographic and clinical characteristics of healthy 
adults and non-COVID-19 patients are not available due to the emergency nature of the 
pandemic, and lock-down measure in some places.  
 
-Care should be taken describing the results of throat swabs. The authors describe the 
sampling as coming from the “posterior oropharynx” (Line 323) which is only one part 
of the upper respiratory tract. Referring to results more generally as “respiratory tract” 
may give the impression that results are associated with changes in the lower respiratory 
tract, particularly given references to the airways and lung throughout the discussion 
(e.g. lines 288-291) 
Authors: We thank the reviewer for pointing out this point. We revised “respiratory 
tract” and “airway” into “upper respiratory tract” in the revised MS.  
 
-Line 83: It was noted that 6 COVID samples clustered with the NP type samples. Was 
there anything to distinguish these samples from other COVID samples? 
Authors: In our study, 10 SARS-CoV-2 RNA negative patients who were hospitalized 
because of other diseases were included, and defined as non-COVID-19 patients (NP) 
group. In the DMM cluster analysis, all samples of the NP group clustered with those 
of 6 COVID-19 patients and two healthy controls, and formed a cluster, distinct from 
community features of majority of COVID-19 patients as well as healthy control. 
Because a significantly higher proportion (55.6%) of NP patients were included in this 
cluster than COVID-19 (33.3%) and healthy controls (11.1%) (P<0.01), this cluster 
represents more likely a diverse microbiome status associated with various other 
diseases (please see new supplementary Fig. S2 in page 8).  

The 6 COVID-19 samples in NP cluster exhibited different bacterial characteristics 
from other COVID-19 samples, and can be distinguished from other COVID-19 
samples by corresponding indictor bacteria (e.g. Enterobacteriaceae in NP type; other 
bacteria such as Neisseria, Pseudomonas etc. in community types I-IV) (Fig. 1d). The 
inclusion of 6 COVID-19 samples in the NP cluster might indicate that they shared 
similar microbiota profile to the NP group, and COVID-19 has diverse effects on 
microbiome.  
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-Authors discuss a return from low diversity to high diversity community types over 
time in throat samples, yet this was only observed in 9/24 patients (Line 112) while a 
reverse pattern was observed in four patients (Line 118-119). To my mind, this does not 
appear to demonstrate a clear trend that these patterns are consistent features of 
COVID-19 and additional sampling may be required to validate these findings. 
Alternatively, authors may be able to place additional emphasis on the association 
between the community types and time since appearance of symptoms in samples 
which were not a part of the longitudinal series but nevertheless support the hypothesis 
(e.g. p34, p18, p21, p28 in Fig 1e) 
Authors: We thank the reviewer’s comment and suggestion. First, we toned down our 
conclusion on the association between a microbiota change and COVID-19 disease 
stage. Second, we performed the correlation relationship analysis between the 
community types and sampling time. There was no significantly association to be 
identified. However, when we analyzed the community type characteristics of all 
samples, we found that the majority of COVID-19 samples belonged to microbiome 
community type II regardless of in upper respiratory tracts or the gut (New 
supplementary Fig. S2, see page 8). In other words, COVID-19-associated microbiome 
was characterized by community type II. Furthermore, several lines of evidence also 
support the microbiome shift from community type II to type I during COVID-19 (Figs. 
1e, 2e, 3a, and 4). We revised related sections in the revised MS. In spite of this, we 
believe that the alternations and dynamics changes of microbiome caused by COVID-
19 are divergent among different individuals (please see New supplementary Fig. S6 in 
page 6)  
 
-Line 124-125: “These results indicate that the change of the respiratory microbiome 
might be closely associated with disease progression in COVID-19”. The strength of 
this statement could be substantially improved by matching community types to some 
measure of clinical severity (e.g. symptom score, viral load, oxygen saturation, etc.) if 
this data is available. 
Authors: Thank you for this suggestion. We performed this analysis using available 
clinical parameters (e.g. total T lymphocyte, B lymphocyte, NK cells, CD4/CD8 ratios, 
etc.) (new supplementary Fig. S10: below). These results showed that there was no 
significant association between the microbiome diversity and clinical parameters 
except that upper respiratory microbiome richness appeared to negatively correlate with 
NK cell counts.  
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New supplementary Fig. S10. Correlation of microbiome diversity with clinical parameters.  

 
-Line 161-163: Could the lack of correlation between community divergence and other 
parameters be due to the relatively small sample size available? 
Authors: Relatively small sample size might be a reason for weak or no correlation 
between community diversity and clinical parameters (new supplementary Fig. S10: 
above).  
 
-Line 182-184: Authors discuss the hypothesis that co-occurrence networks between 
bacteria reflect crosstalk between the gut and lungs as a result of bacterial translocation, 
which is later described as a result of damage to the respiratory and gastrointestinal 
mucosa (Lines 194-195; Lines 261-262). Other processes may also explain these co-
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occurrences including (1) bacteria migrating from the oropharangeal site to the gut via 
swallowing and passage through the gastrointestinal tract (especially as several oral 
taxa are implicated) or (2) induction of immune responses at both sites which apply 
similar selective pressures to the microbiota. Could the authors please address these 
hypotheses. 
Authors: Thank the reviewer for these suggestions. We discussed these potential 
mechanisms.  
 
-Similarly, is there any evidence available for a breakdown of mucosal barriers which 
may support the hypothesis of the authors (e.g. serum LPS or citrulline, etc.)? This may 
not be possible given the status of the patients but could provide valuable support for 
the hypothesis. 
Authors: Thank you for this suggestion. We measured the serum LPS levels of the 
COVID-19 patients. High levels of serum LPS were found in some patients such as P05, 
P09, P10, P13, etc, implying disruption of mucosal barriers and potential microbial 
translocation. In spite of high LPS levels in some patients, our data are more consistent 
with the interpretation that a cross-talk between the respiratory and gut microbiomes 
occurred more likely through respiratory and gastrointestinal tracts. Furthermore, we 
performed the correlation analysis, and found that the microbial richness index was 
negatively correlated with the serum LPS levels (New supplementary figure S11).  

 
New supplementary Figure S11. Correlation between microbiome diversity and LPS levels.  
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-Line 202-204: Increased Bifidobacterium and Faecalibacterium in throat samples 
were noted as evidence of restoration in microbiome composition, yet to the best of my 
knowledge these genera are not considered to be a normal part of the oropharangeal 
microbiome. Can the authors please provide some citations to demonstrate that these 
genera are representative of a healthy oropharangeal microbiome. 
-Increases in Bifidobacterium and Faecalibacterium are noted as signs of improvement 
and restoration (e.g. Lines 164-170; 202-204) but the authors note several other 
commensal genera such as Bacteroides, Roseburia, Blautia, and Coprococcus, while 
other probiotic strains such as Lactobacillus are also prominent members of the 
microbiota. Can the authors explain why they chose to focus on Bifidobacterium and 
Faecalibacterium specifically, and not other probiotic genera? If other genera do not 
display similar patterns, does this perhaps indicate that the restoration of the microbiota 
is incomplete and may have long-term consequences? 
Authors (to both questions above): Bacteroides, Roseburia, Blautia, Coprococcus, 
Faecalibacterium, Lactobacillus and Bifidobacterium are the core functional bacteria 
of gut (Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov 
A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, 
Verspecht C, De Sutter L, Lima-Mendez G, D'hoe K, Jonckheere K, Homola D, Garcia 
R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes 
J. Population-level analysis of gut microbiome variation. Science. 2016 Apr 
29;352(6285):560-4.). In the revised MS, the top indicator bacteria with indicator 
values above 0.5 were selected from each cluster (Fig. 1d and 2d), and were subjected 
to the analyses together with the several core functional bacteria (e.g. Faecalibacterium, 
Lactobacillus and Bifidobacterium) in gut.  

Although Bifidobacterium and Faecalibacterium are not the normal part of the 
oropharangeal microbiome, the majority of the species of Bifidobacterium and 
Faecalibacterium are documented to be beneficial bacteria and can be used as 
probiotics. In fact, the relative abundance of Bifidobacterium and Faecalibacterium 
was indeed substantially lower in the upper respiratory tract than the gut (Fig. 3b), 
supporting that Bifidobacterium and Faecalibacterium are not the most common 
bacteria in oropharangeal microbiome. Although the increase in Bifidobacterium and 
Faecalibacterium in throat samples might not be noted as evidence of restoration of 
microbiome composition in upper respiratory tract, their increase in gut at least reflects 
the improvement and restoration of gut microbiome.  

Several parameters, including α-diversity, bacterial community types, and 
representative bacteria, were used to reflect the restoration of the microbiota. According 
to our current results, the microbiotas of COVID-19 patients have not been restored to 
healthy type (Fig. 1c). Therefore, we presume that COVID-19 has a long-term 
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consequence on health and deserve further follow-up investigation.  
 
