
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

General comments: 

 

This is an analytical study of characteristics of transmission and how those might impact control of 

COVID epidemics. 

 

The paper is interesting but there is insufficient quantification of uncertainty in any of the 

parameters. And the authors do not present sensitivity analyses on some of the assumptions, e.g. 

selected distributions. 

 

The treatment of some the interventions mentioned is too cursory, with implicit assumptions in the 

supplementary information, and these assumptions are not discussed as limitations, i.e. possible 

overestimation of effect of masks. There are very few limitations discussed of the framework or 

assumptions. 

 

 

Specific comments: 

 

Suggest to add a table of parameter names with interpretation for the model. 

 

Suggest to split the model section up. 

 

Suggest Figure 1 could be the other way up. The legend talks about transmission, then disease, 

then transmission again, then intervention, but the figure is out of order. 

 

https://www.nature.com/articles/s41591-020-0869-5 This paper may also be of interest for fitting 

the method. 

 

How sensitive are the R0 estimates to other parameters of the model? Can sensitivity analyses be 

shown? Can some estimate of uncertainty (i.e. confidence interval) be given for the R0 estimate of 

3.68? 

 

“The data is validated against a serial interval study on 468 infection pairs 9 with excellent 

consistency (see SI).” This should be in the main text. As should more explanation/justification of 

if this is exponential decay or if any other functions fit as well. S2 and S3 (model fits) should be in 

the main text. And some quantification of uncertainty. 

 

How sensitive is the optimal day to the shape of the distribution of R_A and R_S? How much 

uncertainty is there over the course of 1 day (e.g. 24h), given that the timelines are quite short in 

COVID and especially around the durations that the model is focussing on? 

 

Suggest to split up the evaluation of intervention measures section, because there are a lot of 

interventions covered here. 

 

Fig 3b would be much more useful if the contact tracing line had uncertainty on it, e.g. from 

parameter uncertainty, either from fitted or simulated parameters. 

 

Masks: this is perfect utilisation of masks and doesn’t account for errors in wearing them, e.g. 

touching outside, reusing, etc, that could affect efficacy. This analysis is too optimistic in the effect 

of masks. Where is the evidence for protection of the uninfected from masks? 

 

Fig 4 and Fig S5. Bell shaped curve is usually used for Normal distributions, which are symmetric. 



These don’t look particularly symmetric. 

 

Fig 4c, suggest fitting the exponential phase to countries individually, and potentially regionally (as 

done in China in 4b). 

 

“Rampaging” is unnecessary. 

 

Supplement 1.5. “Wallinga” not Wallinger. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

 

The authors develop a novel model which has some reasonable properties, but no obvious 

advantages over existing models. The major innovations are: 

 

* the approximation (1), which seems poorly motivated (and the authors stress that it's not 

actually important and is relaxed in the supp) 

 

* the strange and poorly discussed definition of β_eff, which is calculated by assuming R_S can be 

calculated, then multiplying that quantity by α_A, apparently for the purpose of being able to 

divide by α_A after adding. (2) 

 

Otherwise, the authors are just doing a standard renewal-equation model with ad hoc parameters 

(many based on one or two papers, sometimes not published) and no propagation of uncertainty. 

 

The advantages of the their approach in terms of physical interpretation of parameters is not 

"obvious" to me and is not clearly discussed. 

 

The "Evaluation" section involves applying naive assumptions about control to a point estimate of 

R0, with textbook results. The advantages of mediating this argument through β_eff are not clear. 

 

The authors point that a slope of -0.32/day is exactly matched by two time series is not very 

convincing without statistics; the observation that this would be expected under the authors' 

assumptions when R is equal (or extremely close to) 0 should not be used as evidence for those 

assumptions in the absence other evidence that R was extremely close to 0. 

 

Jonathan Dushoff 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The manuscript concerns an interesting model diving the time from infection to recovery and death 

into different parts: latent, infectious no symptoms and infectious with symptoms, and estimates 

the amount of infection from the latter two and what effect different preventive measures may 

have. 

 

Major comments 

 

It is a massive simplification to think that decay rate -0.32 is "universal, and also that most 

countries have an increase of lambda=0.30. This must be weakened. Many countries did not see 

much rise at all even before preventive measures. My impression is that lambda=0.3 applies to 

countries region with highest spreading. Similarly, I see no reason why R_0=3.68 should apply to 



all countries. 

 

I did not understand how beta_A and beta_S were estimated 

 

One problem is that reported number of cases is not the same as number of infected. This is of 

course always true but should be acknowledged better. For instance, I am quite convinced that the 

severe lock-down in Hubei actually did drop infections with a discrete big jump down. But the 

same will of course not be true for reported cases, since individuals carry the virus for about 5-7 

(?) days. 

 

You estimate the effect of wearing face masks alone and in combination of other preventive 

measures. For this you have a quantity e describing its efficacy in terms of protection. I could not 

fins any numerical estimate of it in the report, not citations in the literature to support your choice. 

 

 

 

Minor comments 

 

Update case and death figures and stress that the former is confirmed cases and that the true 

number is magnitudes higher. 

 

Coming from mathematics "bell shaped curve" is for me reserved to the Gaussian distribution 

which has nothing to do with the current curve. Of course, the current curve also resembles that of 

a bell ... 

 

What is motivation for having time varying rate to end latent period but not for A-state? 

 

Does beta_eff have an interpretation? 

 

Just before discussion section: I agree with Korea might having import driven growth but not 

regarding Italy. Please argue why you think this is the case (or remove Italy) 

 

Fig 3, caption: "... to flatten epiemic growth". Please clarify by saying that the eproduction is 

reduced to below 1. 
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Author Replies to Reviewers’ Comments 
 
We thank all three reviewers for their careful reading of the manuscript and for their insightful 
and constructive comments and suggestions, which helped us tremendously in improving various 
aspects of the manuscript. Before addressing the specific comments, we summarise here our key 
responses:  
 

- A suggestion from all three reviewers is to include an uncertainty analysis of key model 
parameters. This is indeed an issue of great importance which was not adequately 
addressed in our previous submission. In the revised manuscript, we re-examined the raw 
data in cited references in combination with datasets that have since appeared. Maximum 
likelihood estimations of model parameters were performed. The associated confidence 
intervals were determined using the standard bootstrap method. The results are collected 
in a new Table I. When appropriate, we compared our results with those in published 
work and found good consistency. 

- We have clarified and strengthened the connection between the simple and intuitive 
COVID-19 transmission model defined by Eq. (1) and the compartmentalised model that 
allows quantification of subpopulations for epidemic control. A new parameter 𝜃S is 
introduced in Eq. (1) to accommodate shifts in transmission from largely symptomatic in 
the early days to increasingly pre-symptomatic. Epidemic predictions can be adjusted 
following the recalibration steps described in the paper. 

- Regarding the effects of mask-wearing, we include more recently published papers to 
further support our analysis. We have considered additional factors that could modify the 
effect of population-wide mask-wearing, such as infections relying on nonrespiratory 
routes and the different filtering efficacies for masks as source control and personal 
protection. More details are presented on the following website: 
http://www.zhiyuanlab.xyz/MASK_0906.html . 

 
We would like to point out that although a large number of COVID-19 papers have appeared 
since our first submission, the basic premise of our paper still stands. We were more optimistic 
that better data would lead to more accurate values for the model parameters, but our study in the 
past four months led to the realisation that the actual values of these parameters are affected by 
many factors such as age, health and living conditions, as well as initial viral dosage, etc. In 
revising the manuscript, we have included uncertainty estimates wherever possible, but would 
also like to encourage more systematic studies of demographic and environmental factors so as 
to significantly improve the accuracy of our model predictions. 
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Regarding the reviewers' concern in “overestimation of the effect of masks”: 
 
First, we considered the situation where the filtering efficacy of masks are relatively low, and 
asked whether masks with intermediate efficacy in personal protection (for example, only 
filtering ~50% of virus particles) can have an aggregate effect when applied on a population-
wide scale. In Fig S3, impacts of masks with different filtering efficacy are considered. The 
results show that even masks that only trap 20% of the virus particles can yield a significant 
impact when widely adopted by the population. Also, our previous mask model is highly 
simplified in order to deliver the essential message. In the model shown in 
http://www.zhiyuanlab.xyz/MASK_0906.html, more details related to the effect of population-
wide mask-wearing were considered, such as infections relying on nonrespiratory routes, and the 
different filtering efficacies for masks as source control and personal protection.  
 
