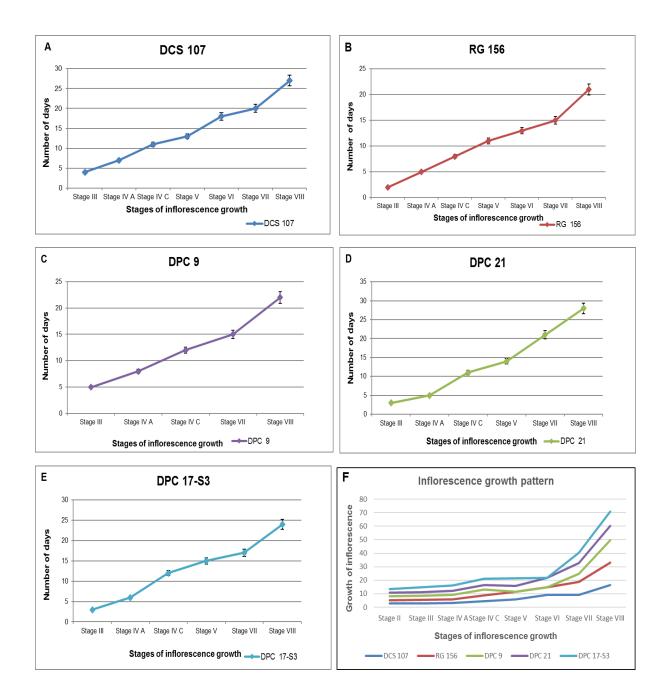
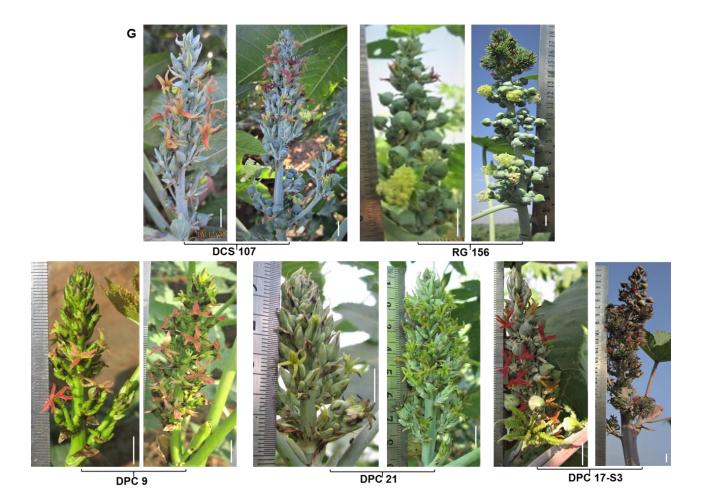
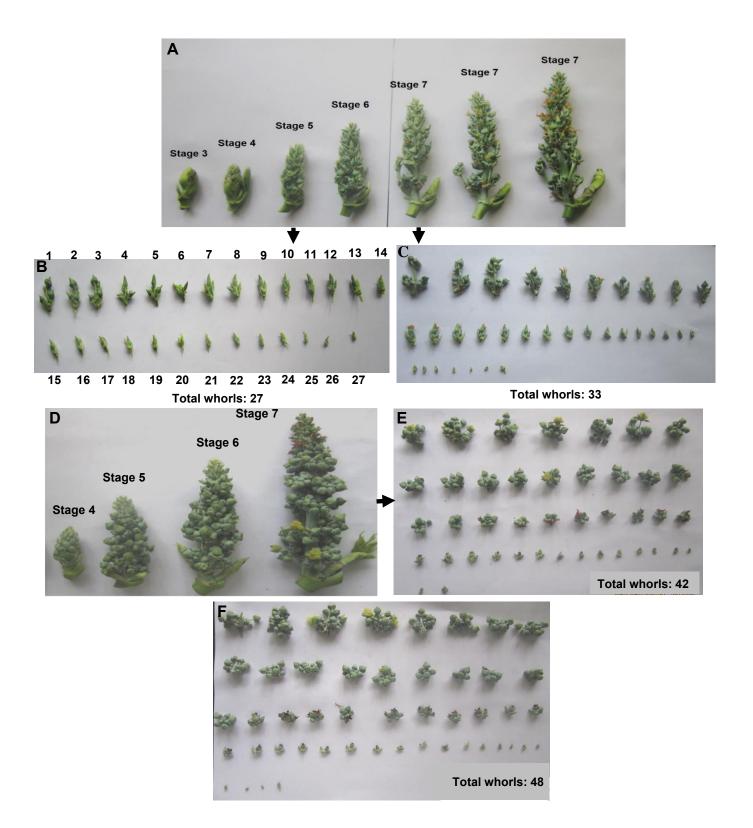