-Line 228-230: The authors indicate that inconsistencies in changes observed during 
longitudinal sampling indicate that diversity characteristics of the throat microbiome 
were affected by COVID-19. Can the authors please explain why they determined this 
direction of causality (i.e. is it possible that diversity characteristics may have rather 
influenced the progression of COVID-19 and not vice versa). 
Authors: Although it is difficult to draw a solid conclusion on the causality between 
SARS-CoV-2 infection and the altered microbiota, according to our results (comparison 
with the microbiota of healthy controls in diversity, community types and indicator 
bacteria) and previous studies (Zuo T, et al. Alterations in Gut Microbiota of Patients 
With COVID-19 During Time of Hospitalization. Gastroenterology. 2020 
Sep;159(3):944-955.e8.; Gu S, et al. Alterations of the Gut Microbiota in Patients with 
COVID-19 or H1N1 Influenza. Clin Infect Dis. 2020 Jun 4:ciaa709.), it is more likely  
that SARS-CoV-2 infection first alters the microbiota in respiratory tract and the gut, 
and then the changed microbiota leads to a long-term influence on the health of these 
patients.  

In fact, the relationship between respiratory virus infection (e.g. influenza, RSV, 
rhinovirus, etc.) and microbiota has been investigated (Dubourg G, Edouard S, Raoult 
D. Relationship between nasopharyngeal microbiota and patient's susceptibility to viral 
infection. Expert Rev Anti Infect Ther. 2019 Jun;17(6):437-447). In this study, we 
provided further evidences to support the interaction between respiratory virus infection 
and microbiota. In particular, the dynamic changes of microbiota in both upper 
respiratory tract and gut over time since SARS-CoV-2 infection provide new insight 
into the understanding of mechanism of COVID-19 and the causality of virus infection 
and microbiota.  
 
-Line 268-272: It is stated that the gut microbiome appeared to have a faster restoration 
to increased bacterial diversity, but this phenomenon did not appear to be described in 
the results section. Indeed, Figure 3a seems to suggest that the progression to more 
diverse community types was occurring at the same time in the two body sites. Could 
the authors please provide clarity for the justification of this statement.  
-Similarly, in Lines 270-272 the authors describe bacterial crosstalk which promotes 
restoration of the respiratory microbiota. How do the authors propose that bacteria are 
translocated from the gut to the oropharynx, particularly if mucosal integrity is 
beginning to recover concurrent with restoration of the microbiome? 
Authors (to both questions above): We agree that the progression to more diverse 
community types was occurring at the same time in the upper respiratory tract and gut. 
Therefore, we corrected previous description into “synchronous occurrence” in the 
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revised MS.  
The co-occurrence networks analysis suggests the cross-talk between the respiratory 

and gut microbiomes (new Fig. 5). In fact, the detection of Bifidobacterium and 
Faecalibacterium (the core functional bacteria in gut) in the upper respiratory tract in 
spite of lower relative abundance might support the cross-talk. Although we also 
detected high level of serum LPS in some COVID-19 patients (supplementary Table 
S2), we presume that the cross-talk between upper respiratory and gut microbiomes 
might be mediated through oropharyngeal-gastrointestinal tracts or diet. 
 
Minor comments: 
-Title should be revised to make it clear that this work specifically investigated bacterial 
communities, and not the broader microbiome (including viruses, archaea and fungi) 
Authors: We emphasized “bacterial” microbiomes in title and some places of the main 
text.   
 
-Line 30: It may not be accurate to say that this paper “addresses the question” of 
whether microbiomes “affect disease progression”. Although the authors show 
longitudinal changes, they do not demonstrate causality or a functional role and should 
be cautious of over-emphasising their results 
Authors: We agree with reviewer. We edited related sentences and accordingly toned 
down some conclusions in the revised MS.  
 
-Line 36: replace “they had a” with “their 
-Line 61: delete “but” 
-Lines 49-55: Sentence is long and difficult to follow. Consider breaking it up into 
smaller sentences 
-Please avoid using “significantly” where statistical analysis has not been applied (e.g. 
line 122 refers to a change in a single sample). Consider perhaps using “substantially” 
or a similar word to emphasis the magnitude of changes. 
-Line 210: reference to “near-normal microbiota” may be difficult to define, especially 
in the gut samples where no samples were available from healthy controls. Perhaps 
rephrasing to “more diverse” or “greater abundance of commensals” may be a more 
accurate description 
-Line 233: please change “baseline” to “early infection” or similar, to avoid any 
ambiguity about whether the samples were collected prior to infection. 
-Line 306: please change “will be particularly useful” to “may be useful” as SCFA 
production is influence by factors other than microbiome composition (e.g. diet, cross-
feeding, etc.) 
-Line 303 and 310: Please capitalise Pseudomonas 
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Authors (to eight questions above): Thank you very much for these editing suggestions. 
We did all these changes in the revised MS.   
 
-descriptions of “bacterial interactions” (e.g. line 36, line 193, etc) may be interpreted 
to mean that the authors have evidence of bacterial cells interacting, whereas the 
analysis performed only demonstrated correlations and co-occurrence. Revised word 
should be considered to avoid any confusion 
Authors: We changed “interactions” into “co-occurrence”.  
 
-Line 166: The authors state that that relative abundances of commensals “appeared to 
be” correlated. This term is ambiguous – if a correlation was statistically significant 
then the result should be stated more conclusively. If it was merely identified as an 
association or trend then the term “correlated” should be avoided as this is a specific 
type of statistical analysis. 
Authors: We changed “correlated” into “associated”. 
 
-Line 217-219: authors describe that the respiratory microbiome is more easily affected 
by the infection, but also admit that this has not been examined yet. The first half of 
this sentence should be rephrased to demonstrate this is a hypothesis and not a known 
phenomenon 
Authors: The altered respiratory microbiome was previous observed during other 
respiratory virus infections (e.g. RSV, influenza etc.). So, we changed the sentence as 
“As an open system with direct contact with environment and the primary site for 
respiratory infections, the respiratory tract microbiota is more easily affected.” 
However, the effect of SARS-CoV-2 infection has not been examined”.  
 
-please describe how “mild” and “severe” cases of COVID-19 were distinguished in 
patients 
Authors: We added the definitions and criteria of mild” and “severe” cases of COVID-
19 into the Methods section.  
 
-Line 265: it seems contradictory to state that the gut microbiome is both “more stable” 
and “more plastic: than the respiratory microbiota. Please clarify 
Authors: We used “plasticity” to express resilience of the microbiota. To avoid 
confusion, we replaced “plastic” by using “resilient”.  
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Abstract  27 

SARS-CoV-2 is the cause of COVID-19. It infects multiple organs including the respiratory tract and 28 

gut. Dynamic changes of regional microbiomes in infected adults are largely unknown. Here, we 29 

performed longitudinal analyses of throat and anal swabs from 35 COVID-19 and 19 healthy adult 30 

controls, as well as 10 non-COVID-19 patients with other diseases, by 16S rRNA gene sequencing. 31 

The results showed a partitioning of the patients into 3-4 categories based on microbial community 32 

types (I-IV) in both sites. The bacterial diversity was lower in COVID-19 patients than healthy 33 

controls and decreased gradually from community type I to III/IV. Although the dynamic change of 34 

microbiome was complex during COVID-19, a synchronous restoration of both the upper respiratory 35 

and gut microbiomes from early dysbiosis towards late more diverse status was observed in 6/8 mild 36 

COVID-19 adult patients. These findings reveal previously unknown interactions between upper 37 

respiratory and gut microbiomes, and suggest that modulations of regional microbiota might help to 38 

improve the recovery of COVID-19 patients.  39 

 40 

Keywords: SARS-CoV-2/COVID-19; upper respiratory microbiota; gut microbiota, dysbiosis; 41 

adults; co-occurrence network.  42 



Introduction 43 

COVID-19, a severe respiratory disease caused by a novel virus SARS-CoV-21,2, has led to a 44 

devastating global pandemic. It typically presents as an asymptomatic infection or manifests mild 45 

respiratory symptoms, but in elderly over 60 years of age or those having comorbidities, COVID-19 46 

can develop into severe pneumonia and cause death3,4. The biological mechanisms behind the varied 47 

clinical presentations are not fully understood.  48 

The microbiota plays a major role in modulating human health status by shaping the immune 49 

system and maintaining homeostasis5. In several respiratory viral infections (RVs), the microbial 50 

composition in the respiratory tract and the gut have been linked to the occurrence and severity of 51 

disease and affects subsequent respiratory health6,7, through increasing airway susceptibility to 52 

infection by other RVs and/or the colonization of pathogenic bacteria8-10. It is therefore reasonable to 53 

posit that the new respiratory infection COVID-19 may also interact with microbiota.  54 

Indeed, some recent studies have shown that SARS-CoV-2 infects human gut enterocytes and 55 

causes diarrhea11,12. Altered gut microbiota has been observed in COVID-19 patients leading to an 56 

enrichment of opportunistic pathogens and a depletion of beneficial bacteria13,14. However, changes 57 

in the respiratory microbiome has not been evaluated in COVID-19. Furthermore, despite persistent 58 

alterations in the gut microbiota has been reported using longitudinal stool samples collected in 59 