There are already several experimental measurements on the efficacy of different types of masks 
against coronavirus, both as source control (SI-Ref. 15,17,18) and personal protection equipment 
(SI-Ref. 16,19,20). In summary, there is laboratory-based evidence that surgical or N95 masks 
have satisfying filtration capacity in the relevant droplet size range of coronavirus. The 
experimental reports are included in the references. 
 
Several recent modeling works focusing on the effect of population-wide mask-wearing 
converge to similar conclusions that masks of intermediate filtering efficacy exhibit aggregate 
effect at the population level. For example, in the work of Stutt et al. (SI-Ref. 21), they found 
that with a policy that all individuals must wear masks at all times, a median effective COVID-
19 𝑅0 of below 1 could be reached, even with mask effectiveness of 50% (for 𝑅0=2.2) or mask 
effectiveness of 75% (for 𝑅0=4). Similarly, models from Kai et al. (SI-Ref. 22) estimated that 
80-90% masking would eventually eliminate the disease. Work from Fisman et al. (SI-Ref. 23) 
also showed similar results. 
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Response to Reviewer #1 
 
General comments: 
 
This is an analytical study of characteristics of transmission and how those might impact control 
of COVID epidemics. The paper is interesting but there is insufficient quantification of 
uncertainty in any of the parameters. And the authors do not present sensitivity analyses on some 
of the assumptions, e.g. selected distributions. 
 
Response: We thank the reviewer for appreciating the contribution of our work towards 
quantification of COVID-19 transmission and targeted control measures. Both the degree of 
uncertainty in the estimated model parameters and the sensitivity of our results against such 
uncertainties are indeed important issues. We have taken time to re-examine the model 
calibration against the previously employed and more recent data. In the revised manuscript, we 
present maximum likelihood estimations of the symptom onset time distribution (Fig. 2a) and the 
infectiousness function (Fig. 2b) using raw data in published literature. We have also revised our 
compartmentalised model (Fig. 1b and SI) to better accommodate the empirical observations. 
Estimated values of model parameters, including their confidence intervals, can be found in 
Table I, Methods section. The effect of the sample-related uncertainties on our model 
predictions, i.e., the RE versus λ curve (Fig. 3a) and the effective mean reproduction number 
under respective intervention measures (Figs. 4a and 4b), are now presented. 
 
The treatment of some of the interventions mentioned is too cursory, with implicit assumptions 
in the supplementary information, and these assumptions are not discussed as limitations, i.e. 
possible overestimation of effect of masks. There are very few limitations discussed of the 
framework or assumptions. 
 
Response: We thank the reviewer for raising this issue. Impacts of various types of interventions 
on COVID-19 transmission were not quantitatively available while the initial manuscript was 
prepared. Therefore we focused on the derivation of general expressions which can be applied to 
specific situations when the relevant data are known. Selected outcomes of these expressions 
were illustrated for easy reference. As more in-depth research has been carried out and 
published, the assumptions have generally been validated. In the revised manuscript, we updated 
the relevant sections and added new references. Limitations of our approach are also mentioned 
where appropriate.  
 
The reviewer is correct that the efficacy of face masks depends on numerous factors. Exactly 
how much face masks contributed to the slowing down of the pandemic in countries where 
mask-wearing is prevalent is debatable. As Reviewer #3 had a similar enquiry, we presented our 
current knowledge about mask-wearing in the summary response above. 
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Specific comments: 
 
1. Suggest to add a table of parameter names with interpretation for the model. 
 
Response: Very good suggestion. The information is now included in Table I of the Main Text. 
 
2. Suggest to split the model section up.  
  
Response: Very good suggestion. We have rewritten the model section in the Main Text to better 
explain our rationale and strategy, which has been structured into two parts, model description 
and parameter calibration.  
 
3. Suggest Figure 1 could be the other way up. The legend talks about transmission, then disease, 
then transmission again, then intervention, but the figure is out of order. 
  
Response: As suggested, we have rearranged Fig. 1 to better align with the text. 
 
4. https://www.nature.com/articles/s41591-020-0869-5 This paper may also be of interest for 
fitting the method.  
  
Response: Suggestion appreciated. The medRxiv version of this work was cited in the original 
submission. In the revised manuscript, the transmission pairs reported by He et al. were the 
primary source we used to obtain the maximum likelihood estimation of the infectiousness 
function (Fig. 2b). Consistency of the result obtained with a much larger dataset on serial interval 
is seen in Fig. 2c.  
 
5. How sensitive are the R0 estimates to other parameters of the model? Can sensitivity analyses 
be shown? Can some estimate of uncertainty (i.e. confidence interval) be given for the R0 
estimate of 3.68? 
  
Response: Within our modeling framework, 𝑅0 is given by Eq. (5) of the updated Main Text. 
Thus uncertainties in 𝑅0 are inherited from uncertainties in the incubation period distribution and 
from that of the shift parameter 𝜃S. The latter is given approximately by Eq. (4), with quantities 
on the right-hand-side extracted from the shape of the infectiousness function. Using a 
bootstrapping method, we estimated uncertainties in the incubation period distribution (Fig. 2a). 
The estimated value of 𝑅0 is 3.87 at a growth rate of 0.3/day, with the 95% confidence interval 
from 3.38 to 4.48. 
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6. “The data is validated against a serial interval study on 468 infection pairs with excellent 
consistency (see SI).” This should be in the Main Text. As should more explanation/justification 
of if this is exponential decay or if any other functions fit as well. S2 and S3 (model fits) should 
be in the Main Text. And some quantification of uncertainty. 
  
Response: We thank the reviewer for the suggestion. We have added a new figure in the Main 
Text to reflect this point (Fig. 2c in the updated manuscript). The figure is accompanied by a new 
subsection named “Serial interval”. 
 
7. How sensitive is the optimal day to the shape of the distribution of R_A and R_S? How much 
uncertainty is there over the course of 1 day (e.g. 24h), given that the timelines are quite short in 
COVID and especially around the durations that the model is focussing on? 
 
Response: Inspired by this comment, we revisited the raw pairwise transmission data collected 
by He et al. and carried out a detailed maximum likelihood estimation of the infectiousness 
function. Peak infection was found to be a little less than 1 day prior to the symptom onset (SI 
Sec. 2.2). The quality and quantity of the data are not sufficient to yield a definitive 
infectiousness function, which itself can vary over time as reported in Ref. 7. We parameterised 
the two wings of the curve with exponentially decaying functions. Estimated values of the 
parameters and their CI are given in Table I. Larger and better-quality datasets are certainly 
desirable, though there could be intrinsic limits as the reviewer noted. 
 
8. Suggest to split up the evaluation of intervention measures section, because there are a lot of 
interventions covered here. 
  
Response: Following the reviewer’s suggestion, we have updated the section on the evaluation 
of intervention measures, and re-organised the material into two subsections, (1) testing and 
contact trading, and (2) social distancing and mask wearing. 
 
9. Fig 3b would be much more useful if the contact tracing line had uncertainty on it, e.g. from 
parameter uncertainty, either from fitted or simulated parameters. 
  
Response: The original Fig. 3b is now Figs. 4a and 4b. Based on our analytical results (Eq. S37), 
the uncertainties mainly come from two parts: 1) 𝜃S, the time shift of the infectiousness r(t) with 
respect to the original incubation period distribution, which is determined by the infectiousness 
profile around the symptom onset, and 2) the distribution of the incubation period. We have 
included the uncertainty in the updated figures (Figs. 4a and 4b, shaded areas). 
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10. Masks: this is perfect utilisation of masks and doesn’t account for errors in wearing them, 
e.g. touching outside, reusing, etc, that could affect efficacy. This analysis is too optimistic in the 
effect of masks. Where is the evidence for protection of the uninfected from masks? 
  
Response: In our analysis we did not assume perfect utilisation of masks. Actually, we 
considered the situation where one mask could only block 20%~50% of the virus, which is much 
lower than the standard surgical mask when appropriately used [Ref. 29 in the Main Text]. We 
are interested in whether masks with unsatisfying efficacy in personal protection can have an 
aggregated effect when applied on a population-wide scale. In Fig S3, masks with different 
filtering efficacy are considered, which shows that even masks which trap 20% of virus particles 
could show a significant effect when generally adopted by the population.  
 