## Probing the Floral Developmental Stages, Bisexuality and Sex Reversions in Castor (*Ricinus communis* L.)

#### **Scientific Reports**


# Sujatha Thankeswaran Parvathy<sup>1\*</sup>, Amala Joseph Prabakaran<sup>2</sup> and Thadakamalla Jayakrishna<sup>3</sup>

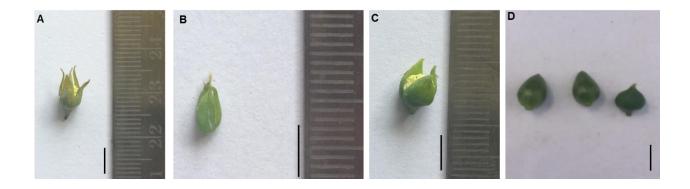

ICAR-Indian Institute of Oilseeds research, Rajendranagar, Hyderabad, Telangana, 500 030 India.

\*E-mail: sujatha.parvathy@icar.gov.in, hiisuj1@gmail.com



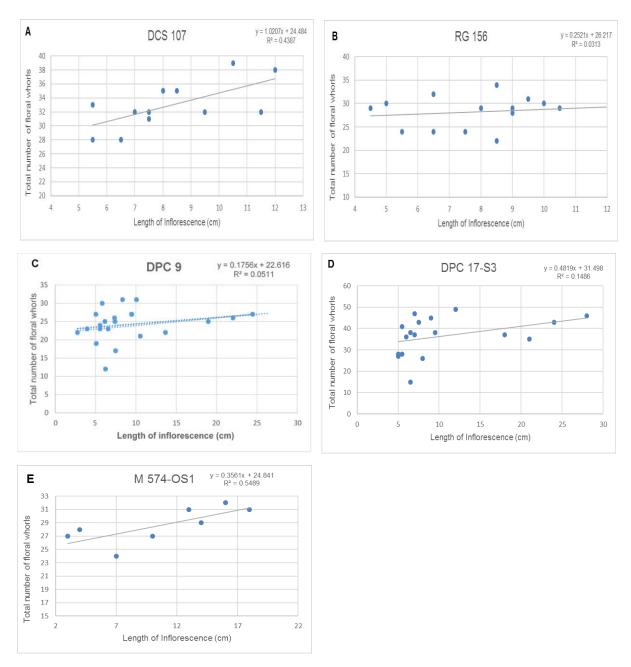

Supplementary Figure S1. Growth of inflorescence from stage I to stage IV in monoecious RG 156. (A) The inflorescence primordium at stage I (2.5 mm in length, 1.5-2mm in girth) not distinct externally. (B) Inflorescence bud at stage II (3-5 mm in length, 2.5-3.5 mm in girth) and stage III (6 mm in length and 4 mm in girth) visible externally as a bulge (C) Inflorescence at different stages from stage III to IV (12-14 mm length, 8-10 mm in girth). The vertical length and horizontal girth (blue line) of the primordium are indicated in mm respectively below and on the inflorescence bud.



