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Positron Emission Tomography Studies of the  
Glial Cell Marker TSPO in Psychosis Patients:  

A Meta-Analysis Using Individual Participant Data 
 

Supplementary Information 
 
 
Search Strategy for PubMed 
 

((("psychotic disorders"[MeSH Terms] OR ("psychotic"[All Fields] AND "disorders"[All 

Fields]) OR "psychotic disorders"[All Fields] OR "psychosis"[All Fields]) OR ("psychotic 

disorders"[MeSH Terms] OR ("psychotic"[All Fields] AND "disorders"[All Fields]) OR 

"psychotic disorders"[All Fields] OR ("psychotic"[All Fields] AND "disorder"[All Fields]) 

OR "psychotic disorder"[All Fields]) OR ("schizophrenia"[MeSH Terms] OR 

"schizophrenia"[All Fields])) AND ((translocator[All Fields] AND ("proteins"[MeSH 

Terms] OR "proteins"[All Fields] OR "protein"[All Fields])) OR (translocator[All Fields] 

AND ("antigens, cd59"[MeSH Terms] OR ("antigens"[All Fields] AND "cd59"[All Fields]) 

OR "cd59 antigens"[All Fields] OR "protein 18"[All Fields]) AND kDa[All Fields]) OR 

TSPO[All Fields] OR (peripheral[All Fields] AND ("receptors, gaba-a"[MeSH Terms] 

OR ("receptors"[All Fields] AND "gaba-a"[All Fields]) OR "gaba-a receptors"[All Fields] 

OR ("benzodiazepine"[All Fields] AND "receptor"[All Fields]) OR "benzodiazepine 

receptor"[All Fields])) OR PBR[All Fields])) AND (("positron-emission 

tomography"[MeSH Terms] OR ("positron-emission"[All Fields] AND "tomography"[All 

Fields]) OR "positron-emission tomography"[All Fields] OR ("positron"[All Fields] AND 

"emission"[All Fields] AND "tomography"[All Fields]) OR "positron emission 

tomography"[All Fields]) OR PET[All Fields]) AND 2004/01/01[EDAT] : 

2017/02/20[EDAT] 
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Recruitment of Healthy Controls, Quality Control of Data and Assignment of 
Subjects Overlapping in the Original Studies  
 

Healthy control subjects were recruited by flyers (1, 2, 3), advertising in newspapers 

(4), word of mouth (2) and advertising on internet (1, 5). Exclusion criteria for all healthy 

controls included history of psychiatric disease or other clinically significant medical 

illness. Fourteen HC subjects from Kenk et al. (1) also served as controls in Hafizi et 

al. (3). Since different image analysis procedures were used in the two studies, it was 

not possible to employ a multiple membership model to account for this overlap. 

Instead, we assigned these 14 subjects to either the Kenk et al. (1) or the Hafizi et al. 

(3) data set, to make sure that data from the same subject was not used twice in the 

model. The assignment was performed prior to the inferential analyses, with the 

purpose of finding the best possible match between the diagnostic groups within both 

studies. In addition, one HC subject in Kenk et al. (1) had an outlier HIP VT value 

(75.55), and a mismatch in the MAB patient group count was found in the Bloomfield 

et al. (4) data. These inconsistencies were resolved after consultation with the original 

authors. The final data set from Bloomfield et al. (4) contained two MAB patients, but 

no MAB HC. These two subjects were excluded from the inferential analyses as 

standardization (z-scoring) was not meaningful. 
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Supplementary Table S1. PET TSPO studies in schizophrenia or psychosis not 
included in the analysis 
 
 

Study Did not fulfill selection criteria 
 I II III 

van Berckel et al., 2008 (6) X X N/A 
Doorduin et al., 2009 (7) X X N/A 
Takano et al., 2010 (8)  X X 
van der Doef et al., 2016 (9) X X N/A 
Holmes et al., 2016 (10) X X N/A 
Di Biase et al., 2017 (11) X X N/A 
N/A = not applicable 
  

 
The selection criteria and their rationale were the following:  
 
I. The use of a second-generation TSPO radioligand 
 
Second generation radioligands show much higher specific binding compared to 
[11C]PK11195, as has been shown in recent blocking studies (12–14). Low specific 
binding means lower accuracy and reliability, and therefore loss of sensitivity. Including 
studies with significantly lower sensitivity would violate one of the basic assumptions 
of the meta-analysis model, which is that all effects sizes should be drawn from the 
same underlying distribution.   
 