Additionally, there are two layers of effects for masks: source control and personal protection. 
The first layer reduces viral shedding from potentially infectious people, which is critical given 
the significant proportion of pre-symptomatic transmission of COVID19. Experimentally, there 
are already several measurements on the efficacy of different types of masks against coronavirus, 
both as source control (Ref. 27, 28 in the Main Text and SI-Ref. 18) and as personal protection 
equipment (Ref. 29, 30 in the Main Text and SI-Ref. 20). The ability of masks to filter particles 
depends on the particle size and trajectory, with smaller floating aerosols being more challenging 
to filter than larger ones. In the laboratory setting, there is evidence that masks can filter in the 
relevant droplet size range for COVID-19, as well as efficacy in blocking droplets and particles 
from the wearer (Ref. 29 in the Main Text and SI-Ref. 13, 14). Personal protection is more 
challenging than source control, since the inhaling particles are smaller. According to the World 
Health Organization’s “Advice on the use of masks in the context of COVID-19” (Ref. 30), the 
penetration for surgical masks is 50%-60%, which is the range we used in our simplified model. 
 
11. Fig 4 and Fig S5. Bell shaped curve is usually used for Normal distributions, which are 
symmetric. These don’t look particularly symmetric. 
  
Response: Thanks for this remark. We have removed the expression of the bell shaped curve 
from the manuscript and the SI. 
 
12. Fig 4c, suggest fitting the exponential phase to countries individually, and potentially 
regionally (as done in China in 4b). 
  
Response: We have reorganised the original Fig. 4c into two parts in the revised manuscript 
(Fig. 5c). Furthermore, the cumulative case numbers instead of the daily new cases are shown to 
allow better comparison with exponential growth after an outbreak has reached more than 100 in 
the number of confirmed cases. With mask-wearing widely practiced, the early epidemic growth 
rates of Asian countries/regions were much lower. 
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13. “Rampaging” is unnecessary. 
  
Response: We have revised the wording. 
 
14. Supplement 1.5. “Wallinga” not Wallinger. 
  
Response: Thanks for pointing out the typo which has been corrected. 
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Response to Reviewer #2 
 
General comments: 
 
The authors develop a novel model which has some reasonable properties, but no obvious 
advantages over existing models. The major innovations are: 
 
* the approximation (1), which seems poorly motivated (and the authors stress that it's not 
actually important and is relaxed in the supp) 
 
* the strange and poorly discussed definition of β_eff, which is calculated by assuming R_S can 
be calculated, then multiplying that quantity by α_A, apparently for the purpose of being able to 
divide by α_A after adding. (2).  
 
Otherwise, the authors are just doing a standard renewal-equation model with ad hoc parameters 
(many based on one or two papers, sometimes not published) and no propagation of uncertainty. 
 
Response: We thank the reviewer for his careful reading of our paper.  
 
The whole experience with COVID-19 is a learning process that is likely to continue for quite 
some time into the future. As is well known by now, the epidemiological characteristics of 
COVID-19 change over time and also are shaped by the local policies and way of life. Therefore,  
a model that is simple and intuitive, solvable, and more importantly, integrates clinic 
observations for continuous update of parameters, has a clear advantage over those that rely on 
epidemiological time series analysis alone.  
 
The model presented in this work is one of a few that lay a direct pipeline from clinical data to 
epidemic development and onto control measures. Not only is this a novel approach, but also 
renders significant advantages over existing models by enabling policymakers to dynamically 
calibrate containment measures over time. In the resubmitted manuscript, we have substantially 
revised the model presentation to make the above procedure more transparent and easier to 
follow.  
 
The major innovation of our paper is demonstrated by Eq. (1), which embodies the quantitative 
characteristics of COVID-19 transmission, i.e., the incubation period distribution, the shape of 
the infectiousness curve, and the mean reproduction number in a single expression. The 
parameter 𝜃S, which was buried in the calculation in SI before, is now given explicitly in Eq. (1). 
This equation is derived from the more detailed model that matches clinical observations. 
Uncertainty analysis is now included for the key model parameters and many of our predictions.  
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The parameter 𝛽eff was previously introduced to play the dual role of setting the overall scale of 
disease transmission as well as lumping the pre-symptomatic and post-symptomatic 
transmissions into transmission at the symptom onset. This is indeed a bit confusing to the reader 
without going through the technical discussions in the SI. In the revised manuscript, we have 
considerably expanded the model description and the parameter calibration, now presented in 
two separate sections.  
 
A new Fig. 1a is added to illustrate our rationale in model construction. With these 
improvements, we believe the novelty and uniqueness of our work are made clear. 
 
 
Specific comments: 
 
The advantages of their approach in terms of physical interpretation of parameters is not 
"obvious" to me and is not clearly discussed. 
 
Response: This comment is partially addressed above. For easy reference, we have collected 
parameter definition, estimated values and their CI in Table I in Methods. We have significantly 
expanded the description of parameter estimation in the Methods section and in the SI.  
 
The "Evaluation" section involves applying naive assumptions about control to a point estimate 
of R0, with textbook results. The advantages of mediating this argument through β_eff are not 
clear. 
 
Response: The purpose of our paper is not to exhaustively review the infinite combination of 
containment measures and factors that affect COVID-19 epidemic development for every locale 
at every point in time. Rather, we present a novel modelling approach and illustrate in the 
Evaluation section how the model can be applied to common containment measures under a 
specific example situation, namely when 𝑅0 = 3.87. 
 
We took the situation where 𝑅0 = 3.87 (95% CI [3.38, 4.48]), derived from our model for when 
the epidemic is at an exponential growth rate of 0.3/day, because this growth rate was seen in the 
early epidemic data from a number of countries shown in Fig. 5c. Other values of 𝑅0 can be used 
in our model to evaluate the impact of different containment measures on stemming epidemic 
development at various stages and locations. 
 
 
The authors point that a slope of -0.32/day is exactly matched by two time series is not very 
convincing without statistics; the observation that this would be expected under the authors' 
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assumptions when R is equal (or extremely close to) 0 should not be used as evidence for those 
assumptions in the absence other evidence that R was extremely close to 0. 
 
Response:  
 
We agree with the reviewer that the statement can be softened to accommodate for a weak 
residual transmission. In the revised manuscript, uncertainty analysis of the model parameters 
and their propagation in the modeling results were carried out. The revised rate at zero 
transmission from our model is now -0.31/day (95% CI [−0.35, −0.27]). Although extremely low 
transmission rate towards the end of the first wave in China is likely, some cautious remarks are 
included for a factual interpretation of our findings. 
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Response to Reviewer #3  
 
The manuscript concerns an interesting model dividing the time from infection to recovery and 
death into different parts: latent, infectious no symptoms and infectious with symptoms, and 
estimates the amount of infection from the latter two and what effect different preventive 
measures may have. 
 
We thank Reviewer #3 for reviewing our manuscript and for her/his positive assessment on our 
work. We next address each of her/his concerns in order.  
 
General comments: 
 
1. It is a massive simplification to think that decay rate -0.32 is "universal, and also that most 
countries have an increase of lambda=0.30. This must be weakened. Many countries did not see 
much rise at all even before preventive measures. My impression is that lambda=0.3 applies to 
countries region with highest spreading. Similarly, I see no reason why R_0=3.68 should apply 
to all countries. 
 
Response: We thank Reviewer #3 for this constructive comment. We have revised the 
discussion and weakened the statements as suggested (please see Main Text Pages 7 and 8).  
 
The decay rate -0.32/day at the end of the outbreak is based on the scenario that all transmissions 
are stopped after a certain date. Based on a detailed uncertainty analysis presented in the revised 
manuscript, the predicted decay rate under this scenario is now revised to -0.31/day (95% CI -
0.35/day to -0.27/day). The observed decay rate in China and in Hubei province supports such a 
scenario but this is certainly not the only way to end the COVID-19 outbreak. The last point 
should be clear to the reader. 
 
With regard to the epidemic growth rate at the very early stage of COVID-19 outbreak in a given 
region, we agree with the reviewer that there are many factors that can influence the result. 
Countries that had recent experience with outbreaks of this type, notably SARS and MERS, were 
better prepared in this period. It is widely believed that such awareness has contributed to the 
behaviour shown in Fig. 5c, right panel. On the other hand, in populous regions that did not 
adopt major precautionary measures at this stage, the growth rate did reach around 0.3/day. With 
improved calibration of the model parameters, the basic reproduction number 𝑅0 is estimated to 
be around 3.87 (95% CI 3.38 to 4.48) for these countries/regions. 
 