COVID-19 patients13, no study has examined whether there is any association between the respiratory 60 

and gut microbiota during the cause of disease. In this study, we investigated for the first time the 61 

dynamics of both the upper respiratory and gut microbiomes in a cohort of COVID-19 patients and 62 

controls, and discovered a pattern of synchronous changes in these two microbiomes communities. 63 



Results 64 

Study cohort  65 

The study subjects included 35 adult COVID-19 patients from 17 to 68 years of age, 19 healthy 66 

adults, and 10 non-COVID-19 patients (NP) with other diseases. Except patient p09 who had severe 67 

clinical symptoms, all other 34 COVID-19 patients had mild clinical symptoms. A total of 146 68 

specimens including 37 pairs of both throat and anal swabs were collected from COVID-19 patients 69 

(Supplementary Fig. S1). High-throughput sequencing of the V4-region of bacterial 16S rRNA gene 70 

was performed for all samples. 71 

 72 

Respiratory microbiome dynamics in COVID-19  73 

The 16S-rRNA gene sequences of all throat swabs were resolved into 3,126 amplicon sequence 74 

variants (ASVs) representing 17 known phyla including 209 known genera (Supplementary Table 75 

S1). Six throat microbial community types (or clusters) were identified using the Dirichlet 76 

Multinomial Mixtures (DMM) modelling based on the lowest Laplace approximation (Fig. 1a) and 77 

visualized by Nonmetric Multidimensional Scaling (NMDS) based on Bray-Curtis distance (Fig. 1b). 78 

Thirteen of 19 specimens of healthy adults (H) formed an independent cluster defined as community 79 

type H. The vast majority of the specimens of COVID-19 patients were divided into four clusters, 80 

herein named community types I-IV (Fig. 1a). Other specimens from 6 COVID-19 patients were 81 

clustered with those from 10 non-COVID-19 patients and two healthy controls. Because this cluster 82 

has a significantly higher proportion of NP patients (55.6%, P<0.01) than COVID-19 patients (33.3%) 83 

and healthy controls (11.1%) (Supplementary Fig. S2), it was designated as community type NP. All 84 

COVID-19-related community types, as well as the NP type, were significantly distant from the H 85 

type. Community types III and IV were not only separated from the types I and II, but also from each 86 

other (Fig. 1b). A decrease in alpha-diversity of the microbiome was observed from type I to IV, and 87 

significantly lower richness and evenness were observed in community types III and IV, compared 88 

with the H type (Fig. 1c). Similar decreasing trends of alpha-diversity were also observed when the 89 

Margalef's indexes were used to control the effect of sample size (Supplementary Fig. S3)15. 90 

To more directly demonstrate that the variation of throat microbial composition is an indicator of 91 

COVID-19 disease stages, the community type-specific indicator taxa were identified based on the 92 

top 30 microbial genera (Fig. 1d). The type H was characterized by bacterial genus Bacteroides 93 



(predominant taxa in the lung of healthy individuals) and unclassified Comamonadaceae, whereas 94 

the NP type was marked by pro-inflammatory Enterobacteriaceae members. In contrast, the indicator 95 

bacteria of four COVID-19-related community types were Alloprevotella in type I, Porphyromonas, 96 

Neisseria, Fusobacterium and unclassified Bacteroidales in type II, Pseudomonas in type III, and 97 

Saccharibacteria incertae sedis, Rothia and unclassified Actinomycetales in type IV (Fig. 1d). 98 

Community type I contained Alloprevotella genus, as well as abundant Bacteroides and Prevotella 99 

that typically present in the H type (Fig.1a). Some indicator bacteria substantially enriched in types 100 

II and IV belong to opportunistic pathogenic bacteria that may be associated with human diseases 101 

such as pneumonia, chronic periodontitis, and bacteremia 16-21. For example, the identified Rothia 102 

species in type IV have the highest sequence similarity with Rothia mucilaginosa that is often 103 

associated with cancer and bacteremia22. Porphyromonas, Fusobacterium, and Neisseria enriched in 104 

type II typically exist in the nasopharynx, and they are associated with pneumonia or chronic 105 

periodontitis. Besides opportunistic pathogenic bacteria, commensals (e.g. Bacteroidales) were also 106 

enriched in type II. In type III, the identified Pseudomonas species have the highest sequence 107 

similarity (100%) with the non-pathogenic species Pseudomonas lactis that was initially isolated from 108 

bovine raw milk, and rarely found in human23. Compared with the community type H, a decreased 109 

alpha-diversity with high abundance of opportunistic pathogenic and environmental bacteria 110 

(Pseudomonas lactis) in community types II-IV might imply a disruption of microbiome homeostasis 111 

(dysbiosis) in the respiratory tract (Supplementary Table S1 and Fig. S4). Lower alpha-diversity with 112 

enrichment of pro-inflammatory Enterobacteriaceae indicates that the type NP represents another 113 

status of microbial dysbiosis.  114 

According to indicator bacteria and alpha-diversity characteristics, the microbial community 115 

types from I to IV may represent a progressive imbalance of the respiratory microbiome (Fig. 1c-d). 116 

Among all throat specimens from COVID-19 patients, 47 (56.6%) belong to community type II 117 

(Supplementary Fig. S2), indicating that altered upper respiratory microbiome by COVID-19 was 118 

mainly characterized by community type II. Longitudinal analysis showed that community types with 119 

relatively lower alpha-diversity are more likely to have appeared in early specimens (Fig. 1e), but the 120 

diversity did not significantly correlate with the time after symptom onset regardless of being 121 

analyzed at the overall and individual levels (Supplementary Fig. S5-S6). Among 22 COVID-19 122 

adults who had specimens at two or more time points, over half (12, 54.5%) maintained a relatively 123 



stable microbiome community types, and the others had community types altered over time. An 124 

obvious throat microbiome recovery from types IV or II in early specimens to type I in late specimens 125 

was observed in five patients (p17, p25, p13, p11 and p05) with 4 or more consecutive specimens 126 

(Fig. 1e), accompanied with the restoration of throat microbiota, appearance of beneficial 127 

commensals, and increased bacterial diversity (Supplementary Fig. S4). Conversely, an opposite 128 

pattern was observed in four patients who had microbiome composition shift from early higher-129 

diversity types (I or II) to later lower-diversity type (II-IV), implying a worsening of the throat 130 

microbiome. In particular, the only severe case (p09) experienced a community type shift from type 131 

I on day 10 to type IV on day 27, and sustained type IV to at least day 33 after symptom onset (Fig. 132 

1e). Accompanied with this shift, opportunistic pathogenic bacteria Saccharibacteria incertae sedis 133 

and Rothia were substantially enriched at late stage (Supplementary Fig. S4). These indicate that the 134 

dynamic changes of upper respiratory microbiome caused by COVID-19 was heterogenous among 135 

different individuals. 136 

 137 

Gut microbiome dynamics in COVID-19 138 

To expand the scope of this research, a total of 1,940 ASVs were recovered from the 16S-rRNA 139 

gene sequences of all anal swabs, representing 13 known phyla including 182 known genera 140 

(Supplementary Table S1). The gut microbial communities of COVID-19 patients formed three 141 

distinct community types I-III (Fig. 2a-b). The richness and evenness of the gut microbiome 142 

decreased from type I to III (Fig. 2c). Indicator analyses showed that type I was primarily 143 

characterized by healthy gut bacteria including Bacteroides genus and several known butyrate-144 

producing bacteria (e.g. Faecalibacterium, Roseburia, Blautia, and Coprococcus) and one 145 

opportunistic pathogenic bacterium (Finegoldia) (Fig. 2d)24-29. The indicators of type II mainly 146 

contain various pathogenic or opportunistic pathogenic bacteria (e.g. Neisseria and Actinomyces). In 147 

community type III, the gut microbiota was dominated by Pseudomonas, implying a severe dysbiosis. 148 

We also used the community types I-III to examine the dysbiosis status of the gut microbiome.  149 

A shift of the gut microbiome from the lower-diversity community type (II or III) towards a 150 

higher-diversity type (I or II) was observed over time in 8/10 patients who had anal swabs at different 151 

time points (Fig. 2e). Accompanied with the shift, a clear trend of increased bacterial diversity and 152 

the relative abundance of beneficial commensals (e.g. Bacteroides and Faecalibacterium) was 153 



observed in the gut microbiota from early to late stages of COVID-19 (Supplementary Fig. S7), 154 

suggesting a restoration of gut microbiota. Two patients maintained a stable microbiome community 155 

types, and only one patient had an opposite shift of community type from higher-diversity type II to 156 

lower-diversity community type III.  157 

 158 

Association between the respiratory and gut microbiomes in COVID-19 159 

Most paired throat and anal swabs showed the same or similar community type levels (Fig. 3). 160 

In particular, the shift of microbiome community types over time appeared to match between the 161 

throat and the gut in 7/8 patients who had two or more paired specimens at different time points (Fig. 162 

3). Synchronous improvement of both the respiratory and gut microbiomes from early lower-diversity 163 

community type towards late higher-diversity type occurred in six patients (p05, p17, p13, p11, p25 164 

and p29). One patient (p33) experienced an improved respiratory microbiome but maintained an 165 

unchanged gut community type up to day 24. One case (p07) had a worsen gut microbiome from day 166 

