
1 Prior

Let the stimulus S have a 2D Gaussian prior distribution with zero mean and
variance parameters specifying the variance along the diagonal along the line
x = y, (σ2d ) and orthogonal to that diagonal (σ2o ). By a 45 degree clockwise
rotation of a normal distribution with the diagonal covariance matrix

Λ =

[
σ2d 0
0 σ2o

]
(1)

we can parametrize our prior by using the rotation matrix

U =
1√
2

[
1 −1
1 1

]
, (2)

and the relation

X ∼ U · N (0,Λ)⇔ X ∼ N (0,UΛUT). (3)

(ref. Wkipedia.) This yields a Gaussian with mean µp = 0 and

Σp = UΛUT =
1

2

[
σ2o + σ2d σ2d − σ2o
σ2d − σ2o σ2o + σ2d

]
. (4)

2 Likelihood

Let the likelihood be a 2D Gaussian with

µl =

[
µA
µV

]
, Σl =

[
σ2A 0
0 σ2V

]
(5)

3 Posterior

The posterior distribution follows from the result that the product of two
multivariate Gaussian densities is itself a multivariate Gaussian, scaled by
a constant, i.e.

N (µp,Σp) · N (µl,Σl) = c · N (µ∗,Σ∗). (6)

Furthermore, it can be shown that

Σ∗ = (Σp
−1 + Σ−1l )−1 (7a)
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µ∗ = Σ∗(Σp
−1µp + Σ−1l µl) = Σ∗(Σp

−1 · 0 + Σ−1l µl) = Σ∗ ·Σ−1l µl. (7b)

By Bayes theorem we have

P (B|A) =
P (A|B)P (B)

P (A)
(8)

and since we know that the posterior distribution integrates to 1 (as
does a multivariate normal distribution), we can conclude that c = P (A)
and drop that term from our further calculations.

Inserting our parametrizetions of the prior and likelihood covariance ma-
trices into Equation (7a), we get

Σ∗ = a ·
[
σ2A(2σ2dσ

2
o + σ2dσ

2
V + σ2oσ

2
V ) σ2Aσ

2
V (σ2d − σ2o)

σ2Aσ
2
V (σ2d − σ2o) σ2V (σ2Aσ

2
d + σ2Aσ

2
o + 2σ2dσ

2
o)

]
(9)

where

a =
1

σ2Aσ
2
d + σ2Aσ

2
o + 2σ2dσ

2
o + 2σ2Aσ

2
V + σ2dσ

2
V + σ2oσ

2
V

. (10)

Similarly, we have

µ∗ = a ·
[
µA(2σ2dσ

2
o + σ2dσ

2
V + σ2oσ

2
V ) + µV σ

2
A(σ2d − σ2o)

µV (σ2Aσ
2
d + σ2Aσ

2
o + 2σ2dσ

2
o) + µAσ

2
V (σ2d − σ2o)

]
. (11)

Now, we let the variance on the diagonal go to infinity, effectively shaping
the prior into a ridge along the diagonal. This yields

Σ̃ = lim
σ2
d→∞

Σ∗ = b ·
[
σ2A(2σ2o + σ2V ) σ2Aσ

2
V

σ2Aσ
2
V σ2V (σ2A + 2σ2o)

]
(12a)

µ̃ = lim
σ2
d→∞

µ∗ = b ·
[
µV σ

2
A + µA(2σ2o + σ2V )

µAσ
2
V + µV (σ2A + 2σ2o),

]
(12b)

where

b =
1

2σ2o + σ2A + σ2V
. (13)

Since we are only interested in the auditory responses, we find the
marginal posterior distribution with respect to the auditory response, which
corresponds to the first dimension in our model.
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As the marginal distribution of a 2D Gaussian is a univariate Gaussian
with mean and variance corresponding to the mean and covariance of that
dimension in the bivariate distribution, we get

µ̃A =
µV σ

2
A + µA(2σ2o + σ2V )

2σ2o + σ2A + σ2V
=

σ2A
2σ2o + σ2A + σ2V

µV +
2σ2o + σ2V

2σ2o + σ2A + σ2V
µA

(14a)

σ̃2A =
2σ2o + σ2V

2σ2o + σ2A + σ2V
σ2A (14b)

Thus, µ̃A is a weighted mean of µA and µV with non-negative weights
summing to 1 and depending on the relative variance of the respective di-
mensions (prior variance and auditory and visual variance in the likelihood).
Similarly, σ̃2A is a scaling of σ2A by the same scaling constant as that applied
to µA in equation (14a), and since that scaling constant lies on the interval
[0, 1] we can conclude that 0 ≤ σ̃2A ≤ σ2A.

In the strong integration case, we would have σ2o = 0; that is, a delta
spike along the main diagonal. In that case, equations (14a) and (14b)
reduce to (respectively)

µ̃A =
σ2A

σ2A + σ2V
µV +

σ2V
σ2A + σ2V

µA =

1
σ2
V

1
σ2
A

+ 1
σ2
V

µV +

1
σ2
A

1
σ2
A

+ 1
σ2
V

µA, (15a)

σ̃2A =
σ2Aσ

2
V

σ2A + σ2V
(15b)

which is exactly the maximum likelihood estimate as described by Ernst
& Banks (2002), and Andersen (2015).

On the other hand, if we let σ2o → ∞ we get a flat prior, which should
yield no integration of the auditory and visual cues (because there is no
prior assumption that the cues are related). It is easy to see that our model
fulfills this property, since

lim
σ2
o→∞

µ̃A = µA (16)

lim
σ2
o→∞

σ̃2A = σ2A (17)

In the intermediate cases where σ2o is nonzero and finite, it will shift
µ̃A towards µA compared to the maximum likelihood model, with a small
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shifts for small σ2o and bigger shifts for big σ2o . This corresponds intuitively
to the notion that a narrow joint prior along the diagonal yields a stronger
integration (i.e. higher visual influence on the auditory percept), whereas a
more flat prior corresponds to a weaker assumption of a common cause of
the cues and thus weights the visual information lower in computing the pos-
terior auditory representation. Similarly, large σ2o will shift σ̃2A towards σ2A
whereas small values will shift it towards the maximum likelihood estimate.
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