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APPENDIX S1. Pearson Correlation matrix among all variables for the 14 wolf survey units. 8 

 9 

 10 

Figure S1-1. Pearson correlation matrix of all variables considered in the path analysis. Caribou 11 

pop.growth is the caribou population growth rate (λ), Habitat alteration is the % of wolf survey 12 



unit that is altered by human activity, vegetation index is the ΔEVI (see main text for 13 

explanation). Code is presented at https://github.com/ctlamb/borealcaribou-pathanalysis  14 

  15 



APPENDIX S2.   Factors affecting the Enhanced Vegetation Index across the study area 16 

 17 

 18 

Figure S2-1: Factors predicting the Enhanced Vegetation Index (ΔEVI), including temperature 19 

(Celsius), precipitation (cm year-1), landcover and habitat alteration (%). Predicted linear 20 

relationships are depicted for continuous variables, whereas landcover depicts the average ΔEVI 21 

for each landcover class. Landcover classes are: 1= Temperate or sub-polar needleleaf forest; 2= 22 

Sub-polar taiga needleleaf forest; 5= Temperate or sub-polar broadleaf deciduous forest; 6= 23 

Mixed forest; 8= Temperate or sub-polar shrubland;10= Temperate or sub-polar grassland; 11= 24 

Sub-polar or polar shrubland-lichen-moss;12= Sub-polar or polar grassland-lichen-moss; 14= 25 

Sub-polar or polar barren-lichen-moss.   26 
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We conducted a spatial analysis of factors that predict the vegetation index (ΔEVI) across the 28 

598,000-km2 study area. We used a linear model including all 500-m pixels in the study (n > 29 

127,000). The R2 was 0.44 (F = 9293, df = 127088, p < 0.0001). P-values are not meaningful 30 

with such high sample size, but the point was to show the magnitude of multiple factors affecting 31 

the vegetation index. This is why we did not link habitat alteration (on its own) directly to 32 

vegetation index in the path analysis (even though they are highly correlated, Appendix S1), 33 

because vegetation index interacts with landcover, temperature, and precipitation. Raw code and 34 

parameter estimates for this analysis are on GitHub: https://github.com/ctlamb/borealcaribou-35 

pathanalysis/tree/master/seral_mechs_spatial 36 
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APPENDIX S3:  Estimating Moose Densities  38 

We obtained moose densities using aerial moose surveys conducted by provincial governments, 39 

academic, and industry partners between 2008 and 2018 (Table S3.1). Moose surveys were 40 

primarily conducted using either the ver Hoef (2008) geospatial or a stratified random block 41 

design (Gasaway 1986) but distance sampling became more frequently used as of 2010 42 

(Buckland et al. 2004). Moose density estimates from aerial surveys were not available in the 43 

Cold Lake Saskatchewan Wolf Survey Unit (WSU). We therefore estimated the density of 44 

moose using remote wildlife cameras, and corrected camera estimates to aerial survey estimates 45 

using a correlation analysis. We first evaluated the relationship between moose densities 46 

estimated using remote wildlife cameras to densities estimated using aerial surveys across 47 

Alberta, and applied this correction factor to estimated moose densities in Saskatchewan from 48 

wildlife cameras. 49 

 50 

Table S3.1: Estimated moose density (animals km-2) in each Wolf Survey Unit (WSU). The year 51 

in which the estimate was calculated, method, and citation source are provided.   52 

WSU # WSU Name Sub-
Area 

Moose 
Density Year Method Citation 

6 Fort Liard  0.0716 2017 Geospatial 
Population Survey 

Larter, personal 
communication 

8 Fort Providence 
South FMA 

 0.029 2012 Geospatial 
Population Survey 

Kelly, personal 
communication 

7 Fort Providence 
Reference 

 0.029 2012 Geospatial 
Population Survey 

Kelly, personal 
communication 

9 Fort Resolution 
FMA 

 0.013 2009 Geospatial 
Population Survey Kelly and Cox, 2017 

10 Fort Resolution 
Reference 

 0.013 2009 Geospatial 
Population Survey Kelly and Cox, 2017 

11 Hay River 
Lowlands 

 0.029 2012 Geospatial 
Population Survey 

Kelly, personal 
communication 

1 Calendar  0.018 2010 Distance Sampling Theisen 2010 

2 Chinchaga RRA  0.157 2016 Distance Sampling Webster and Lavellee 
2016 



3 Clarke  0.074 2016 Distance Sampling Webster and Lavellee 
2016 

5 Cold Lake 
Saskatchewan 

 0.0789 2017 cameras unpublished data 

12 Northern 
Saskatchewan 

 0.0457 2008-
2015 

Aerial surveys, 
various designs McLoughlin et al, 2016 

4 Cold Lake 
Alberta 

WMU 
529 0.089 2017 Distance Sampling Government of 

Alberta, 2019 

4  WMU 
512 0.3 2013 Stratified Random 

block 
Government of 
Alberta, 2018 

4  WMU 
519 0.14 2015 Distance Sampling Government of 

Alberta, 2019 

4   WMU 
517 0.085 2018 Stratified Random 

block 
Government of 
Alberta, 2019 

13 Whati (TASR 
Impact)  0.011 2018 Distance Sampling Kelly, personal 

communication 

14 Jean Marie 
River  0.045 2018 Geospatial 

Population Survey 
Kelly, personal 
communication 

 53 

To compare density estimates for moose from cameras deployed, we related the estimated moose 54 

density from each of the provincial aerial surveys to estimated moose densities from a wildlife 55 

camera program deployed by the Alberta Biodiversity Monitoring Institute (ABMI) across 56 