2. I did not understand how beta_A and beta_S were estimated 
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Response: We thank Reviewer #3 for the question. The two parameters were introduced to 
quantify the level of pre-symptomatic and post-symptomatic transmission in our 
compartmentalised model. As far as we know, there is not yet published data that allows us to 
estimate them directly. Instead, they could be estimated indirectly from the infectiousness 
function and the mean reproduction number. The former can be estimated from case studies, 
while the latter is a variable we use to relate back to the rate of epidemic growth. 
 
We have substantially revised and improved the manuscript to explain the modelling and 
parameter calibration details. All the key variables and parameters are collected in Table I in the 
Method section for easy reference. 
 
3. One problem is that reported number of cases is not the same as number of infected. This is of 
course always true but should be acknowledged better. For instance, I am quite convinced that 
the severe lock-down in Hubei actually did drop infections with a discrete big jump down. But 
the same will of course not be true for reported cases, since individuals carry the virus for about 
5-7 (?) days. 
 
Response: We fully agree with Reviewer #3 that the reported/confirmed number of cases is not 
the same as the number of infected cases. In the exponential growth phase, one may argue that 
the two are proportional to each other when testing and intervention measures are implemented 
at certain efficiency. More dramatic measures such as lockdown can change the course of an 
outbreak substantially, as we illustrated in Sec. 4.7 and Fig. S5 of the SI. During revision, we 
have tried to avoid possible mis-understanding or overstatement of our findings. 
 
4. You estimate the effect of wearing face masks alone and in combination of other preventive 
measures. For this you have a quantity e describing its efficacy in terms of protection. I could not 
find any numerical estimate of it in the report, not citations in the literature to support your 
choice. 
 
Response: The estimation of e is estimated based on information provided by Ref. 27, 30 in the 
Main Text as well as SI-Ref. 13, 14. Additional references are cited in the Main Text and SI for 
more evidence.  
 
There are two layers of effects for masks: source control and personal protection. The first layer 
reduces viral shedding from potentially infectious people, which is critical given the significant 
proportion of pre-symptomatic transmission of COVID19. In our very simplified mathematical 
model, the efficacy of masks in source control and personal protection, represented as the 
percentage of virus particles blocked by masks, were set to be equal (e is the symbol for 
efficacy). More complete models considering different efficacy in blocking inhaling and 
exhaling virus and nonrespiratory transmission can be considered, but it is not the main focus of 
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this work. In this work, we are interested in if imperfect mask-wearing (only 50% of the virus 
blocked ) can have an aggregated effect when adopted on a population-wide scale. The ability of 
masks to filter particles depends on the particle size and trajectory, with smaller floating aerosols 
more challenging to filter than larger ones. In the laboratory setting, there is evidence that masks 
are able to filter in the relevant droplet size range for COVID19, as well as efficacy in blocking 
droplets and particles from the wearer in a range higher or near the efficacy of 50%. (SI-Ref. 13, 
14). For seasonal coronaviruses, surgical masks for source control were effective at blocking 
coronavirus droplets of all sizes for every subject (Ref. 27 in the Main Text). 
 
Personal protection is more challenging than source control, since the inhaling particles are 
smaller. According to World Health Organization’s “Advice on the use of masks in the context 
of COVID-19” (Ref. 30 in the Main Text), the penetration for surgical masks is 50%-60% , 
which is the range we used in our simplified model. 
 
 
Specific comments: 
 
1. Update case and death figures and stress that the former is confirmed cases and that the true 
number is magnitudes higher. 
 
Response: Following the reviewer’s suggestion, we have revised the wording to reflect this and 
updated the figure captions where required. 
 
2. Coming from mathematics "bell shaped curve" is for me reserved to the Gaussian distribution 
which has nothing to do with the current curve. Of course, the current curve also resembles that 
of a bell ... 
  
Response: We thank Reviewer #3 for the comment. The wording is changed. 
 
3. What is motivation for having time varying rate to end latent period but not for A-state? 
  
Response: This is an excellent question. The main assumption in our model construction is 
based on the clinical observation that viral transmission mostly takes place within a few days 
before or after the symptom onset. Data on pre-symptomatic transmission are still quite 
incomplete and their interpretations contested (see Refs 7, 41, 42). However, using the symptom 
onset instead of the infection time as the anchor point of a patient’s viral transmissibility appears 
to be in agreement with the majority of clinical evidence.  
 
To build a stochastic model of transmission at the individual level, we adopted the strategy of 
restricting pre-symptomatic transmission to an interval of variable length from the symptom 
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onset point. A constant transmission rate, coupled with the Markovian dynamics for the length of 
this infectious period, yields a mean infectiousness curve that decays exponentially on the pre-
symptomatic side. In the revised manuscript, we introduced an additional compartment A2 to 
account for the fact that the peak position of the infectiousness curve may not overlap with the 
symptom onset. This extension allows our model to make more quantitative predictions and also 
to be able to adapt to changing transmission patterns as post-symptomatic transmission is 
significantly reduced. 
 
Based on our understanding of the pathophysiology of COVID-19, viral infection and disease 
progression goes through a number of intermediate stages whose durations vary greatly from 
person to person. So a non-Markovian model for the whole incubation period is preferred. Given 
our definition of the A phase, the non-Markovian nature is shifted to the latent period. We note 
that this is more of a matter of convenience (avoiding unnecessary and un-substantive 
complications) given the quality of data at hand and the level of understanding at present.  
 
4. Does beta_eff have an interpretation? 
  
Response: With the introduction of 𝜃S and derivation of Eq. (1) from the compartmentalised 
model, there is no need to keep 𝛽eff which was originally introduced for technical reasons. 
 
5. Just before discussion section: I agree with Korea might having import driven growth but not 
regarding Italy. Please argue why you think this is the case (or remove Italy) 
  
Response: We thank Reviewer #3 for pointing this out. We have revised “These countries” to 
“In some instances, this behaviour could be attributed to imported cases as mentioned above.” 
 
6. Fig 3, caption: "... to flatten epidemic growth". Please clarify by saying that the production is 
reduced to below 1. 
  
Response: Thank you for pointing this out. We have updated the caption as suggested (Fig. 5 in 
the revised manuscript).  



Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

 

I continue to struggle with this paper. 

 

The foundational part (3) seeems just wrong to me. The authors frame their model as a renewal 

equation with kernel K, and then show in the supp that K can be calculated if r(t) is known. This 

seems practically wrong: in particular, if there is a regime where r(t) is constant, that should be 

consistent with a broad range of kernel functions, but (3) seems to show that a constant r(t) 

produces a constant kernel! There is also a weird conflation, since time in r(t) is calendar time, but 

the primary t in the kernel function is a delay time; these values should not be directly comparable 

without an offset. 

 

S5 seems just wrong, since the last line seems to show that r(t) is constitutively positive (I guess 

is is missing a term of α). I _think_ this problem is fixed by S7, but it cost me a bunch of time. 

 

I guess S7 is right in some universe of assumptions not clearly laid out by the authors. They are 

showing that there is some world where K(t) can be inferred from r(t). As mentioned above, this is 

an unnatural thing to show, since normally these functions should not even be referring to the 

same t. I guess they are showing that under the assumption that K(t) and r(t) start at the same 

time, and r(t) is determined entirely by the _initial_ distribution of K(t) (without checking whether 

these assumptions are internally consistent for a particular time series r(t), then (S7) must hold). 

 

The authors need to clearly specify a conceptual model for how K, as a function of time delay t1, 

changes with calendar time t. This will include an anchor specification (meaning a version of S2 

with either K(t-t1; t), or K(t-t1; t1)). 

 

The authors also need to be more clear about their offsets and how these might change. I note 

that θ_s is explained tersely after (1) with a reference to F1A, but only θ_p appears in F1A. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

I am happy with the response to my earlier comments 

 

 

 

Reviewer #4: 

Remarks to the Author: 

Quantifying and assessing the impact of the intervention and containment strategies implemented 

against COVID-19 are challenging and important, perhaps the best time to take up such study to 

inform the public health management for ongoing pandemic as well as to handle upcoming hazards 

in advance. 

 

The authors took up this extensive modeling study based on the established hypothesis of the 

transmission capability of an infectious individual around his/her symptom onset. The authors 

mainly calibrated the distributions of mainly two related epidemiological parameters: incubation 

period and serial intervals. 

 

I anticipate that authors will be further encouraged to explain or address the following issues, in 

particular, to improve the manuscript and its understanding to a broad readership and quantifying 

the claims. 