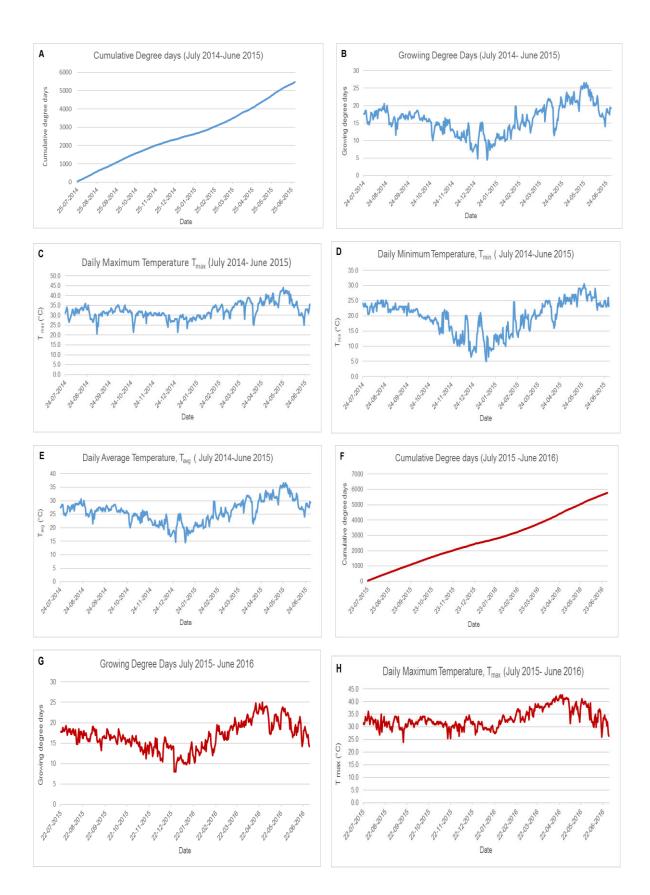


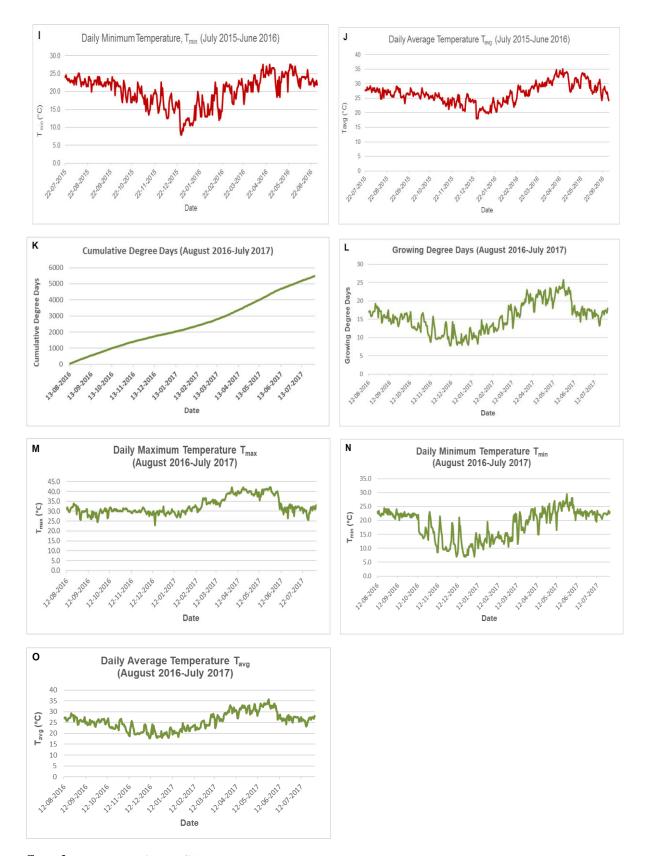

Supplementary Figure S2. Inflorescence growth stages at various days after inflorescence differentiation, growth rate and anthesis pattern in castor genotypes (A) DCS 107 (monoecious), (B) RG 156 (monoecious), (C) DPC 9 (pistillate), (D) DPC 21 (ISF) and (E) DPC 17-S3 (apical ISF). Stage VI (elongation) is not distinct before stage VII (anthesis) in DPC 9, DPC 21 and DPC 17-S3. The error bars at each point indicate error percentage. (F) Growth pattern of inflorescences indicated in time line graph (G) Pattern of anthesis in various castor genotypes. Scale bar: 1 cm.



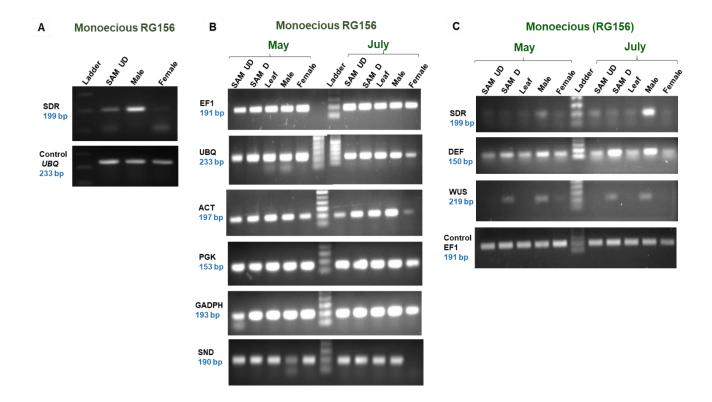



Supplementary Figure S3. Arrangement of floral whorls to elucidate architecture of inflorescences of castor genotypes. Two monoecious genotypes (A-C) DCS 107 and (D-F) RG 156 are represented. Spikes of DCS 107 (A) and RG 156 (D) at different stages of elongation and separated floral whorls from the spikes arranged I the order from bottom to top of spike for DCS 107 (B, C) and RG 156 (E, F) are shown respectively. The total number of whorls from the respective spikes (indicated by arrow) are shown below. Inflorescence architecture of (G) DPC 9 (H) DPC17-S3 and (I) M 574-OS1 were similarly elucidated.