II. Reporting distribution volume (VT) values obtained using an arterial input function 
 
Since there is no brain region devoid of TSPO expression, metabolite-corrected arterial 
plasma measurements of radioligand concentration are necessary for accurate in vivo 
quantification of binding. When analyzing data obtained using this method, VT is 
considered the gold standard outcome measure. Alternative approaches used show 
either low reliability and precision (such as the use of microparameters for estimating 
binding potential (15, 16), or ratio approaches (17)). As for criterion I, synthesizing 
outcomes with very different reliability is in conflict with assumptions underlying the 
meta-analysis model.  
 
III. Reporting TSPO affinity type of all participants   
 
All second generation TSPO radioligands have shown to be sensitive for TSPO 
genotype (18–20), a factor which therefore has to be taken into account in the analysis.  
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Supplementary Table S2. Hypothesis testing - p-values  
 
Frequentist version of model M1 showing maximum likelihood 
estimates of psychosis patient and healthy control differences 
in standardized (z-scored) VT (an estimate of TSPO levels) 
values.  

Region Estimate SE df* t-value p 
FC -0.48 0.15 150.00 -3.12 0.00218 
TC -0.47 0.15 150.00 -3.03 0.00291 
HIP -0.64 0.15 149.00 -4.26 0.00004 

FC = frontal cortex; TC = temporal cortex; HIP = hippocampus; SE = 
standard error; df = degrees of freedom 
*df calculated using Satterthwaite approximation 
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Supplementary Figure S1. Hypothesis testing - posteriors  
 
Prior and posterior distributions of Bayes factor hypothesis tests of psychosis patient-
control differences in standardized (z-transformed) VT values (an estimate of TSPO 
levels). The Savage-Dickey-Ratio was used to compute the Bayes factors. For all tests, 
the prior distribution was a truncated Gaussian centered at 0 with a SD of 0.5. The SD 
was chosen since this corresponds to an expected difference of a medium effect size 
between patients and controls. In the left panel, the hypothesis of a decreased VT in 
patients as compared to healthy controls (H2), over the hypothesis of no change (H0) 
is shown. In the right panel, the hypothesis of an increased VT in patients as compared 
to healthy controls (H1), over the hypothesis of no change (H0) is shown.  
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Supplementary Table S3. Hypothesis testing - Bayes factors robustness check.  
 
In order to examine how much the Bayes factors were affected by different priors, we varied 
the widths of the half-Gaussian distribution on patient-control difference in standardized brain 
VT (an estimate of TSPO levels) values, using the best fitting model (M1). SDs of 0.2 and 0.8 
were chosen as these correspond to approximately small and large expected effect sizes 
respectively. 

Region Large (SD=0.8)  Small (SD=0.2) 
H0:H2 H2:H0   H0:H2 H2:H0 H0:H1 H1:H0 

FC 0.035 28.736  0.050 19.993 5.064 0.197 
TC 0.042 23.762  0.062 16.008 5.305 0.189 
HIP 0.001 831.085   0.005 210.730 6.804 0.147 

H0:H1: Bayes factor denoting evidence in favor of H0 over H1; H1:H0: evidence in favor of H1 over H0; 
H0:H2: evidence in favor of H0 over H2; H2:H0: evidence in favor of H2 over H0 
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Supplementary Table S4. Hypothesis testing - Bayes factors with gender as covariate 
 
Bayes factors of hypothesis testing for the difference in standardized brain VT (an estimate of 
TSPO levels) between patients and controls, using the best fitting model (M1), while covarying 
for gender.  