24 to day 35 but maintained an unchanged respiratory community type. Because of no available anal 167 

specimens, we were unable to assess whether the gut microbiota, like the respiratory microbiota, 168 

shifted from higher-diversity type to lower-diversity type over time in the severe case (p09) (Fig. 1e). 169 

Except for the duration of COVID-19, the upper respiratory and gut microbial community divergence 170 

seemed not to be significantly associated with age, gender, antibiotics use, and detection of SARS-171 

CoV-2 RNA (Supplementary Figs. S8-S9). The alpha-diversity of the microbiome was also not 172 

significantly associated with the time after symptom onset (supplementary Fig. S5-S6), and clinical 173 

parameters, except for a weak association between the upper respiratory microbiome richness and 174 

NK cell counts (Supplementary Figs. S10). Furthermore, the richness of both upper respiratory and 175 

gut microbiome appeared to be negatively correlated with the serum levels of lipopolysaccharides 176 

(LPS) (Supplementary Fig. S11 and Table S2).  177 

 We further selected the top indicator bacteria with > 0.5 indicator values from each community 178 

type (Figs. 1d and 2d) and several major core functional bacteria (e.g. Faecalibacterium, 179 

Lactobacillus and Bifidobacterium) in gut as the representative bacteria to assess their dynamic 180 

changes in relative abundance over time (Fig. 4). In general, the relative abundances of 181 

Bifidobacterium, Lactobacillus and/or Faecalibacterium appeared to be negatively associated with 182 

the relative abundance of the opportunistic pathogens (e.g. Rothia and Neisseria), especially in the 183 



gut microbiome. An obvious decrease in the relative abundance of opportunistic pathogenic bacteria 184 

was accompanied by an increase in the relative abundance of resident commensals Bacteroides in gut 185 

microbiome over time in five patients having three or more longitudinal samples (Fig. 4 and 186 

Supplementary Fig. S4 and S7). Moreover, a substantially decreased abundance of Pseudomonas was 187 

observed in both organs in another two patients (p23 and p29). The relative abundance of 188 

Pseudomonas increased only in patient (p07) who experienced a worsening gut microbiome. 189 

 190 

Bacteria–bacteria co-occurrence networks 191 

There were four indicator bacteria genera (Porphyromonas, Neisseria, and Fusobacterium in 192 

type II and Pseudomonas in type III) in the throat microbiome that had been identified as the 193 

indicators of gut microbial community types II and III in COVID-19 patients (Supplementary Fig. 194 

S12). Apart from the shared indicators, oropharyngeal pathogenic bacteria Capnocytophaga and 195 

Actinomyces were also identified as indicators of the gut microbial community type II (Figs. 1d and 196 

2d)30,31. Because community types II and III often appeared in the early stage of COVID-19 (Figs. 1e 197 

and 2e), the appearance of these oropharyngeal bacteria in the gut suggested that a cross-talk between 198 

the respiratory and gut microbiomes occurred by frequent bacterial translocation during the early 199 

stage. Furthermore, high serum LPS levels were detected in some COVID-19 patients 200 

(Supplementary Table S2), suggesting the possibility of bacteria translocation.  201 

To further investigate the association between the respiratory and gut microbiomes, we 202 

performed co-occurrence network analysis using paired specimens from 13 patients. We constructed 203 

a co-occurrence network consisting of a total of 153 co-occurred pairs with Pearson correlation |r| > 204 

0.7 under FDR-adjusted P < 0.05 (Fig. 5). Bacteria in the same niche trended to have close co-205 

occurrence relationship, and the cross-talks of microbial compositions between the upper respiratory 206 

tract and the gut were also observed. In particular, a competitive relationship between Gut-type-II 207 

and Gut-type-I was mediated by a significantly negative interaction between gut bacterial genera 208 

Neisseria and Bacteroides (Fig. 5), which might determine the microbiome shift from Gut-type-II to 209 

Gut-type-I during the COVID-19 disease progression. Furthermore, core resident commensals 210 

Bacteroides appeared to mediate the cross-talk between Throat-type H and Gut-type-I, which might 211 

modulate the restoration of throat and gut microbiota during COVID-1927,32. 212 



Discussion 213 

Whether SARS-CoV-2 infection alters microbiota to affect COVID-19 disease progression is an 214 

important question that needs answers. In this study, we made three major observations. First, the 215 

upper respiratory and gut microbiota compositions of COVID-19 adults can be characterized by four 216 

(I- IV) and three (I-III) community types, respectively, and these types reflect different levels of 217 

balance between the more diverse microbiota (type I) and dysbiosis (type II-IV). Second, upper 218 

respiratory and gut microbiome altered by COVID-19 are mainly characterized by community type 219 

II, and the microbiome community types with lower alpha-diversity more likely appears in the early 220 

phase of COVID-19. Third, the dynamic change of community types is synchronous in the upper 221 

respiratory tract and gut.  222 

SARS-CoV-2 infects cells through ACE2 receptor2, which is highly expressed in respiratory and 223 

intestinal epithelial cells33. The infection can trigger the cytokine storm, cause local pathological 224 

damage34,35. As an open system with direct contact with environment and the primary site for 225 

respiratory infections, the upper respiratory tract microbiota is more easily affected by respiratory 226 

virus infections, but the effect of SARS-CoV-2 infection has not been examined yet. In this study, we 227 

observed alterations of the upper respiratory microbiota in COVID-19 adults, and presented data on 228 

the dynamic change of the respiratory microbiome composition over time. The upper respiratory 229 

microbiome of the COVID-19 adults was characterized by four bacterial community types I-IV, 230 

which reflect the different levels of the normal microbiome to dysbiosis. The community types with 231 

lower alpha-diversity and high enrichment of opportunistic pathogenic bacteria and Pseudomonas 232 

often appeared in early throat specimens (e.g. first several days after symptom onset), indicating that 233 

SARS-CoV-2 infection results in a very rapid dysbiosis in upper respiratory tract. A restoration of 234 

the upper respiratory microbiome from dysbiosis towards more diverse types was observed over time 235 

in some with mild disease, whereas prolonged or worsening microbiome appeared in a few others 236 

including the only one severe case (p09). 237 

Intestinal enterocytes that express ACE2 are also the target of SARS-CoV-2 which further up-238 

regulates the expression of ACE2, leading to a longer viral RNA shedding time in the gut than 239 

respiratory tract11,33. The early infection microbiome composition with abundant pathogenic bacteria 240 

(e.g. Coprobacillus, Clostridium ramoaum and Clostridium hathewayi) had been associated with the 241 

fecal levels of SARS-CoV-2 and COVID-19 severity in a previous study33. However, the sampling 242 



time was relatively late in that study (about 14 days after symptom onset), therefore unable to 243 

determine whether the early infection microbiome status is a consequence of SARS-CoV-2 infection, 244 

or a cause of disease severity. We also observed alterations of the gut microbiota during COVID-19 245 

in adults, and found some opportunistic pathogenic bacteria (e.g. Streptococcus, Rothia, Veillonella, 246 

Actinomyces and Actinomyces) reported in the previous observations13,14. However, distinct from the 247 

previous studies, we identified three community types (I-III) that can characterize the changes of gut 248 

microbiome over time. Similar to the observation in the upper respiratory microbiome, community 249 

types (i.e. II and III) with lower alpha-diversity often appeared in early specimens, supporting the 250 

early effect of SARS-CoV-2 on the gut microbiome. A restoration with the community type shifted 251 

from low-diversity type II to high-diversity type I over time was observed in at least 4 patients. 252 

However, Pseudomonas-dominated community type III showed a slow improvement towards 253 

community type II in three patients. In particular, the temporal dynamic changes of the microbiomes 254 

matched between the upper respiratory tract and the gut, indicating a close association in microbiota 255 

between both body sites, possibly via the “airway-gut axis”36.  256 

The reason for the fast dysbiosis in both the upper respiratory tract and the gut of COVID-19 257 

patients might be associated with the early-stage inflammation induced by SARS-CoV-2 infection, 258 

which leads to a fast loss of beneficial commensals, and the colonization and growth of opportunistic 259 

pathogenic bacteria (Supplementary Fig. S13). The use of empirical antibiotics in some patient during 260 

the early stages of the pandemic may exacerbate the dysbiosis in the upper respiratory tract and gut. 261 

Therefore, the microbiome composition with enrichment of opportunistic pathogenic bacteria (e.g. 262 

Rothia and Neisseria) was observed in both throat and gut microbiomes during the first several days 263 

after symptom onsets. Because the upper respiratory tract is more receptive to both exogenous and 264 

indigenous microbes than the gut7,37, the dysbiosis of upper respiratory microbiome appeared to be 265 

worse and occurred earlier than that of the gut microbiota, as manifested by lower diversity and 266 

richness and more indicators of opportunistic pathogenic bacteria in the former than in the latter. The 267 

damaged upper respiratory tract mucosa enables some oral taxa to be translocated to the gut, 268 

worsening the gut bacterial community (Supplementary Fig. S13). There are several possible 269 

mechanisms to explain the oropharyngeal bacterial translocation to the gut. First, inflammation 270 

induced by SARS-CoV-2 infection damaged the mucosal tissues and increased mucosal permeability 271 

of the airway, lung and gut7,38, which then enables bacterial translocation. Second, bacteria migrated 272 



from the oropharyngeal site to the gut via swallowing and passage through the gastrointestinal tract. 273 