### Supplementary Figure S4. Abnormal shape in castor flower buds

(**A**, **B**) Elongated male flower buds (**C**) Normal round (spherical) male bud (**D**) Nearly-round female flower buds adjacent to normal male bud (right extreme). Graduations of 30 cm metal scale is shown at side. Scale bar= 50 mm




**Supplementary Figure S5.** Scatter plot showing the relation total number of floral whorls along with elongation of inflorescence after emergence in castor genotypes (**A**) DCS 107 (**B**) RG 156 (**C**) DPC 9 (**D**) DPC 17-S3 (**E**) M574-OS1.The regression equation is shown on top right of the scatter plot diagram.





**Supplementary Figure S6.** Weather parameters Cumulative degree days (CDD), Growing Degree Days (GDD), daily maximum ( $T_{max}$ ), minimum ( $T_{min}$ ) and average ( $T_{avg}$ ) temperatures for the cropping season (**A-E**) 2014-15, (**F-J**) 2015-16 and (**K-O**) 2016-17.



**Supplementary Figure S7. Expression of genes in various tissues in castor genotypes verified by semi-quantitative RT-PCR.** (A) Expression of *SDR* in Monoecious RG 156 using one-step RT-PCR (B) Standardisation of various control genes at two different temperature conditions during May (38-42°C) and July (25.5-33°C) in RG 156 using two-step RT-PCR (C) Expression of candidate genes in RG 156 during May and July re-confirmed by two step RT-PCR. *UBQ* and *EF-1* are used as internal control genes. Ladder is 100 bp ladder. Samples from vegetative undifferentiated Shoot apical meristem (SAM UD), differentiated SAM (SAM D), young growing leaf from inflorescence bud (leaf), young male and female buds are indicated.

## Probing the Floral Developmental Stages, Bisexuality and Sex Reversions in Castor (*Ricinus communis* L.)

### Scientific Reports Sujatha Thankeswaran Parvathy<sup>1\*</sup>, Amala Joseph Prabakaran<sup>2</sup> and Thadakamalla Jayakrishna<sup>3</sup>

ICAR-Indian Institute of Oilseeds research, Rajendranagar, Hyderabad, Telangana, 500 030 India.

\*E-mail: sujatha.parvathy@icar.gov.in, hiisuj1@gmail.com

**Supplementary Table S1. Morphological stages of inflorescence development in castor:** The stages after differentiation of apical meristem into reproductive/ inflorescence meristem are described.

| Stages     | Description                                                                   |
|------------|-------------------------------------------------------------------------------|
| Stage I    | Inflorescence primordia is differentiated but not prominent nor visible       |
| Stage II   | Inflorescence primordia is prominent, visible and hard to touch               |
| Stage III  | Inflorescence is covered by bracts and not emerged, increased girth of spike, |
|            | Flower buds fully formed, not visible outside                                 |
| Stage IV   | A. Inflorescence almost covered by bracts starts emerging out, marked         |
|            | by opening of bracts from tip                                                 |
|            | B. Inflorescence emerging out and partially covered by bracts (half or        |
|            | 50% open)                                                                     |
|            | C. Inflorescence emerging out and 3/4 <sup>th</sup> or 75% open.              |
| Stage V    | Inflorescence has emerged completely or fully open, individual flower buds    |
|            | remain unopened.                                                              |
| Stage VI   | Elongation of fully emerged inflorescence occurs, but flower buds remain      |
|            | unopened.                                                                     |
| Stage VII  | Anthesis or Flower bud opening                                                |
| Stage VIII | Capsule formation (after pollination) and capsule maturation                  |