 

 

Major Issues: 

1. The authors mentioned the calibration of the epidemiological parameters including serial interval 

and incubation period were performed during the early stage of the pandemic. It is obvious that 

the modeling framework is highly based on the initial parameters including the exponential growth 

rate and basic reproduction number. Where the interventions and containment strategies are 

temporal in nature, with their time-varying impact on the transmission of the COVID-19. The 

authors should clarify and discuss this and the inter-relation of the parameters as mentioned in the 

equation (1). Accordingly, suggest to revise the line in the abstract: “The model is calibrated 

against incubation period and serial interval statistics during early stages of the pandemic.” 

Further, clarify and specify the rationale of the parameters of the mean reproduction number and 

mean reproduction rate with their temporal nature for the readers. 

 

2. Continuation of the above point, the serial intervals are not constant over time, in fact, 

shortened over calendar time (Ali, ST et al. 2020). The authors have cited this article in the 

reference list but not included in the text. Which had the clear evidence that in mainland China the 

serial intervals are shortened over time due to the effects of non-pharmaceutical interventions 

(NPIs), specially contact tracing and isolation of the infectious individuals. The am not sure, the 

current framework is not accounted for such temporal factors as the calibrations have been done 

at the initial phase of the outbreaks. Need to be discussed in the text otherwise as one of the 

limitations of the study. 

- Ali, S. T., et al. (2020). "Serial interval of SARS-CoV-2 was shortened over time by 

nonpharmaceutical interventions." Science 369(6507): 1106-1109. 

 

3. The authors estimated the exponential growth rate as 0.3, which seems a bit higher. I wonder 

authors have overestimated it! I would suggest recheck it, which is one of the prime parameters 

under this study design. In text it is not clear enough how they have calculated from the data. 

Only fitting the log-transformed case data always has a risk of overestimation, which should be 

taken care of. The estimation of the exponential growth rate depends on the length of the 

exponential phase. Therefore, should be estimated simultaneously to reduce the risk of the 

overfitting as suggested by Feiver, C., et al. (2006). 

- Favier, C., et al. (2006). "Early determination of the reproductive number for vector-borne 

diseases: the case of dengue in Brazil." Trop Med Int Health 11(3): 332-340. 

 

 

Minor Issues: 

1. Line 4-5 in the first paragraph of introduction: update the statistics on COVID-19 as it is 

presented over two months earlier. 

2. Suggest to mention the specific location of data used for the study in the abstract itself. 
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Response to Reviewer #2 
 
The foundational part (3) seems just wrong to me. The authors frame their model as a renewal 
equation with kernel K, and then show in the supp that K can be calculated if r(t) is known. This 
seems practically wrong: in particular, if there is a regime where r(t) is constant, that should be 
consistent with a broad range of kernel functions, but (3) seems to show that a constant r(t) 
produces a constant kernel! There is also a weird conflation, since time in r(t) is calendar time, 
but the primary t in the kernel function is a delay time; these values should not be directly 
comparable without an offset. 
 
S5 seems just wrong, since the last line seems to show that r(t) is constitutively positive (I guess 
is missing a term of α). I _think_ this problem is fixed by S7, but it cost me a bunch of time. 
 
I guess S7 is right in some universe of assumptions not clearly laid out by the authors. They are 
showing that there is some world where K(t) can be inferred from r(t). As mentioned above, this 
is an unnatural thing to show, since normally these functions should not even be referring to the 
same t. I guess they are showing that under the assumption that K(t) and r(t) start at the same 
time, and r(t) is determined entirely by the _initial_ distribution of K(t) (without checking 
whether these assumptions are internally consistent for a particular time series r(t), then (S7) 
must hold). 
 
The authors need to clearly specify a conceptual model for how K, as a function of time delay t1, 
changes with calendar time t. This will include an anchor specification (meaning a version of S2 
with either K(t-t1; t), or K(t-t1; t1)). 
 
Response:  
 
We appreciate the above observations and comments by Reviewer #2 which prompted us to 
further examine the mathematical structure of our model as expressed by Eqs. (2) and (3). We 
have carefully reviewed the material in Sec. 1 of the previous version of the SI and checked that 
all equations presented are correct. Nevertheless, we feel that the simplicity brought about by the 
constancy of the parameters 𝛼� and 𝛽� could be emphasized a bit more so that our use of a single 
argument for the kernel function K(t) comes across more readily to the reader. 
 
To achieve the above, we have substantially rewritten Sec. 1.2 (previously Sec. 1.3) of SI. 
Starting from the second line below Eq. (S6), we give a physical explanation of the two terms in 
K(t). It is then straightforward to write down Eq. (S7) with the help of the Dirac delta-function. 
In a similar vein, we arrive at Eq. (S8) for r(t). In each case, we clearly define the beginning and 
the end of the time interval under consideration. As there is no need to keep track of the temporal 
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profile of individuals inside the A1 phase, we hope that we have resolved the queries from 
Reviewer #2 with the additional information provided. 
 
The authors also need to be more clear about their offsets and how these might change. I note 
that θ_s is explained tersely after (1) with a reference to F1A, but only θ_p appears in F1A. 
 
Response:  
 
We thank Reviewer #2 for pointing out the error in the Main Text regarding 𝜃$ and Fig. 1a, 
which has now been corrected. We have modified the right panel of Fig. 1a to illustrate the 
meaning of 𝜃$.  



 

3 

Response to Reviewer #3  
 
I am happy with the response to my earlier comments. 
 
We thank Reviewer #3 for going through our manuscript for the second time and for his/her 
positive assessment of the revised version. 
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Response to Reviewer #4 
 
General Comments 
 
Quantifying and assessing the impact of the intervention and containment strategies implemented 
against COVID-19 are challenging and important, perhaps the best time to take up such study to 
inform the public health management for ongoing pandemic as well as to handle upcoming 
hazards in advance. 
 
The authors took up this extensive modeling study based on the established hypothesis of the 
transmission capability of an infectious individual around his/her symptom onset. The authors 
mainly calibrated the distributions of mainly two related epidemiological parameters: incubation 
period and serial intervals. 
 
I anticipate that authors will be further encouraged to explain or address the following issues, in 
particular, to improve the manuscript and its understanding to a broad readership and quantifying 
the claims. 
 
Response:  
 
We thank the reviewer for these encouragements. We also thank him/her for the suggestions to 
improve manuscript presentation particularly with regard to the data source used, and for 
strengthening the comparison of model predictions against the epidemic data.  
 
 
Specific Comments 
 
Major Issues: 
 
1. The authors mentioned the calibration of the epidemiological parameters including serial 
interval and incubation period were performed during the early stage of the pandemic. It is 
obvious that the modeling framework is highly based on the initial parameters including the 
exponential growth rate and basic reproduction number. Where the interventions and 
containment strategies are temporal in nature, with their time-varying impact on the transmission 
of the COVID-19. The authors should clarify and discuss this and the inter-relation of the 
parameters as mentioned in the equation (1). Accordingly, suggest to revise the line in the 
abstract: “The model is calibrated against incubation period and serial interval statistics during 
early stages of the pandemic.” Further, clarify and specify the rationale of the parameters of the 
mean reproduction number and mean reproduction rate with their temporal nature for the readers. 
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Response:  
 
We thank Reviewer #4 for bringing up this important point. Indeed, our basic model setup Eqs. 
(1)-(3) is for epidemic outbreaks each with a set of constant epidemiological parameters. While 
the incubation period distribution 𝑝&(𝑡)	is believed to be stable over time and location, the 
transmission parameters 𝜃$ and 𝛼+, which are derived from the infectiousness function 𝑝,(𝑡), can 
have a certain level of variability especially when the data set used for calibration contains a 
significant fraction of imported cases, or is affected by major intervention and containment 
measures. In this work, we used the transmission pairs compiled by He et al. (Ref. 7) to estimate 
𝑝�(𝑡). Most of the cases in the data set are from locations outside mainland China, and during the 
early days of the local outbreaks. Therefore, there is reason to take our estimated 𝑝�(𝑡) as an 
unbiased representation of transmissibility against infection time t. This view is further supported 
by the discussion below on serial interval statistics before and after the Wuhan lockdown. 
 
Following the reviewer’s suggestion, we have revised the line in the abstract regarding the data 
used for model calibration to: 
 
“The model is calibrated against incubation period and pairwise transmission statistics during 
the initial outbreaks of the pandemic outside Wuhan with minimal nonpharmaceutical 
interventions.” 
 