Alberta’s boreal forest. The results can be used to correct camera density estimates for moose to 57 

the aerial survey estimates from government surveys within WSUs, to maintain consistency with 58 

density estimates used in the remainder of the analyses.  59 

 60 

ABMI deployed cameras across 1197 sites from 2013 to 2018 across 38 Wildlife Management 61 

Units. Density estimates for moose were calculated for each ABMI camera, using the time-in-62 

field-of-view method (Laurent et al. 2020), similar to that of methods presented in Nakashima et 63 

al. (2018). The time-in-field-of-view model uses cumulative time in the camera detection zone to 64 

estimate population density: 65 

      66 



𝐷 =
∑(𝑁 ∙ 𝑇ி)

𝐴ி ∙ 𝑇ை
 67 

 68 

Where density D, is calculated as the total number of individuals observed N multiplied by the 69 

time in front of the camera field-of-view TF, divided by the area of the camera field-of-view AF 70 

multiplied by the total camera operating time TO. The units are animal-seconds per area-seconds, 71 

which equates to the number of animals per area.  72 

 73 

The probability of detecting an animal decreases as the distance from the camera increases, and 74 

this is likely species- and habitat-specific. Therefore, the effective detection distance (EDD) in 75 

which each species, in each season was calculated using a prominently coloured pole 5 m from 76 

the camera. All animals were recorded as being closer or farther than the pole, with additional 77 

categories for animals that were uncertain (near 5 m but not directly in line with the pole), 78 

investigating the pole or investigating the camera. The effective detection distance was 79 

calculated using the proportion of locations that were < 5 m away versus > 5 m (excluding the 80 

uncertain and investigating images): EDD (m) = 5 / sqrt(1-p>5m), where p>5m is the proportion of 81 

images with the species > 5 m away. The area surveyed by a camera is calculated as: 82 

𝐴ி =
𝜋 ∙ 𝐸𝐷𝐷ଶ ∙ ∠

360
 83 

 84 

Where AF, in m2, is calculated as 𝜋 multiplied by EDD, multiplied by the camera field-of-view’s 85 

angle in degrees, ∠, which is 42° with the cameras used here, all of which are divided by 360°.  86 

 87 

Density estimates were calculated for summer and winter seasons and averaged with equal 88 

weight. Average moose density for each Wildlife Management Unit was calculated from all 89 



cameras in the Wildlife Management Unit. Confidence intervals were calculated using a 90 

compound distribution of binomial presence/absence and log-normal abundance-given-presence. 91 

Aerial survey estimates were provided by the Government of Alberta. Estimates were provided 92 

with 90% confidence intervals.  93 

 94 

We fit models of camera density as a function of aerial survey density, including Generalized 95 

Additive Models (GAMs) with smoothing splines using both normal and log-normal (log-link) 96 

error distributions, and a linear model both with and without an intercept. Points were weighted 97 

in inverse proportion to the width of the camera confidence intervals, which vary widely due to 98 

large differences in number of cameras per Wildlife Management Units and inherent variability 99 

of camera estimates. Confidence interval width for aerial estimates were a consistent proportion 100 

of the mean estimate, and so we did not weight aerial estimates. 101 

 102 

We omitted one outlying datum with aerial density of 0.5 km-2 but camera density of 7.1 km-2. 103 

The extreme camera estimate is from a Wildlife Management Units with only 4 cameras, and is 104 

largely due to a single camera with an extended visit from one moose. The 90% confidence 105 

intervals for that camera estimate are 1.4 – 35.3 km-2, indicating an extremely uncertain estimate. 106 

We included one datum with an outlying aerial estimate of 0.77 km-2 in the analyses.  107 

 108 

There was a general positive relationship between camera estimates and aerial-survey estimates 109 

of moose across Wildlife Management Units, but wide scatter as densities increase (Figure S3.1). 110 

The very wide confidence intervals on the GAM included the linear fit line. The linear models 111 

with and without intercepts were very similar. Because the models produced similar results and 112 



the linear model without intercept is the simplest for developing a correction factor, we used the 113 

linear model. The correction factor, 1/slope of the linear model without intercept, was 0.478 114 

(90% Confidence Interval: 0.415 – 0.568). The aerial estimate for moose density in a Wildlife 115 