Supplementary Table S2. Stage transition and growth of inflorescence in different castor genotypes

| Genotype  | Stage II-III | Stage III-IV A | Stage IV A-IV<br>C | Stage IV C-<br>VII | Stage VII-<br>VIII |
|-----------|--------------|----------------|--------------------|--------------------|--------------------|
| DCS 107   | $4 \pm 0.3$  | $3 \pm 0.63$   | $4 \pm 0.58$       | $5 \pm 0.2$        | $7 \pm 0.25$       |
| RG 156    | $2 \pm 0.33$ | 3              | 3                  | $7 \pm 0.14$       | $6 \pm 0.33$       |
| DPC 9     | $5 \pm 0.88$ | $3 \pm 0.48$   | 4                  | 3                  | $7 \pm 0.34$       |
| DPC 21    | $3 \pm 0.4$  | $2 \pm 0.24$   | 6                  | 10                 | 7                  |
| DPC 17-S3 | 3            | 3              | 6                  | 6                  | 7                  |

| A. Number of days taken for transition to each stage of development of inflorescence. |
|---------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------|

Mean of observations adjusted to nearest whole number  $\pm SE_{(mean)}$  are shown.

### B. Stage of inflorescence development at different days from stage II.

|           | Developmental stage of inflorescence at nth day |              |              |         |          |           |            |  |
|-----------|-------------------------------------------------|--------------|--------------|---------|----------|-----------|------------|--|
| Genotype  | Stage<br>III                                    | Stage<br>IVA | Stage<br>IVC | Stage V | Stage VI | Stage VII | Stage VIII |  |
| DCS 107   | 4                                               | 7            | 11           | 13      | 18       | 20        | 27         |  |
| RG 156    | 2                                               | 5            | 8            | 11      | 13       | 15        | 21         |  |
| DPC 9     | 5                                               | 8            | 12           | *       | *        | 15        | 22         |  |
| DPC 21    | 3                                               | 5            | 11           | 14      | *        | 21        | 28         |  |
| DPC 17-S3 | 3                                               | 6            | 12           | 15      | *        | 17        | 24         |  |

\*'indicates no observations are available since stage transitions are not distinct. The total number of days from stage II are shown.

| Genotype  | Stage<br>II  | Stage<br>III | Stage<br>IV A | Stage IV<br>C | Stage<br>V | Stage<br>VI | Stage<br>VII | Stage<br>VIII |
|-----------|--------------|--------------|---------------|---------------|------------|-------------|--------------|---------------|
| DCS 107   | 2.86 ±       | 2.89 ±       | 3.2 ±         | 4.43 ±        | 5.88 ±     | 9 ±         | 9.214 ±      | 16.5 ±        |
|           | 0.11         | 0.16         | 0.12          | 0.20          | 0.69       | 1           | 0.67         | 1.3           |
| RG 156    | 2.17 ±       | 2.5 ±        | 2.5 ±         | 4.25 ±        | 5.58 ±     | 5.75 ±      | 9.583 ±      | 16.65 ±       |
|           | 0.33         | 0.29         | 0.29          | 0.22          | 0.20       | 0.25        | 0.65         | 0.58          |
| DPC 9     | $3 \pm 0.29$ | $3 \pm 0.20$ | 3.5 ±         | 4.3 ±         | *          | *           | 6 ±          | 16.41±        |
|           |              |              | 0.18          | 0.4           |            |             | 0.69         | 0.71          |
| DPC 21    | 2.67 ±       | 2.81 ±       | 3 ±           | 3.45 ±        | 4.25 ±     | 7 ± 1       | 7.833 ±      | 10.75 ±       |
|           | 0.17         | 0.09         | 0.16          | 0.13          | 0.26       |             | 0.88         | 1.5           |
| DPC 17-S3 | 2.8 ±        | 3.5 ±        | 3.75 ±        | 4.5 ±         | 5.8 ±      | *           | 7.8 ±        | 10.5 ±        |
|           | 0.17         | 0.20         | 0.14          | 0.3           | 0.6        |             | 0.53         | 0.39          |

#### C. Inflorescence growth (cm) of castor genotypes at different stages

The values represent mean of observations from different spikes.'\*'indicates no observations are available since stage transitions are not distinct.

#### **D.** Elongation (cm)of inflorescence after capsule setting

| Genotype | Stage VIII       | Stage VIII A    | Stage VIII B     |
|----------|------------------|-----------------|------------------|
| DCS 107  | $16.5 \pm 1.3$   | $19 \pm 0.53$   | 24.5 ±           |
| DPC 9    | $16.42 \pm 0.71$ | $21.72 \pm 0.9$ | $28.28 \pm 1.36$ |

Stage I: Inflorescence primordia initiation, stage II: inflorescence bud visible, stage III Growth of inflorescence bud Stage IV of inflorescence opening with 3 sub-stages IVA beginning of inflorescence opening IVC: inflorescence 3/4<sup>th</sup> opened Stage V: Complete spike emergence Stage VI: Spike elongation Stage VII: Anthesis. Stage VIII is capsule formation stage where capsules are immature, VIII A is inflorescence elongation after stage 8 where capsules mature, and stage VIII B is of fully grown inflorescence with mature capsules.