We have also revised the data description in the subsection on the estimation of the 
infectiousness function in the Main Text to: 
 
“A data set of 77 pairwise transmissions in several eastern and southeastern Asian countries and 
regions during their initial COVID-19 outbreak was compiled by He et al.” 
 
The temporal nature of transmission patterns is emphasized in the subsection on serial interval 
statistics and in the section on epidemic development in various countries and regions. 
 
 
2. Continuation of the above point, the serial intervals are not constant over time, in fact, 
shortened over calendar time (Ali, ST et al. 2020). The authors have cited this article in the 
reference list but not included in the text. Which had the clear evidence that in mainland China 
the serial intervals are shortened over time due to the effects of non-pharmaceutical interventions 
(NPIs), specially contact tracing and isolation of the infectious individuals. The am not sure, the 
current framework is not accounted for such temporal factors as the calibrations have been done 
at the initial phase of the outbreaks. Need to be discussed in the text otherwise as one of the 
limitations of the study. 
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- Ali, S. T., et al. (2020). "Serial interval of SARS-CoV-2 was shortened over time by 
nonpharmaceutical interventions." Science 369(6507): 1106-1109. 
 
Response:  
 
We thank Review #4 for raising the question regarding the significant shift of the serial interval 
statistics in the five weeks around the Wuhan lockdown, as reported in detail in the paper by Ali 
et al. Following the reviewer’s suggestion, we substantially revised the subsection on serial 
interval statistics in the Main Text, together with a revised Fig. 2c. We would like to emphasize 
that the serial interval data were not used in the calibration of our model parameters. 
Nevertheless, as Reviewer #4 correctly pointed out, they serve as a benchmark to assess our 
model predictions. To this effect, we have added the following lines to the Main Text:  
 
“While the overall agreement with the unstratified data is good especially on the positive side, it 
is also evident that serial intervals can be affected by factors such as the percentage of imported 
cases, the length of isolation delays, etc. which changed substantially before and after the 
Wuhan lockdown. As suggested in Ref. 23, their effect can be simulated with a shape function 
that masks p_I (t). For example, an imported case spent part of his/her infectious period outside 
the region where the data was collected, shifting p_SI (t) to the right. On the other hand, 
vigorous contact tracing shortens isolation delays significantly, which in turn shifts p_SI (t) to 
the left.” 
 
 
3. The authors estimated the exponential growth rate as 0.3, which seems a bit higher. I wonder 
authors have overestimated it! I would suggest recheck it, which is one of the prime parameters 
under this study design. In text it is not clear enough how they have calculated from the data. 
Only fitting the log-transformed case data always has a risk of overestimation, which should be 
taken care of. The estimation of the exponential growth rate depends on the length of the 
exponential phase. Therefore, should be estimated simultaneously to reduce the risk of the 
overfitting as suggested by Feiver, C., et al. (2006). 
- Favier, C., et al. (2006). "Early determination of the reproductive number for vector-borne 
diseases: the case of dengue in Brazil." Trop Med Int Health 11(3): 332-340. 
 
Response: 
 
We thank the reviewer for raising this issue as well. We understand that estimation of the 
epidemic growth rate for disease spreading is a task that requires a lot of care. The 
national/regional figures are further complicated by the possibility of multiple outbreaks in 
different locations with different starting points and different growth rates, not to mention issues 
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related to testing and reporting. So there is a limited precision we can attach to the growth rate 
and methods to estimate it even in the best of circumstances.  
 
Following the reviewer’s suggestion, we looked into several schemes to extract the exponential 
growth rate using the reported daily case numbers. Results shown in the new Fig. 6d is from the 
simplest scheme we used, where the growth rate on a given day is simply obtained from the local 
slope of the ln N(t) versus t curve, using a time interval of three days. As seen from the plot, each 
data set contains a plateau region of nearly constant growth rate after the cumulative case 
number reached a few tens or a few hundreds. Beyond that, the growth rate starts to decrease, 
presumably as a result of intervention and containment measures (but could also due to spreading 
to other communities with different economic and social settings). This gives us an overall idea 
of how one might assign a window in either cumulative case number or in time to perform data 
fitting in each case.  
 
A new section 5 “Estimation of exponential growth rates during initial outbreaks” is added to SI 
to explain the above issues in some detail and also to present the estimated COVID-19 growth 
rates during the early stage of the 1st wave in various countries/regions following the scheme 
proposed by Favier et al. In some cases such as Italy, one indeed obtains a lower value of the 
exponential growth rate using the Favier et al. scheme to select the window to perform data 
fitting. This, together with Fig. 6d and the additional references 38 and 39 in the revised Main 
Text, should allow the reader to obtain a more complete view of similarities and differences of 
the COVID-19 outbreaks across countries and continents. 
 
 
Minor Issues: 
1. Line 4-5 in the first paragraph of introduction: update the statistics on COVID-19 as it is 
presented over two months earlier. 
 
We thank the reviewer for highlighting this and have updated the statistics of COVID-19. 
 
2. Suggest to mention the specific location of data used for the study in the abstract itself. 
We thank the reviewer for this suggestion and have updated the relevant section, as addressed in 
our response to Question 1. 
 
Finally, we thank Reviewer #4 again for her/his insightful and constructive comments. We hope 
our responses above have addressed these important issues/concerns in a satisfactory manner. 
 
 



Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

 

My comments have not been addressed nor (apparently) understood. 

 

If the authors' mathematical results are indeed correct, they apparently apply to some model 

world which they have not clearly described, nor clearly connected to the real world: K cannot in 

general be inferred from r(t). 

 

I don't believe there's a clear _scientific_ story here, just a mathematical result behind a tangle of 

poorly justified scientific assumptions. If there _is_ a clear story here, it is not sufficiently 

explained to be followed by more than a tiny fraction of the likely readership. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

Yes, I can see the authors have sufficiently revised the manuscript incorporating the comments 

and suggestions of the reviewers. 

 

Clarification: 

 

I think the authors mean by the line (page 5), 

“As suggested in Ref. 23, their effect can be simulated with a shape function that masks p1(t).” 

is as below and prefer to revise the sentence as: 

“Therefore, such temporal effect on the serial interval can be simulated simply with a shape 

function that masks p1(t).”? 

 

 

 

Reviewer #5: 

Remarks to the Author: 

 

As far as I can see, the authors deal with a special case of the linearized version of the general 

Kermack-McKendrick model from 1927, see the original paper and 

https://www.tandfonline.com/doi/full/10.1080/17513758.2012.716454 

The references [17,18] do not elucidate this. 

 

The authors call the kernel of the linear renewal equation r(t). 

The use of the symbol t as argument of r is unfortunate, as in their second equation they use t to 

denote real/absolute time. I strongly recommend to systematically use a different character to 

denote the ‘time elapsed since infection took place’. The present choice of notation is bound to 

create confusion (also r is dangerous, as usually it denotes the Malthusian parameter). 

 

The key idea of the paper seems to be to relate r to the distribution of symptom onset and to use 

data about the latter to infer the first. But exactly how remains mysterious to me : what is the 

basis for (1) and how is thetaS defined, if all you have are observations of symptom onset ? And 

what exactly motivates the more detailed stochastic model that you choose to deduce expressions 

for r ? What are the advantages ? As the detailed model still contains the functions alphaL and 

betaB as ingredients, you remain in the area of nonparametric statistics, see 

https://www.cambridge.org/core/books/nonparametric-estimation-under-shape-

constraints/881B662EEF5B5266E5E4D80E6153FCDA 

for possibly useful methodology. Are you choosing the more detailed model in order to facilitate 



the incorporation of control measures ? 

 

To summarize : in my opinion the assumptions are neither clearly described nor well motivated. To 

convince, the presentation should be much improved. 

 

Admittedly, I did not read the entire manuscript and I do have little experience with data analysis. 

But I do have a lot of experience in epidemic modeling, and the opinion given above is based on a 

serious study of pages 1-3 of the main text and pages 3-5 of the supp. 

 

A detail : in the middle line of both S2 and S5 the integration symbol dt1 is misplaced. 

 

 

 

Reviewer #6: 

Remarks to the Author: 

It makes sense to me that this model should be as tractable as an elaborated compartmental 

model SEI1I2I3R because of the rather strong assumptions: 

• Phase I1 has constant exit rate and constant transmissibility. 

• Phase I2 has constant duration and transmissibility that is linearly decreasing with time 

• Phase I3 has a transmission rate that decays exponentially at a high rate, which is well-

represented as a pulse of transmissions on entry. 