Management Units is 0.478 times the camera estimate. Equivalently, the camera estimate is 2.09 116 

times higher than the aerial estimate.  117 

 118 

Figure S3-1: The relationship between moose density (moose km-2) calculated using remote 119 

wildlife cameras and via aerial surveys across Alberta Wildlife Management Units. Thick black 120 

line represents a linear model with no intercept (dotted lines = 90% Confidence Intervals); pale 121 

blue line represents a normal GAM curve (pale grey dotted lines = 90% Confidence Intervals). 122 

 123 
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The substantial overestimation of moose densities by cameras is expected. ABMI cameras are 124 

put in open micro-habitats so that vegetation doesn’t hide animals for at least 5 m; moose prefer 125 

those open areas for foraging, particularly in summer. Additionally, moose are attracted to the 126 

cameras themselves, often spending time investigating the camera. This inflates densities 127 

estimates by increasing the time that moose spend in the camera’s field-of-view and also reduces 128 

the effective detection distance.  129 

 130 

We applied the correction factor to moose densities estimated in Cold Lake Saskatchewan 131 

caribou range using remote cameras that overlapped the Cold Lake Saskatchewan WSU. 132 

Cameras in the Cold Lake Saskatchewan caribou range were randomly placed within a 12.5 x 4 - 133 

km area, with a minimum spacing of 1 km between each camera. Cameras collected data from 134 

January 2017 to March 2018. We calculated moose density using the approach as described 135 

above for each camera, and averaged across the 25 cameras to get one density estimate for that 136 

region. We estimated the moose density within the Cold Lake Saskatchewan WSU as 0.0789 137 

moose km-2. We then corrected the estimated density by multiplying by the correction factor, 138 

0.478, such that 0.0789 moose km-2 * 0.478 = 0.0377 moose km-2 or 3.77 moose 100 km-2. 139 

 140 
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APPENDIX S4: Estimating Wolf Densities: Spatial simulations to optimize transect spacing and 155 

time since snowfall for aerial surveys 156 

 157 

We attempted to conduct a complete wolf census at each Wolf Survey Unit (WSU) based on the 158 

principle that independent wolf track networks (viewable track segments) will be isolated from 159 

each other and readily countable shortly after snowfall events. We conducted the survey by 160 

flying parallel transects, where the probability of intercepting track networks depended on 161 

transect spacing (survey intensity) and the size of the track network, which in turn was related to 162 

the time since snowfall. There is a trade-off between the expediency of a survey and the level of 163 

intensity at which the survey is conducted. 164 

 165 

To inform survey intensity, and to understand how time elapsed since snowfall prior to surveying 166 

affected detection rates, we examined 12 wolf location time series, each from wolves collared 167 

with GPS collars, from different packs, with collars programmed to record a wolf location every 168 

5 min. We considered only data from December through March to be consistent with winter 169 

survey conditions. Each time series included between 9 and 65 days of tracking (mean = 67 days 170 

per time series). 171 

 172 

To simulate a survey, we extracted a segment from each time series to represent a network of 173 

observable tracks following a snowstorm. We chose the date of segment initiation and the 174 

number of days represented in each segment randomly. Track segments were 1, 2, or 3 days in 175 

length. We superimposed each track segment against a set of simulated survey transects that 176 

were always oriented north-south, positioned randomly in the east-west direction, and spaced 1, 177 



2, 3, 5, or 7-km apart. Detection was determined if wolf track segments intercepted a survey 178 

transects at least once.  179 

 180 

We repeated the simulated snow track segment outlined above 100 times for each time series. 181 

For each time series, we calculated the proportion of snow track segments that were detected for 182 

each combination of transect spacing and segment length. These proportions were presented 183 

using box plots. All programming was conducted in R using the following packages: rgdal, 184 

lubridate, plyr, reshape, and ggplot2. 185 

 186 

As expected, detection rates increased when transect spacing was reduced and when the number 187 

of days included in a track segment increased (figures S4-1). The results indicated that 3 days of 188 

tracks are reliably intercepted using transect spacing from 1 to 3 km apart, and that 3-km spacing 189 

detects 91.6% of the track networks 2 days following a snowfall. We chose 3-km spacing based 190 

on this simulation. 191 

 192 

These estimates are conservative because (1) this analysis was based on a single animal, whereas 193 

wolves travelling in packs have multiple tracks at times, and (2), old tracks are often evident 194 

under recent snowfall and these are also noted and considered when searching for fresh tracks. 195 

Finally, because WSUs were large and surveyed in one effort over several days, track 196 

detectability increased over time (e.g., 2, 3, 4, 5 etc. nights worth of tracks as survey progressed). 197 

 198 

After wolf tracks were intercepted along a transect, the tracks were forward-tracked and 199 

sometimes back-tracked to count the number of wolves in the group using tracking evidence and 200 



visual observations of the wolf packs. Each survey took approximately 3 to 5 days to complete, 201 

depending on weather and the size of the WSU. 202 

 203 

 204 

Figure S4-1.  The proportion of track segments detected based on their length and transect 205 

spacing (km). The track segment length represents “time since snowfall” to guide when surveys 206 

should begin following a snowfall event.  207 