Supplementary Table S3 A. Floral architecture of inflorescences in various castor genotypes with distinct sex expression phenotypes.

| Sl no          | Inflorescence<br>length (cm) | Total<br>number<br>of<br>whorls | Whorl of<br>female<br>flower<br>appearance | Completely female whorl* |
|----------------|------------------------------|---------------------------------|--------------------------------------------|--------------------------|
| DCS 107        | ,                            |                                 |                                            |                          |
| 1              | 5.5                          | 28                              | 2                                          | 10                       |
| 2              | 5.5                          | 33                              | 1                                          | 10                       |
| 3              | 6.5                          | 28                              | 1                                          | 17                       |
| 4              | 7                            | 32                              | 1                                          | 2,4                      |
| 5              | 7                            | 32                              | 3                                          | 9, 11                    |
| 6              | 7.5                          | 32                              | 1                                          | 10                       |
| 7              | 7.5                          | 31                              | 1,3                                        | 8                        |
| 8              | 8                            | 35                              | 1                                          | 12                       |
| 9              | 8.5                          | 35                              | 1                                          | 11,12, 15,16,18,20-27,29 |
| 10             | 9.5                          | 32                              | 3                                          | 9                        |
| 11             | 10.5                         | 39                              | 3                                          | 19                       |
| 12             | 11.5                         | 32                              | 1                                          | 17                       |
| 13             | 12                           | 38                              | 1                                          | 23                       |
|                | r=0.662                      |                                 |                                            |                          |
| <b>DCS 107</b> | ' Secondary                  |                                 |                                            |                          |
| 1              | 6.2                          | 27                              | 1                                          | 7                        |
| 2              | 8.5                          | 33                              | 1                                          | 10                       |
| 3              | 10.8                         | 33                              | 1                                          | 11                       |
| 4              | 11.5                         | 34                              | 1                                          | 8                        |
| 5              | 13                           | 34                              | 1                                          | 17                       |
| 6              | 17                           | 34                              | 1                                          | 10                       |
|                | r=0.741                      |                                 |                                            |                          |
| RG 156         |                              |                                 |                                            |                          |
| 1              | 4.5                          | 29                              | 15                                         | 15                       |
| 2              | 5                            | 30                              | 16                                         | 16                       |
| 3              | 5.5                          | 24                              | 13                                         | 16                       |
| 4              | 6.5                          | 24                              | 15                                         | 15                       |
| 5              | 6.5                          | 32                              | 19                                         | 21                       |
| 6              | 7.5                          | 24                              | 14                                         | 15                       |
| 7              | 8                            | 29                              | 17                                         | 21                       |
| 8              | 8.5                          | 22                              | 11                                         | 15                       |
| 9              | 8.5                          | 34                              | 19                                         | 23                       |
| 10             | 9                            | 29                              | 15                                         | 18                       |
| 11             | 9                            | 28                              | 16                                         | 18                       |
| 12             | 9.5                          | 31                              | 16,18                                      | 19                       |
| 13             | 10                           | 30                              | 17                                         | 22                       |
| 14             | 10.5                         | 29                              | 17                                         | 18                       |