Third, immune responses induced by infection applied similar selective pressures to the microbiota 274 

at both sites.  275 

Gut microbiota plays an important role in human health by shaping local immunity and remodeling 276 

mucosal tissues39. It is relatively more stable and resilient than the respiratory microbiota, and it may 277 

affect the latter by cross-talk between these two organs along the airway-gut axis36,37. In spite of 278 

longer duration of SARS-CoV-2 shedding in the gut than in the respiratory tract, gut microbiota 279 

appeared to have a synchronous change with the respiratory microbiota (Fig. 3). Although the 280 

dynamic change of the microbiome was relatively divergent and independent of early microbiome 281 

community types, synchronous restoration of both the respiratory and gut microbiomes from early 282 

low diverse status towards late more diverse status was observed in 6 (75%) mild COVID-19 adult 283 

patients who had two or more paired specimens at different time points. Age, gender and antibiotics 284 

use seemed not to be linked to restoration of the microbiome, implying potential contributions from 285 

other factors such as diet and genetic background.  286 

As common bacteria in bovine raw milk, Pseudomonas was rarely detected in human23. Because 287 

of specific antibiotics, it was not surprising that Pseudomonas-dominated bacterial community type 288 

III was difficult to restore towards higher-diversity community types in the upper respiratory tract. 289 

The identification of some opportunistic pathogenic bacteria (Neisseria, Porphyromonas, Rothia, 290 

Actinomycetales and Saccharibacteria) in more dysbiosis community types II and IV might imply a 291 

need for microbiota-based personalized antibiotics treatment against these specific pathogens. As the 292 

most common microbiome status in COVID-19 patients, the community type II represents a crucial 293 

intermediate stage during the restoration of the microbiome from dysbiosis towards more diverse 294 

microbiome. It was characterized by Neisseria, Fusobacterium, and Porphyromonas. Fusobacterium. 295 

Porphyromonas are the common commensals in the oropharynx and the gut19,21, while Neisseria 296 

generally presents in the lung. The appearance of lung Neisseria in both the upper respiratory tract 297 

and the gut, implying bacteria translocations along the “airway-lung-gut axis”40. The bacteria 298 

translocations may be the consequence of increased permeability among these organs caused by local 299 

inflammation41, as evidenced by high levels of serum LPS. The Bifidobacterium and some butyrate-300 

producing bacteria (e.g. Faecalibacterium) can improve the inflammatory conditions and regulate 301 

innate immunity by down-regulating ACE2 expression, and activating the corresponding signaling 302 



pathways27,32. During the restoration of the microbiota, these beneficial bacteria gradually occupied 303 

the ecological niches in the gut and respiratory tract, and governed the microbial communities in both 304 

organs by replacement of opportunistic pathogenic bacteria (e.g. Rothia and Neisseria) over time. 305 

However, a progressively worsening in the upper respiratory and gut microbiome might be associated 306 

with severe cases of COVID-19.  307 

One noted limitation of this study is the relatively small patient number. Our results may not be 308 

representative of all patient groups, and the observed dynamic changes of the microbiome in both the 309 

upper respiratory tract and gut may be further validated in a larger cohort. Another limitation of the 310 

study is that the dynamic changes of the microbiome were only followed up to 35 days after symptom 311 

onset. Whether COVID-19 exerts long-term effect of on the microbiomes is an interesting question 312 

for further investigation. Technically, the use of only 16S data may restrict our ability to identify 313 

specific bacteria species and infer their functions. 314 

In summary, we revealed for the first time an association between the upper respiratory and gut 315 

microbiota during COVID-19 disease progression, and observed synchronous changes of microbiota 316 

in both organs mainly from early dysbiosis towards later more diverse status in a proportion of adults 317 

with mild COVID-19 (Supplementary Fig. S13). In the absence of specific antiviral drugs and 318 

vaccines for COVID-19, our findings may have clinical implications. For instance, some indicator 319 

bacteria (e.g. opportunistic pathogenic and beneficial butyrate-producing bacteria) can be used as 320 

crucial biomarkers for clinical treatment decision making and prognostic evaluation. The 321 

measurement of predominant short-chain fatty acid (especially butyrate) concentration in fecal 322 

samples may be useful in early clinical diagnosis. Apart from the routine treatment efforts (e.g. non-323 

specific antiviral and supportive treatments)42, precision intervention and modulation of the gut and 324 

respiratory microbiota may offer novel therapeutic alternatives, such as personalized antibiotics 325 

therapy to inhibit certain opportunistic pathogenic bacteria. Moreover, COVID-19 tailored probiotics 326 

(e.g. Bifidobacterium and Faecalibacterium), prebiotics (e.g. xylooligosaccharide) treatment, or 327 

symbiotic treatments might be applied to modulate the gut and respiratory microbiota to facilitate the 328 

recovery of COVID-19 patients.  329 

  330 



Methods 331 

Study population 332 

A total of 64 subjects, including 35 laboratory-confirmed COVID-19 patients, 10 SARS-CoV-2 333 

negative patients with various diseases (non-COVID-19) and 19 healthy adults were enrolled in this 334 

study. COVID-19 was diagnosed in adult patients according to the National Guidelines for Diagnosis 335 

and Treatment of COVID-19. The virus RNA was extracted from all samples using a Mag-Bind RNA 336 

Extraction Kit (MACCURA, Sichuan, China) according to the manufacturer’s instructions. Then the 337 

ORFlab and N genes of SARS-CoV-2 was detected using a Novel Coronavirus (2019-nCoV) Real 338 

Time RT-PCR Kit (Liferiver, Shanghai, China) according to the manufacturer’s instructions. Only the 339 

individuals who had at least two consecutive throat swabs been positive for both ORFlab and N genes 340 

of SARS-CoV-2 were defined as COVID-19 patients. All positive specimens of COVID-19 patients 341 

were confirmed by Nantong Center for Disease Control and Prevention (CDC) using recommended 342 

real-time RT-PCR assay by China CDC. Mild and moderate cases are defined as having clinical 343 

symptoms (e.g. fever, cough, etc.) with and without the pneumonia on lung imaging. Severe COVID-344 

19 (adult) is defined as the presence of any one of the following: respiratory rate ≥30 breaths/minute, 345 

arterial oxygen saturation ≤93% at rest; PaO2/FiO2 ≤300 mm Hg. The COVID-19 patients were 346 

hospitalized at Nantong Third Hospital Affiliated to Nantong University. Among 35 COVID-19 347 

patients, 34 were mild or moderate cases, and only one (P09) was severe case.  348 

  Demographic and clinical characteristics of the COVID-19 patients were provided in 349 

Supplementary Table S3 and S443. Specimens including throat swabs and anal swabs were collected 350 

from the COVID-19 patients at different time points during their hospitalization (10-40 days). 351 

Sampling was performed using flexible, sterile, dry swabs, which can reach the posterior oropharynx 352 

and anus easily (approximately 2 inches) by the professionals at the hospital. At least two throat swabs 353 

at different days were available for 32 of 38 COVID-19 patients (Supplementary Fig S1).  354 

Non-COVID-19 control patients were selected from patients hospitalized at the same hospital 355 

during the COVID-19 pandemic due to other diseases, and healthy controls were selected from adults 356 

who came for routine physical examination and showed no symptoms. Throat swabs of non-COVID-357 

19 patients and healthy controls were collected during their hospital visit.  358 

The study was approved by Nantong Third Hospital Ethics Committee (EL2020006: 28 359 

February 2020). Written informed consents were obtained from each of the involved individuals. All 360 



experiments were performed in accordance with relevant guidelines and regulations.  361 

 362 

16S rRNA gene sequencing 363 

Bacterial DNA was extracted from the swabs using a QIAamp DNA Microbiome Kit (QIAGEN, 364 

Düsseldorf, Germany) according to the manufacturer’s instructions, and eluted with Nuclease-free 365 

water and stored at -80℃ until use. The V4 hypervariable region (515-806 nt) of the 16S rRNA gene 366 

was amplified universal bacterial primers44. To pool and sort multiple samples in a single tube of 367 

reactions, two rounds of PCR amplifications were performed using a novel triple-index amplicon 368 

sequencing strategy as described previously45. The first round of the PCR (PCR1) amplification was 369 

performed with a reaction mixture containing 8 μL Nuclease-free water, 0.5 μL KOD-Plus-Neo 370 

(TOYOBO, Osaka Boseki, Japan), 2.5 μL of 1 μM PCR1 forward primer, 2.5 μL of 1 μM PCR1 371 

reverse primer, and 5 μL DNA template. The products of the PCR1 reactions were verified using a 372 