Overall, then, the expected number of transmissions for a person entering phase I1 is easily 

determined. Since everyone who is infected passes through each of these compartments in 

sequence, the reproductive number r(t) should not be difficult to determine. 

 

I agree with Reviewer 2 that the kernel derivation (S3 to S5) could be made clearer, explicitly 

showing the changes of variable and especially the interchanged limits of integration. Using the 

dummy variable t as an argument for the kernel in Eqs. S3 and S7 is confusing, since in use it is 

replaced by the time interval t-t_1, where “t” has a very different meaning. I think this is the 

source of the reviewer’s request for an “anchor” time argument. The kernel itself is independent of 

any anchor time – that dependence comes in through its convolution with A1(t) – but the notation 

makes it seem like it depends only on the anchor time. Simply switching to a dummy argument of 

\Delta might reduce some of the understandable confusion expressed by the reviewer, which is 

likely to arise in many readers’ minds. 

 

Also, in Eq. S2, the integral over t1 must include the second factor, since it also depends on t1. 

I.e., move “dt1” to the end of the expression. And the \theta parameters should be defined in the 

text, not just in figures, before their otherwise abrupt introduction in Eq. 1. 

 

However, in my opinion the model is technically valid – I don’t understand the reviewer’s other 

comments, at least in regard to the current version. 

• The reproductive number r(t) is constitutively positive: the number of transmissions per person 

cannot be negative. r(t) is the exponential of a rate that is sometimes also called the transmission 

rate, which may obviously be positive or negative. 

• a constant r(t) does not require a constant kernel. Eq. S5 clearly shows this is not the case. 

Indeed, if r(t) is constant, K(t-t_1) must be a delta-function, which makes sense. 

• The limits of integration show that both r(t) and the kernel are assumed to “start” at time t=0, 

though a better way of putting it might simply be that A1(t) is 0 before t=0. It is not unusual to 

assume the distribution of infection times starts with a pulse at t=0. 

• The model itself is separate from any time-series. If “these assumptions are [not] consistent for 

a particular time series” it does not mean the model itself is inconsistent, only that it may be a 

poor representation of reality. 

 

I note that, as agreed with the editor, the scope of this review is confined to the above details of 

the model itself. 
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Point-to-point response to reviewers’ comments and suggestions 
 
 
Reviewer #2 
 
My comments have not been addressed nor (apparently) understood. 
 
If the authors' mathematical results are indeed correct, they apparently apply to some model 
world which they have not clearly described, nor clearly connected to the real world: K 
cannot in general be inferred from r(t). 
 
I don't believe there's a clear _scientific_ story here, just a mathematical result behind a 
tangle of poorly justified scientific assumptions. If there _is_ a clear story here, it is not 
sufficiently explained to be followed by more than a tiny fraction of the likely readership. 
 
Response: 
 
We thank Reviewer #2 for taking yet another look at our manuscript, and sincerely apologise 
for missing the key part of his criticism regarding notation and model presentation in the last 
round of revision. With the helpful inputs from Reviewer #5 and #6, we have thoroughly 
revised the model description section in the Main Text and the exposition of the governing 
equations for epidemic development in a large, well-mixed community in SI, Secs. 1 and 3. 
The calendar time, now denoted by capital letter T, is singled out clearly from elapsed times 
and time constants throughout the Main Text and SI.  
 
Equations (2) and (3) in the previous version of the manuscript, which generated much 
concern from Reviewer #2, are technically correct but turn out to be an unnecessary detour to 
the results presented in this work. We would like to invite Reviewer #2 to go through the 
revamped formulation in Sec. 1 of SI, and are hopeful that the scientific story is now more 
clearly articulated. 
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Reviewer #4  
 
Yes, I can see the authors have sufficiently revised the manuscript incorporating the 
comments and suggestions of the reviewers. 
 
Clarification: 
 
I think the authors mean by the line (page 5), “As suggested in Ref. 23, their effect can be 
simulated with a shape function that masks p1(t).” is as below and prefer to revise the 
sentence as: “Therefore, such temporal effect on the serial interval can be simulated simply 
with a shape function that masks p1(t).”? 
 
Response: 
 
We are grateful to Reviewer #4 for the many helpful comments and suggestions in the 
previous round which contributed greatly to the improvement of the paper. The suggested 
clarification above has been incorporated in the latest revision. 
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Reviewer #5 
 
As far as I can see, the authors deal with a special case of the linearized version of the general 
Kermack-McKendrick model from 1927, see the original paper and 
https://www.tandfonline.com/doi/full/10.1080/17513758.2012.716454 
The references [17,18] do not elucidate this. 
 
Response: 
 
We thank Reviewer #5 for introducing to us the seminal work by Kermack and McKendrick 
and subsequent developments and we are delighted to see that our current study has a large 
overlap with the established school of thought. The papers are now cited as the first two 
references in SI. 
 
 
The authors call the kernel of the linear renewal equation r(t). The use of the symbol t as 
argument of r is unfortunate, as in their second equation they use t to denote real/absolute 
time. I strongly recommend to systematically use a different character to denote the ‘time 
elapsed since infection took place’. The present choice of notation is bound to create 
confusion (also r is dangerous, as usually it denotes the Malthusian parameter). 
 
Response: 
 
We thank Reviewer #5 for the comment and suggestion. His remark to link r(t) with the 
kernel of the renewal equation prompted us to re-examine Eqs. (2) and (3) in the previous 
version of the manuscript which are now replaced by two different equations. This 
reformulation, together with the suggested notational change, lend much simplicity and 
clarity to the mathematical treatment in Sec. 1 of SI. As a result, the amount of work required 
for the reader to go through the material in the section is much reduced.  
 
With regard to the usage of r(t) for the mean reproduction rate on day t since infection, we 
feel that the chance of being misunderstood is slim and also we are afraid that, with the large 
number of symbols already in use in the paper, the choice of alternatives is rather limited. 
Therefore, we have kept it intact. 
 
 
The key idea of the paper seems to be to relate r to the distribution of symptom onset and to 
use data about the latter to infer the first. But exactly how remains mysterious to me : what is 
the basis for (1) and how is thetaS defined, if all you have are observations of symptom onset 
? And what exactly motivates the more detailed stochastic model that you choose to deduce 
expressions for r ? What are the advantages ?  
 
Response: 
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Indeed, the main objective of the paper is to relate the statistics of pair-wise transmission in 
individual case studies to epidemic development at the population level. Within the linear 
framework, r(t) plays the dual role of the rate of reproduction at the individual level, which is 
stochastic, and the kernel function of the renewal equation for the size of infected 
(sub)populations, which is deterministic. However, direct determination of r(t) from clinical 
data is difficult as this would require complete transmission history from a large number of 
patients. The compartmentalised, stochastic model allows one to break up this task into two 
steps as illustrated in Fig. 1a of the Main Text, taking advantage of the transmission 
characteristics of COVID-19.  
 
Eq. (1) is both a representation of empirical observations and also an outcome of the 
compartmentalised model. Given the overwhelming clinical evidence that infectiousness of a 
COVID-19 patient peaks around the symptom onset, the proposed expression for r(t) is quite 
plausible. Further to the empirical observation, Sec. 3.1 in SI presents a derivation of Eq. (1) 
from the compartmentalised model. An expression for the phenomenological parameter 	θS  is 

given and its numerical value is estimated in Sec. 2 from clinical data.  
 
 
As the detailed model still contains the functions alphaL and betaB as ingredients, you 
remain in the area of nonparametric statistics, see 
https://www.cambridge.org/core/books/nonparametric-estimation-under-shape-
constraints/881B662EEF5B5266E5E4D80E6153FCDA 
for possibly useful methodology. Are you choosing the more detailed model in order to 
facilitate the incorporation of control measures ? 
 
Response:  
 
The compartmentalised model is introduced to simulate COVID-19 disease development and 
transmission at the individual level, including a quantitative determination of r(t) from 
clinical data. Reviewer #5 is right that, in the definition of the model, we leave the functional 

forms for 		αL t( )  and 		βB tB( )  free so as to be able to produce better agreement between the 

model and clinical data. The procedure to determine the two functions is discussed at length 
in the Methods section and also in Sec. 2 of SI. While the disease transmission data suggests 

that 	
βB tB( )  is well described by a simple exponential function with a decay constant 	αB ,  the 

temporal structure of 		αL t( )  is a bit more complex in order to accommodate the key statistical 

characteristic of the latent phase. We added a new subsection 2.3 in SI to present our 
observations.  
 