| 15       | 13.5          | 29           | 16.17            | 19         |                 |
|----------|---------------|--------------|------------------|------------|-----------------|
|          | r=0.177       |              |                  | 1          |                 |
| RG 156 S | econdary      |              |                  |            |                 |
| 1        | 10.5          | 44           | 18               | 30         |                 |
| 2        | 13.5          | 55           | 22               | 29         |                 |
| 3        | 17            | 36           | 24               | 31         |                 |
| 4        | 17.4          | 55           | 15               | 23         |                 |
| 5        | 17.5          | 46           | 20               | 31         |                 |
| 6        | 18            | 56           | 10               | 23         |                 |
|          | r=0.138       |              |                  |            |                 |
| DPC 9    | ·             |              | ·                |            |                 |
| Sl. no   | Inflorescence | Total        | Whorls of fer    | nale       | Whorl with male |
|          | Length (cm)   | number       | flower appear    | rance      | flowers         |
|          |               | of           |                  |            |                 |
| 1        | 2.9           | whorls       | 1                |            | NI:1            |
| 1 2      | 2.8           | 22<br>23     | 1                |            | Nil<br>Nil      |
| 2 3      | 5             | 23           | 1                |            | Nil             |
| 4        | 5.1           | 19           | 1                |            | Nil             |
| 5        | 5.6           | 23           | 1                |            | Nil             |
| 6        | 5.6           | 23           | 1                |            | Nil             |
| 7        | 5.8           | 30           | 1                |            | Nil             |
| 8        | 6.1           | 25           | 1                |            | Nil             |
| 9        | 6.2           | 12           | 1                |            | Nil             |
| 10       | 6.5           | 23           | 1                |            | Nil             |
| 10       | 7.3           | 26           | 1                |            | Nil             |
| 12       | 7.4           | 25           | 1                |            | Nil             |
| 13       | 7.5           | 17           | 1                |            | Nil             |
| 14       | 8.4           | 31           | 1                |            | Nil             |
| 15       | 9.5           | 27           | 1                |            | Nil             |
| 16       | 9.5           | 27           | 1                |            | Nil             |
| 17       | 10            | 31           | 1                |            | Nil             |
| 18       | 10.5          | 21           | 1                |            | Nil             |
| 19       | 13.6          | 22           | 1                |            | Nil             |
| 20       | 19            | 25           | 1                |            | Nil             |
| 21       | 22            | 26           | 1                |            | Nil             |
| 22       | 24.5          | 27           | 1                |            | Nil             |
|          | r=0.225       |              |                  |            |                 |
| Sl no.   | Inflorescence | Total        | Whorl of         |            |                 |
|          | Length (cm)   | number<br>of | female<br>flower |            |                 |
|          |               | ol<br>whorls | appearance       |            |                 |
| DPC 17-8 | 53            | w110115      |                  | 1          |                 |
| 1        | 5.5           | 41           | 6                | 1,2,3,4,5, |                 |
| 2        | 5             | 28           | 1                | nil        |                 |
| -        | -             |              | -                |            |                 |

| 3        | 5                            | 27                              | 1                                     | 5,7,8                           |
|----------|------------------------------|---------------------------------|---------------------------------------|---------------------------------|
| 4        | 5.5                          | 28                              | 1                                     | 5,6,7,8, 10                     |
| 5        | 6                            | 36                              | 1                                     | 1-5, 7-8, 10-26, 30-33          |
| 6        | 6.5                          | 15                              | 1                                     | 4,5,6,8                         |
| 7        | 6.5                          | 38                              | 1                                     | 2-4, 12, 15-18, 20,21,26, 30-32 |
| 8        | 7                            | 37                              | 1                                     | 5,14,20,23,26,29                |
| 9        | 7                            | 47                              | 1                                     | 1,4,17-19, 22, 28, 30, 32       |
| 10       | 7.5                          | 43                              | 1                                     | 1,3,5, 13, 14, 23-41            |
| 11       | 8                            | 26                              | 1                                     | 14-15, 19-22, 24, 26            |
| 12       | 9                            | 45                              | 1                                     | 1,3,5,9,11,13,21,23,25-27       |
| 13       | 9.5                          | 38                              | 1                                     | 5-6, 14, 27-28, 33-35           |
| 14       | 12                           | 49                              | 1                                     | all whorls                      |
| 15       | 18                           | 37                              | 1                                     | 20,22-23, 29, 33-34             |
| 16       | 21                           | 35                              | 1                                     | 1-18, 24, 30                    |
| 17       | 24                           | 43                              | 1                                     | 5, 7, 10-11, 13-40              |
| 18       | 28                           | 46                              | 1                                     | 3-7, 11-13, 18-21, 23-31, 34-44 |
|          | r=0.385                      | ·                               |                                       |                                 |
| Sl no    | Inflorescence<br>length (cm) | Total<br>number<br>of<br>whorls | Whorl of<br>male flower<br>appearance | Completely male whorl*          |
| M574-OS1 |                              | -                               |                                       |                                 |
| 1        | 3                            | 27                              | 1                                     | 1                               |
| 2        | 4                            | 28                              | 1                                     | 1                               |
| 3        | 7                            | 24                              | 1                                     | 1                               |
| 4        | 10                           | 27                              | 1                                     | 1                               |
| 5        | 13                           | 31                              | 1                                     | 1                               |
| 6        | 14                           | 29                              | 1                                     | 1                               |
| 7        | 16                           | 32                              | 1                                     | 1                               |
| 8        | 18                           | 31                              | 1                                     | 1                               |
|          | r=0.741                      |                                 |                                       |                                 |

\*Completely female whorl with single value denotes from that whorl onwards. The values represented are for inflorescences of tertiary or quaternary orders unless specified. The Pearson's correlation coefficient (r) for length of inflorescence and total number of floral whorls are indicated separately for each genotype.