1.5% agarose gel, purified using Monarch DNA Gel Extraction Kit (New England Biolabs, Ipswich, 373 

MA, USA), and quantified by a Qubit® 4.0 Fluorometer (Invitrogen, Carlsbad, CA, USA). Equal 374 

amounts of purified PXR1 products were pooled, and subjected to the secondary round of PCR (PCR2) 375 

amplification. The PCR2 was performed with a reaction mix containing 21 μL Nuclease-free water, 376 

1 μL KOD-Plus-Neo (TOYOBO, Osaka Boseki, Japan), 5 μL of 1 μM PCR2 forward primer, 5 μL of 377 

1 μM PCR2 reverse primer, and 5 μL pooled PCR1 products. The PCR2 products were verified using 378 

a 2% agarose gel, purified using the same Gel Extraction Kit and qualified using the Qubit® 4.0 379 

Fluorometer. The amounts of the specific product bands were further qualified by Agilent 2100 380 

Bioanalyzer (Agilent, Santa Clara, CA, USA). Equal molars of specific products were pooled and 381 

purified after mixing with AMPure XP beads (Beckman Coulter, Pasadena, CA, USA) in a ratio of 382 

0.8:1. Purified amplicons were paired-end sequenced (2x250) using Illumina-P250 sequencer.  383 

 384 

Bioinformatic analysis of 16S rRNA gene sequence data  385 

Sequenced forward and reverse reads were merged using USEARCH11 software46, then de-386 

multiplexed according to known barcodes using FASTX-Toolkit47. After trimming barcode, adapter 387 

and primer sequences using USEARCH11, 19,096,003 sequences were retained with an average of 388 

105508 sequences per sample. Samples with sequence <1000 were excluded from the following 389 

analysis. 390 



Because traditional OTU (operational taxonomic units) picking based on a 97% sequence 391 

similarity threshold may miss subtle and real biological sequence variation48, several novel methods 392 

such as DADA249 and Deblur50 were developed to resolve sequence data into single-sequence 393 

variants. Here, the DADA2 was employed to perform quality control, dereplicate, chimeras remove 394 

on Qiime2 platform51 with default settings except for truncating sequence length to 250bp. Finally, 395 

an amplicon sequence variant (ASV) table, equivalent to OTU table, was generated and then spitted 396 

into gut ASV table (2348 ASVs) and throat ASV table (4050 ASVs). The taxonomic classification of 397 

ASV representative sequences was conducted by using the RDP Naive Bayesian Classifier 398 

algorithm52 based on the Ribosomal Database project (RDP) 16S rRNA training set (v16) database53. 399 

To eliminate sequencing bias across all samples, both the gut ASV table and throat ASV table were 400 

subsampled at an even depth of 4700 and 3000 sequences per sample, respectively. The ASV coverage 401 

of 82.6% (gut) and 77.2% (throat) were sufficient to capture microbial diversity of both sites. 402 

 403 

Identification and characterization of microbial community types  404 

Dirichlet multinomial mixtures (DMM)54 is an algorithm that can efficiently cluster samples 405 

based on microbial composition, its sensitivity, reliability and accuracy had been confirmed in many 406 

microbiome studies55-57. DMM clustering were conducted with bacterial genus abundance from throat 407 

and gut microbiota using the command “get.communitytype” introduced by v1.44.1 of mothur58. The 408 

appropriate microbial community type numbers (DMM clusters) were determined based on the lowest 409 

Laplace approximation index. According to sample counts per cluster, the fisher exact test was applied 410 

to discover significant associations between each cluster and host conditions (such as healthy controls, 411 

COVID-19 patients, and Non-COVID-19 patients) under P values that are below 0.05 adjusted by 412 

the False Discovery Rate (FDR). Conjugated with the Analysis of Similarities (ANOSIM), the 413 

reliability of DMM clustering was further validated and then visualized by the Non-metric 414 

multidimensional scaling (NMDS) based on the Bray-Curtis distance under bacterial genus level. 415 

“The ANOSIM statistic “R” compares the mean of ranked dissimilarities between groups to the mean 416 

of ranked dissimilarities within groups. An R value close to “1.0” indicates dissimilarity between 417 

groups, whereas an R value close to “0” indicates an even distribution of high and low ranks within 418 

and between groups”. The ANOSIM statistic R always ranges between −1 to 1. The positive R values 419 

closer to 1 suggest more similarity within sites than between sites, and that close to 0 represent no 420 

difference between sites or within sites59. ANOSIM p values that are lower than 0.05 imply a higher 421 



similarity within sites. Richness (Observed OTUs/ASVs) and Pielou's or Species evenness for each 422 

community type were calculated for estimating the difference of alpha-diversity. The analyses of 423 

alpha-diversity, NMDS and ANOSIM were performed using R package “vegan” v2.5-6. Dynamic 424 

change of community types was showed according to collected dates of specimens with R package 425 

‘pheatmap’ package in RP heatmap’. Furthermore, to compensate for the effects of sample size, the 426 

Margalef's index was calculated by dividing the number of species in a sample by the natural log of 427 

the number of organisms collected15. For association between community types and potential 428 

confounding factors such as sex, age, virus existence and antibiotic use, the fisher exact test based on 429 

sample count was performed and the association with FDR-corrected p value <0.05 was considered 430 

significant.  431 

 432 

Indicator analysis in throat and gut community types 433 

According to the definition given by the United Nations Environment Programme (1996), the 434 

indicator species are a group of species whose status provides information on the overall condition of 435 

the ecosystem and of other species in that ecosystem, reflecting the quality and changes in 436 

environmental conditions as well as aspects of community composition. To obtain the reliable 437 

indicator genus that is specific to each community type, we performed the Indicator Species Analysis 438 

using the indicspecies package (ver.1.7.8) 60 in R platform with top 30 genus contributing to DMM 439 

clustering in both throat (accounting for 66% cumulative difference) and gut (68% cumulative 440 

difference). Dynamic changes of indicator genera corresponding to each throat community type were 441 

showed in all COVID-19 patients using the pheatmap package in R and only gut indicator genera 442 

with indicator values that were above 0.05 were presented in the patients. 443 

 444 

Co-occurrence network analysis of a crosstalk between throat and gut microbiota 445 

Based on microbial genus abundances normalized by the centered log ratio transformation of 446 

both throat and gut samples collected from 13 COVID-19 patients at the same time point, we 447 

calculated the Pearson Correlation Coefficient (Pearson’s r) among the throat & gut microbial genera. 448 

The Pearson’s r with P values that were below 0.05 after the FDR adjustment were considered 449 

significant correlations. Co-occurrence network of significantly correlated microbial genus pairs was 450 

visualized using Cytoscape v3.8.061. 451 

 452 



Data availability 453 

The raw data of 16S rRNA gene sequences are available at NCBI Sequence Read Archive (SRA) 454 

(https://www.ncbi.nlm.nih.gov/sra/) at BioProject ID PRJNA639286. 455 
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Figure legends 606 

Figure 1. DMM clustering of 16S rRNA gene sequencing data of throat microbiota (N = 112). 607 

Dirichlet multinomial mixtures (DMM) modelling was applied to 16S rRNA gene sequencing. The 608 

entire dataset formed six distinct clusters based on lowest Laplace approximation. Bacterial taxa 609 

marked by the stars represent unclassified bacteria genera. 610 

a. Heat map showing the relative abundance of the 30 most dominant bacterial genera per DMM 611 

cluster. The stars represent unclassified genera. NP, enriched in Non-COVID-19 patients. H, enriched 612 

in Healthy individuals. I-IV enriched in COVID-19 patients. 613 

b. Nonmetric multidimensional scaling (NMDS) visualization of DMM clusters using Bray-Curtis 614 

distance of throat bacterial genera. The ANOSIM statistic R closer to 1 with < 0.05 P value suggest 615 

significant separation of microbial community structures. The stress value that was lower than 0.2 616 

provides a good representation in reduced dimensions. 617 

c. Box plots showing the alpha-diversity (richness and evenness) per each DMM cluster. 618 

d. Indicators of airway microbial community types (DMM clusters) identified from top 30 genus 619 

contributing to throat microbial community typing (DMM clustering) in a. * P <0.05, ** P <0.01, and 620 

*** P < 0.001. 621 

e. Dynamic shift of four throat microbial community types (DMM clusters) in different COVID-19 622 

stages. Empty boxes indicate samples were unavailable in COVID-19 patients. Ages (years) were 623 

shown in parenthesis. NA, unavailable. 624 

 625 

Figure 2. DMM clustering of 16S rRNA gene sequencing data of gut microbiota (N = 45). 626 

Dirichlet multinomial mixtures (DMM) modelling was applied to 16S rRNA gene sequencing. The 627 

entire dataset formed three distinct clusters based on lowest Laplace approximation. All samples were 628 

collected from COVID-19 patients. Bacterial taxa marked by the stars represent unclassified bacteria 629 

genera. 630 

a. Heat map showing the relative abundance of the 30 most dominant bacterial genera per DMM 631 

cluster. 632 

b. Nonmetric multidimensional scaling (NMDS) visualization of DMM clusters using Bray-Curtis 633 

distance of gut bacterial genera. The ANOSIM statistic R closer to 1 with < 0.05 P value suggest 634 

significant separation of microbial community structures. The stress value that was lower than 0.2 635 



provides a good representation in reduced dimensions. 636 

c. Box plots showing the alpha-diversity (richness and evenness) per each DMM cluster. 637 

d. Indicators of gut microbial community types (DMM clusters) identified from top 30 genus 638 

contributing to gut microbial community typing (DMM clustering) in a. * P <0.05, ** P <0.01, and 639 