Upon careful calibration, the compartmentalised model offers a convenient starting point to 
quantitatively assess various intervention measures, as described in the Main Text and SI. 
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To summarize : in my opinion the assumptions are neither clearly described nor well 
motivated. To convince, the presentation should be much improved. 
 
Admittedly, I did not read the entire manuscript and I do have little experience with data 
analysis. But I do have a lot of experience in epidemic modeling, and the opinion given 
above is based on a serious study of pages 1-3 of the main text and pages 3-5 of the supp. 
 
Response: 
 
We much appreciate the constructive advice and many useful suggestions from Reviewer #5, 
which prompted us to perform an overhaul of the model formulation and the key equations 
(2) and (3) in the Main Text. Section 1.1 in SI is completely rewritten along the lines 
suggested by the reviewer. The revised manuscript should be more accessible to the reader, 
both in the flow of ideas and the communication of results obtained, and for this we are 
grateful to Reviewer #5. 
 
 
A detail : in the middle line of both S2 and S5 the integration symbol dt1 is misplaced. 
 
Response: 
 
We have followed Reviewer #5’s advice and rewrote much of the mathematical derivations 
in Sec. 1.1, SI. 
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Reviewer #6 
 
It makes sense to me that this model should be as tractable as an elaborated compartmental 
model SEI1I2I3R because of the rather strong assumptions: 
● Phase I1 has constant exit rate and constant transmissibility. 
● Phase I2 has constant duration and transmissibility that is linearly decreasing with time 
● Phase I3 has a transmission rate that decays exponentially at a high rate, which is well-

represented as a pulse of transmissions on entry. 
Overall, then, the expected number of transmissions for a person entering phase I1 is easily 
determined. Since everyone who is infected passes through each of these compartments in 
sequence, the reproductive number r(t) should not be difficult to determine. 
 
Response: 
 
We thank Review #6 for his detailed and positive summary of our model.  
 
I agree with Reviewer 2 that the kernel derivation (S3 to S5) could be made clearer, explicitly 
showing the changes of variable and especially the interchanged limits of integration. Using 
the dummy variable t as an argument for the kernel in Eqs. S3 and S7 is confusing, since in 
use it is replaced by the time interval t-t_1, where “t” has a very different meaning. I think 
this is the source of the reviewer’s request for an “anchor” time argument. The kernel itself is 
independent of any anchor time – that dependence comes in through its convolution with 
A1(t) – but the notation makes it seem like it depends only on the anchor time. Simply 
switching to a dummy argument of \Delta might reduce some of the understandable 
confusion expressed by the reviewer, which is likely to arise in many readers’ minds. 
 
Response: 
 
We thank Reviewer #6 for emphasising the importance of distinguishing the calendar time 
from the elapsed times, originally brought up by Reviewer #2. We have followed the advice 
of all three reviewers and thoroughly changed the notation, using the capital letter T for 
calendar days and the lowercase t for elapsed times, both in the Main Text and SI. Additional 
notational changes were made for consistency in the usage of  “time from the symptom 
onset” 	Δt  and the serial interval 		tSI . With these revisions, we hope the possible confusions 

are much reduced.  
 
 
Also, in Eq. S2, the integral over t1 must include the second factor, since it also depends on 
t1. I.e., move “dt1” to the end of the expression. And the \theta parameters should be defined 
in the text, not just in figures, before their otherwise abrupt introduction in Eq. 1. 
 
Response: 
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We thank Review #6 for these suggestions which have been implemented in the revised 
version. 
 
However, in my opinion the model is technically valid – I don’t understand the reviewer’s 
other comments, at least in regard to the current version. 

• The reproductive number r(t) is constitutively positive: the number of transmissions per 
person cannot be negative. r(t) is the exponential of a rate that is sometimes also called 
the transmission rate, which may obviously be positive or negative. 

• a constant r(t) does not require a constant kernel. Eq. S5 clearly shows this is not the 
case. Indeed, if r(t) is constant, K(t-t_1) must be a delta-function, which makes sense. 

• The limits of integration show that both r(t) and the kernel are assumed to “start” at 
time t=0, though a better way of putting it might simply be that A1(t) is 0 before t=0. It 
is not unusual to assume the distribution of infection times starts with a pulse at t=0. 

• The model itself is separate from any time-series. If “these assumptions are [not] 
consistent for a particular time series” it does not mean the model itself is inconsistent, 
only that it may be a poor representation of reality. 

 
I note that, as agreed with the editor, the scope of this review is confined to the above details 
of the model itself. 
 
Response: 
 
We thank Reviewer #6 for carefully going through our work and for his/her factual and 
positive assessments. While the original mathematical formulation, with an emphasis on the 
size of the infected population in the A1 phase, is technically sound, we have since discovered 
that one can do away with the somewhat awkward kernel K(t) which was the original source 
of objection from Reviewer #2. Upon advice from all three reviewers, we have substantially 
revised Sec. 1.1 of SI and made corresponding changes to the rest of the manuscript, 
including the new equations (2) and (3) in the Main Text. We much appreciate Reviewer #6’s 
thorough understanding of our work. 
 
 
 
 



Reviewers' Comments: 

 

Reviewer #5: 

Remarks to the Author: 

In my opinion the manuscript is now clear enough to be accepted. 

 

 

 

Reviewer #6: 

Remarks to the Author: 

My concerns with the previous version have been addressed well. I think the result is a description 

of a model that will be of widespread interest because it relates two established approaches. I 

have again confined my review to the model description. 

 

It never fails to amaze me how stove-piped we have become – in this case, developing an 

epidemic model without having encountered Kermack-McKendrick. If they have not already, the 

authors should study the work of Heesterbeek, Dietz, and Diekmann (e.g., 

 

Heesterbeek J.A.P, Dietz K. The concept of R0 in epidemic theory. Stat. Neerl. 1996;50:89–110 

 

DIEKMANN, O., J. A. P. HEESTERBEEK and J. A. J. Metz (1990), On the definition and the 

computation of the basic reproduction ratio & in models for infectious diseases in heterogeneous 

populations, Journal of Mathematical Biology 28, 365-382.) 

 

Their work reviews the historical development of R0, its application to structured populations and, 

if memory serves, its extension to non-Poisson transition rates. 

 

 



Response	to	Reviewer	#5	
	
In	my	opinion	the	manuscript	is	now	clear	enough	to	be	accepted.	
	
We	thank	Reviewer	#5	for	reviewing	our	paper	again.	We	are	pleased	to	know	
that	s/he	is	satisfied	with	the	revised	version.	
	
	
	
Response	to	Reviewer	#6	
	
My	concerns	with	the	previous	version	have	been	addressed	well.	I	think	the	
result	is	a	description	of	a	model	that	will	be	of	widespread	interest	because	it	
relates	two	established	approaches.	I	have	again	confined	my	review	to	the	
model	description.	
	
We	thank	Reviewer	#6	for	reviewing	our	paper	again	and	her/his	enthusiastic	
assessment	on	our	model.	We	are	pleased	to	know	that	s/he	is	satisfied	with	the	
revised	version.	
	
It	never	fails	to	amaze	me	how	stove-piped	we	have	become	–	in	this	case,	
developing	an	epidemic	model	without	having	encountered	Kermack-
McKendrick.	If	they	have	not	already,	the	authors	should	study	the	work	of	
Heesterbeek,	Dietz,	and	Diekmann	(e.g.,		
	
Heesterbeek	J.A.P,	Dietz	K.	The	concept	of	R0	in	epidemic	theory.	Stat.	Neerl.	
1996;50:89–110	
	
DIEKMANN,	O.,	J.	A.	P.	HEESTERBEEK	and	J.	A.	J.	Metz	(1990),	On	the	definition	
and	the	computation	of	the	basic	reproduction	ratio	&	in	models	for	infectious	
diseases	in	heterogeneous	populations,	Journal	of	Mathematical	Biology	28,	365-
382.)	
	
Their	work	reviews	the	historical	development	of	R0,	its	application	to	
structured	populations	and,	if	memory	serves,	its	extension	to	non-Poisson	
transition	rates.	
	
We	thank	Reviewer	#6	for	bringing	these	classical	works	to	our	attention.	A	
short	paragraph	is	added	at	the	beginning	of	the	Supplementary	Information	
where	the	historical	developments	were	referenced.	