Region H0:H1 H1:H0 H0:H2 H2:H0 H1:H2 H2:H1 
FC 12.338 0.081 0.053 18.859 0.004 232.670 
TC 4.960 0.202 0.062 16.105 0.013 79.883 
HIP 10.557 0.095 0.001 675.455 <0.001 7130.563 

H0:H1: Bayes factor denoting evidence in favor of H0 over H1; H1:H0: evidence in favor of H1 over H0;   
H0:H2: evidence in favor of H0 over H2; H2:H0: evidence in favor of H2 over H0;  
H1:H2: evidence in favor of H1 over H2; H2:H1: evidence in favor of H2 over H1   
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Supplementary Figure S2. Study heterogeneity - Posteriors over tau 
 
Prior and posterior distribution of the standard deviation (τ) of study slopes from model 
M3, for each ROI. The study-slopes are the study-specific differences in standardized 
brain VT (an estimate of TSPO levels) values between patient and controls. As such, τ 
is an estimate of the study-heterogeneity. The prior distribution of τ was a half-Cauchy, 
centered at zero with a scale of 0.707. The posterior distributions of τ for all regions 
used in this meta-analysis suggest low study heterogeneity.
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Supplementary Figure S3. PRISMA IPD Flowchart 
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Supplementary Figure S4. Forest plot of LME relationship between regional VT 
values and PANSS-Positive (A) and PANSS-Negative (B).  
 
Forest-plot of posteriors of correlations between regional VT (an estimate of TSPO 
levels) and Positive And Negative Syndrome Scale (PANSS) Positive and Negative 
scores. A random effect model, allowing for study specific correlations to vary have 
been used (akin the design of model M3 for the main article). A weakly regularizing 
prior, ranging from -1 to 1, was specified for the beta coefficient. The black circle 
denotes the posterior mean, and the thick line the 95% credible interval, which are also 
presented in text next to the plots. The cross denotes the VT-PANSS correlation using 
raw data (together with its 95% CI), without performing linear mixed effects modelling. 
Hence, the difference between the dot and the cross displays the model shrinkage 
towards the mean. SAPS and SANS scores from the study by Coughlin et al. have 
been converted to PANSS scores using van Erp et al (21). The Figure show that there 
is little to no evidence for a correlation between regional VT and PANSS scores.  
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Supplementary Table S5. Regional VT values correlated with PANSS p-values 
 
Maximum likelihood estimates from LME model of correlation between 
regional VT and PANSS-Positive and PANSS-Negative scores in 
psychosis patients.   

Scale Region Estimate SE t-value p 

PANSS-
Positive 

FC 0.06 0.15 0.42 0.70 
TC 0.07 0.12 0.56 0.61 
HIP 0.02 0.11 0.18 0.86 

PANSS-
Negative 

FC 0.02 0.11 0.15 0.88 
TC 0.04 0.11 0.37 0.71 
HIP 0.03 0.11 0.24 0.81 

FC = frontal cortex; TC = temporal cortex; HIP = hippocampus; SE = standard 
error 
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Supplementary Figure S5. Forest plot of LME relationship between regional VT 
values and duration of illness. 
 
Forest-plot of posteriors of correlations between regional VT (an estimate of TSPO 
levels) and duration of illness (DOI). A random effect model, allowing for study specific 
correlations to vary have been used (akin the design of model M3 for the main article). 
A weakly regularizing prior, ranging from -1 to 1, was specified for the beta coefficient. 
The black circle denotes the posterior mean, and the thick line the 95% credible 
interval, which are also presented in text next to the plots. The cross denotes the VT-
DOI correlation using raw data (together with its 95% CI), without performing linear 
mixed effects modelling. Hence, the difference between the dot and the cross displays 
the model shrinkage towards the mean. The figure show that there is little to no 
evidence for a correlation between regional VT and DOI.  
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Supplementary Table S6. Regional VT and duration of illness p-values 
 
Maximum likelihood estimates from LME model of correlation 
between regional VT and duration of illness scores in psychosis 
patients.   

Region Estimate SE t-value p 
FC -0.08 0.11 -0.69 0.49 
TC -0.12 0.11 -1.08 0.28 
HIP -0.10 0.14 -0.69 0.52 

FC = frontal cortex; TC = temporal cortex; HIP = hippocampus; SE = 
standard error 
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