*** P < 0.001. 640 

e. Dynamic shift of gut microbial community types (DMM clusters) in different COVID-19 stages. 641 

Empty boxes indicate samples were unavailable in COVID-19 patients. Ages (years) were shown in 642 

parenthesis. 643 

 644 

Figure 3. Dynamic change of bacterial community types (DMM clusters) in respiratory tract 645 

and gut of patients with mild COVID-19.   646 

Co-variation dynamics of throat and gut microbial communities of 13 COVID-19 patients. Filled 647 

circles indicate the presence of microbial community types. Positive or Negative detections of SARS-648 

-CoV-2 in gut or throat are implicated by + or - symbols, respectively. Age (months) of each COVID-649 

19 adult was shown in brackets.  650 

 651 

Figure 4. Dynamic change of 12 key taxa in respiratory tract and gut of patients with mild 652 

COVID-19.  653 

Key taxa of DMM clusters and several core functional gut bacteria were shown in nine mild COVID-654 

19 adults with at least two time points of sampling. Linked to Fig.1a, Fig.2a, and Supplementary Figs. 655 

S4 and S7.  656 

 657 

Figure 5. Co-occurrence networks of gut and throat microbiota within 13 COVID-19 patients. 658 

Pearson correlation was employed to calculate correlation coefficient (r) between bacterial genus 659 

pairs based on their relative abundances. Co-occurred pairs with r > 0.7 under FDR-adjusted P < 0.05 660 

were shown and visualized by Cytoscape version 3.8.0. Edges were sized based on r values.  The 661 

bigger squares or circles were indicators in Figs. 1d and 2d.  662 



Supplementary materials 663 

Supplementary table S1. Throat and gut microbial abundances (phyla and genera). 664 

 665 

Supplementary table S2. The LPS level of the serum of patients. 666 

 667 

Supplementary table S3. Clinical index of COVID-19 patients in this study. 668 

 669 

Supplementary table S4. Dynamic changes of clinical parameters of 13 COVID-19 patients. 670 

 671 

Supplementary figure S1. COIVD-19 patient admission and discharge time as well as the point 672 

of detection of SARS-CoV-2. a. the hospitalization of p13 was 40 days. b. the information of these 673 

patients was unavailable. DAY 1 was the day of symptom onset. Some COVID-19 patients were 674 

initially found/confirmed elsewhere and their samples were unavailable for this study. A lack of 675 

positive samples in some patients (e.g. P05, P11 and P25) were due to the unavailability of early 676 

positive samples.  677 

 678 

Supplementary figure S2. Group distribution characteristics of each community cluster. Total 679 

number is shown in parentheses.  680 

 681 

Supplementary figure S3. Margalef index of each community cluster. Margalef’s index of 682 

clusters showed similar trends with richness as other analyses of Richness in both throat and anal 683 

samples. Margalef's index for each sample is calculated with the number of species (n) in sample 684 

minus 1 divided by the natural logarithm of the total sample count of cluster (N) in which the sample 685 

was included. Margalef's index = (n-1) / ln(N).  686 

 687 

Supplementary figure S4. Time-scale changes of indicators of throat microbial community 688 

types. Color sectors represent relative abundance of indicators in different COVID-19 stages. Linked 689 

to Figure 1. 690 

 691 

Supplementary figure S5. Dynamic changes of alpha-diversity since appearance of symptoms 692 



in COVID-19 patients.  693 

 694 

Supplementary figure S6. Dynamic changes of microbiome diversity over time during COVID-695 

19 in eight patients. a) Richness, b) Peilou evenness.  696 

 697 

Supplementary Figure S7. Time-scale changes of indicators of gut microbial community types. 698 

Color sectors represent relative abundance of indicators in different COVID-19 stages. Linked to 699 

Figure 2. 700 

 701 

Supplementary Figure S8. Enrichment analysis of impact factors on throat microbial 702 

community typing. a) Sex, b) Age, c) Virus detection, and d) Antibiotic uses. Enrichment analysis 703 

was performed by using the Fisher’s exact test under FDR-adjusted P < 0.05. Sample numbers were 704 

shown on the bar. Only COVID-19 patients were used for this analysis. 705 

 706 

Supplementary Figure S9. Enrichment analysis of impact factors on gut microbial community 707 

typing. a) Sex, b) Age, c) Virus detection, and d) Antibiotic uses. Enrichment analysis was performed 708 

by using the Fisher’s exact test under FDR-adjusted P < 0.05. No significant enrichment was observed. 709 

Sample numbers were shown on the bar. 710 

 711 

Supplementary figure S10. Correlation of microbiome diversity with clinical parameters. a) 712 

Correlation between Anal swab microbiota diversity index and clinical parameters (Correlation 713 

coefficient (r) were marked in cells for correlation pairs with p<0.05). b) Correlation between Throat 714 

swab microbiota diversity index and clinical parameters (Correlation coefficient (r) were marked in 715 

cells for correlation pairs with p<0.05). 716 

 717 

Supplementary figure S11. Correlation between microbiome diversity and LPS levels. a) 718 

Richness, b) Peilou evenness. 719 

 720 

Supplementary Figure S12. Comparisons of indicator genera between throat and gut microbial 721 

clusters. Shared indicator genera are highlighted by red arrows.  722 



 723 

Supplementary Figure S13. Putative restoration model of the respiratory and gut microbiomes 724 

over time in adults with mild COVID-19. SARS-CoV-2 infection resulted in a fast dysbiosis in 725 

both the respiratory tract and gut at the very early phase of the disease. A fast restoration of both the 726 

respiratory and gut microbiomes from early dysbiosis towards late more diverse status was observed 727 

in most adults with mild COVID-19 albeit they seemed to have a relatively slow clinical recovery. 728 

This model reflects the major microbiome dynamic change in most adults with mild COVID-19 but 729 

not all features in all patients, especially in those with severe disease.                                   730 



REVIEWERS' COMMENTS: 

 

Reviewer #1 (Remarks to the Author): 

 

The manuscript from Xu and colleagues has improved dramatically and most of my comments 

have been addressed. Please find below some suggestions that I believe will help to improve the 

clarity of the paper: 

 

Please add that all confirmed COVID-19 cases are hospitalized in China, even if they have no 

symptoms. This is not a common procedure in most countries, and being able to sample patients 

at the beginning of the infection is a massive advantage of this study. 

 

Abstract (L38-39): the results of this study do not ‘suggest that modulations of regional microbiota 

might help to improve the recovery of COVID-19 patients’, as microbiome modulation experiments 

have not been performed here. I suggest rephrasing this sentence. 

 

L46: This sentence indicates that only the elderly and people with comorbidities have severe 

COVID-19 symptoms, but we now know several cases of healthy individuals with severe reactions 

to the virus. Please rephrase. 

 

L189: ‘who experienced a worsening gut microbiome’ – in terms of diversity? Or how do you define 

a worsening microbiome? 

 

L200-201: The LPS was a good addition but needs to be explained better. Please explain the 

association between LPS and your conclusions from these analysis. 

 

L217: I don’t think you can be so confident here. Maybe rephrase to ‘these types possibly reflect 

different…’ 

 

L219: The conclusion that ‘COVID-19 are mainly characterized by community type II,’ comes out 

of the blue here. It also gives the impression that community type II is the same in the gut and 

the respiratory microbiome. Maybe rephrase with more qualitative indications of what are the 

predominant features found in most COVID-19 patients. 

 

L354: The paragraph first says 35 COVID patients, and this line says 38. Please clarify. 

 

Lines 389 and 401. Please indicate how many samples remained in the analyses (in each group) 

after removing samples with low sequencing depth. 

 

L 458-459: Please update this sentence. No ‘supplemental experimental procedures’ have been 

provided, and the number of figures and tables do not match. 

 

L649: Is the age given in months (as stated here in the caption) or in years (as indicated in the 

figure). 

 

L713: The ‘anal swab’ does not have a microbiota. Consider rephrasing it here (and elsewhere) to 

rectum microbiota. 

 

Please embed the supplementary figure captions in the supplementary figures. 

 

In order to make this study reproducible, please provide the analyses scripts/code as 

supplementary material. Very little information is given for the CLR transformation for example 

(e.g. what number was added (offset) to avoid log transformation with zeros?). These details can 

change the results, and therefore would ideally be provided with the R and/or Shell scripts. 

 



 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

I would like to thank the authors for meticulously addressing all of my questions and concerns. 

Although I still see important limitations of the present work, these are now more explicitly 

discussed and the authors have invested a lot of effort in solving the problems at hand with the 

best possible methodological approach. I support a publication of the manuscript in the present 

form. 

 

 

Reviewer #3 (Remarks to the Author): 

 

I thank the authors for their time spent reviewing this manuscript and listening to suggestions, 

and apologise for my late response. I believe this manuscript has been significantly improved by 

acknowledging the limitations of their study more clearly and limiting the strength of their 

conclusions to better fit the data. 

 

All line references are on “tracked changes” version. 

Major Comments: 

-BLAST scores (fig R2 and R4; lines 102-114; line 287) are used to identify select species of 

bacteria based on the samples with highest sequence similarity, yet the results do not reflect any 

level of selectivity in the results. E.g. in figure R4, the authors identify P. lactis as the species with 

highest sequence similarity, yet all other species listed also had 100% sequence identity with 

equal coverage and E value. It is not appropriate to claim a definitive identification based on these 

results, and the authors should rephrase the document to address the ambiguity. 16S sequencing 

does not have the sample level of specificity as metagenomics and results should be interpreted 

with more generality if the specificity is not available for a given taxa. 

-Lines 150-157: the authors describe that 8/10 patients experienced a shift to higher diversity, but 

then list 2 patients who maintained stable communities and one who had an opposite shift. This is 

a total of 11 patients – please check these numbers. Similarly, in Lines 160-167, the authors 

describe 7/8 patients having synchronous changes in communities, but then describe 6 which had 

similar changes, and 2 which did not. Please check these numbers 

-Line 319-321: Please make the language less definitive. While the use of biomarkers is possible, 

the data presented here is not sufficient to suggest it. I suggest changing “can be” to “may 

potentially be”. In fact, the whole concluding paragraph should be cautious not to overstate the 

therapeutic benefits given the limitations of this study as outlined in the rest of the discussion. 

 

 

Minor Comments: 

-Line 52: Change “affects” to “affect” 

-Line 58: change “has” to “have” 

-Line 145: change “bacteria” to “genera” 

-line 205: change “trended” to “tended” 



Response to reviewers’ comments 

Reviewer #1: 

Remarks to the Author: 

The manuscript from Xu and colleagues has improved dramatically and most of my 

comments have been addressed. Please find below some suggestions that I believe 

will help to improve the clarity of the paper: 

Author: Thank you for your valuable suggestions to improve our manuscript. 

 

Please add that all confirmed COVID-19 cases are hospitalized in China, even if they 

have no symptoms. This is not a common procedure in most countries, and being able 

to sample patients at the beginning of the infection is a massive advantage of this 

study. 

Author: We added this sentence (L69-70). 

 

Abstract (L38-39): the results of this study do not ‘suggest that modulations of 

regional microbiota might help to improve the recovery of COVID-19 patients’, as 

microbiome modulation experiments have not been performed here. I suggest 

rephrasing this sentence. 

Author: We rephrased this sentence. It is now “which may provide valuable 

information for other therapeutic alternatives such as modulations of regional 

microbiota”. 

 

L46: This sentence indicates that only the elderly and people with comorbidities have 

severe COVID-19 symptoms, but we now know several cases of healthy individuals 

with severe reactions to the virus. Please rephrase. 

Author: We rephrased this sentence. It is now “COVID-19 more likely develops into 

severe pneumonia and cause death in elderly over 60 years of age or those having 

comorbidities”. 

 

L189: ‘who experienced a worsening gut microbiome’ – in terms of diversity? Or how 

do you define a worsening microbiome? 

Author: Yes, it is based on diversity. We rephrased this sentence. It is now “… patient 

(p07) accompanied by a decreasing bacterial diversity (Fig. 4 and Supplementary Fig. 

S6)”. 

 

L200-201: The LPS was a good addition but needs to be explained better. Please 

explain the association between LPS and your conclusions from these analysis. 

Author: We added the description in L200-203: “High serum LPS is due to microbial 



translocation, and was often associated with virus infection. High serum LPS levels 

were also detected in some COVID-19 patients (Supplementary Table S2), suggesting 

that bacteria translocation might play a role in the cross-talk between the respiratory 

and gut microbiomes.” 

 

L217: I don’t think you can be so confident here. Maybe rephrase to ‘these types 

possibly reflect different…’ 

Author: We changed the sentence as you suggested. 

 

L219: The conclusion that ‘COVID-19 are mainly characterized by community type 

II,’ comes out of the blue here. It also gives the impression that community type II is 

the same in the gut and the respiratory microbiome. Maybe rephrase with more 

qualitative indications of what are the predominant features found in most COVID-19 

patients. 

Author: We changed the sentence to “Second, the microbiome community types with 

lower alpha-diversity more likely appears in the early phase of COVID-19, and upper 

respiratory and gut microbiomes altered by COVID-19 are mainly characterized by 

community type II with predominance of Bacteroidales, Fusobacterium, 

Porphyromonas, Prevotella, Neisseria and some opportunistic pathogens in the 

former, and Neisseria in the latter.” 

 

Lines 389 and 401. Please indicate how many samples remained in the analyses (in 

each group) after removing samples with low sequencing depth. 

Author: We added the number. 

 

L354: The paragraph first says 35 COVID patients, and this line says 38. Please 

clarify. 

L 458-459: Please update this sentence. No ‘supplemental experimental procedures’ 

have been provided, and the number of figures and tables do not match. 

L649: Is the age given in months (as stated here in the caption) or in years (as 

indicated in the figure). 

L713: The ‘anal swab’ does not have a microbiota. Consider rephrasing it here (and 

elsewhere) to rectum microbiota. 

Author: We corrected these errors. 

 

Please embed the supplementary figure captions in the supplementary figures. 

Author: We did. 

 

In order to make this study reproducible, please provide the analyses scripts/code as 



supplementary material. Very little information is given for the CLR transformation 

for example (e.g. what number was added (offset) to avoid log transformation with 

zeros?). These details can change the results, and therefore would ideally be provided 

with the R and/or Shell scripts. 

Author: As suggested, we provided the analyses scripts/code of the correlation 

analysis R package as supplemental material. We used the clr function in the R 

package composions, without changing the value in the data for the central log 

transformation. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I would like to thank the authors for meticulously addressing all of my questions and 

concerns. Although I still see important limitations of the present work, these are now 

more explicitly discussed and the authors have invested a lot of effort in solving the 

problems at hand with the best possible methodological approach. I support a 

publication of the manuscript in the present form. 

Author: Thank you for your positive comments. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

I thank the authors for their time spent reviewing this manuscript and listening to 

suggestions, and apologise for my late response. I believe this manuscript has been 

significantly improved by acknowledging the limitations of their study more clearly 

and limiting the strength of their conclusions to better fit the data. 

Author: Thank you for the positive comments. 

 

All line references are on “tracked changes” version. 

Author: We did. 

 

Major Comments: 

-BLAST scores (fig R2 and R4; lines 102-114; line 287) are used to identify select 

species of bacteria based on the samples with highest sequence similarity, yet the 

results do not reflect any level of selectivity in the results. E.g. in figure R4, the 

authors identify P. lactis as the species with highest sequence similarity, yet all other 

species listed also had 100% sequence identity with equal coverage and E value. It is 



not appropriate to claim a definitive identification based on these results, and the 

authors should rephrase the document to address the ambiguity. 16S sequencing does 

not have the sample level of specificity as metagenomics and results should be 

interpreted with more generality if the specificity is not available for a given taxa.  

Author: We agree with the reviewer’ comments. Indeed, our representative sequences 

of Pseudomonas genus have the highest sequence similarity (100%) with multiple 

known non-pathogenic species such as P. lactis, P. paralactis, P. canadensis, P. 
tolaasii, and P. fluorescens and so on. These blast results suggested that it is very 

difficult to achieve the identification of species level of Pseudomonas genus using 

16S rRNA sequences from this study. Even so, we believe, compared with the 

community type H, a decreased alpha-diversity with high abundance of opportunistic 

pathogenic and environmental bacteria (Pseudomonas spp.) in community types II-IV 

might imply unfavorable or abnormal microbiomes in the respiratory tract. 

Accordingly, we rephased related descriptions. 

 
 

-Lines 150-157: the authors describe that 8/10 patients experienced a shift to higher 

diversity, but then list 2 patients who maintained stable communities and one who had 

an opposite shift. This is a total of 11 patients – please check these numbers. Similarly, 

in Lines 160-167, the authors describe 7/8 patients having synchronous changes in 

communities, but then describe 6 which had similar changes, and 2 which did not. 

Please check these numbers. 

Author: We corrected the error. 

 

-Line 319-321: Please make the language less definitive. While the use of biomarkers 

is possible, the data presented here is not sufficient to suggest it. I suggest changing 



“can be” to “may potentially be”. In fact, the whole concluding paragraph should be 

cautious not to overstate the therapeutic benefits given the limitations of this study as 

outlined in the rest of the discussion. 

Author: We did. 

 

Minor Comments: 

-Line 52: Change “affects” to “affect” 

-Line 58: change “has” to “have” 

-Line 145: change “bacteria” to “genera” 

-line 205: change “trended” to “tended” 

Author: We did all changes. 