**B.** Test of significance of correlation coefficient between inflorescence length and number of floral whorls in castor genotypes.

| Genotype     | Degree<br>s of<br>freedo | One tailed<br>df=(n-2)             | t-test                    | t-test Test of significance for<br>Coefficient of<br>correlation, r) |                                                                                                    | p value in<br>regression |         |
|--------------|--------------------------|------------------------------------|---------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|---------|
|              | m df<br>(n-2)            | Calculated<br>t (t <sub>cal)</sub> | Table<br>value            | Calculated<br>r                                                      | Table<br>value                                                                                     |                          |         |
|              |                          |                                    | (t<br>critical)<br>P=0.05 |                                                                      | $\begin{array}{ll} (r_{critical)} & at \\ \alpha = 0.05 \\ level & of \\ significance \end{array}$ |                          |         |
| DCS 107      | 11                       | 2.929                              | 1.796                     | 0.662                                                                | 0.476                                                                                              | 0.013                    | p <0.05 |
| RG 156       | 13                       | 0.648                              | 1.771                     | 0.177                                                                | 0.441                                                                                              | 0.528                    | p >0.05 |
| DPC 9        | 20                       | 1.033                              | 1.725                     | 0.225                                                                | 0.36                                                                                               | 0.312                    | p >0.05 |
| DPC 17-S3    | 16                       | 1.669                              | 1.746                     | 0.385                                                                | 0.4                                                                                                | 0.114                    | p>0.05  |
| M 574-OS1    | 6                        | 2.703                              | 1.943                     | 0.741                                                                | 0.621                                                                                              | 0.035                    | p <0.05 |
| Secondary br | Secondary branch orders  |                                    |                           |                                                                      |                                                                                                    |                          |         |
| DCS 107      | 4                        | 2.207                              | 2.132                     | 0.741                                                                | 0.729                                                                                              | 0.092                    | p >0.05 |
| RG 156       | 4                        | 0.279                              | 2.132                     | 0.138                                                                | 0.729                                                                                              | 0.794                    | p >0.05 |

| Genotype  | Phenotype (normal growing season)                                                                   | Phenotype (summer 2nd<br>and 3rd week of May)                      | Occurrence of bisexual flowers                             |
|-----------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| DCS 107   | Monoecious<br>3-4 whorls (30-50%)<br>male flowers at bottom                                         | 90% malethroughoutinflorescence,InterspersedStaminateFlowers (ISF) | Yes<br>Terminal                                            |
| RG 156    | Monoecious<br>70-80% male flowers<br>alone at bottom                                                | 90-95% male flowers,Tipflowersmaleoccasionally,flower buds round   | Yes<br>Female flowers with<br>reverted stamens             |
| DPC 9     | Completely pistillate                                                                               | Interspersed staminate<br>flowers (ISF)                            | Yes<br>Reverted female flowers<br>with rudimentary stamens |
| DPC 16    | Completely pistillate 3-5% male flowers atrandom positionspredominant towardsbase of inflorescences | 90-95% male flowers                                                | Yes<br>Subterminal                                         |
| DPC 21    | Emerges as completely<br>pistillate with ISF at<br>capsule formation                                | -                                                                  | Yes<br>Subterminal and random                              |
| DPC 17-S3 | Apically interspersed<br>staminate                                                                  | 90-95% male flowers                                                | Yes<br>Terminal and<br>subterminal                         |
| M 574-OS1 | Staminate inflorescence (4 <sup>th</sup> order and above), tip bisexual flower                      | 1 •                                                                | Yes<br>Terminal and<br>subterminal                         |
| DPC 9-OS2 | Predominantly<br>staminate with tip<br>bisexual flower                                              | Completely staminate                                               | Yes<br>Terminal and<br>subterminal                         |

Supplementary Table S4. Bisexuality in castor flowers A. Occurrence of bisexuality in castor during summer

## **B. Bisexuality observed in flowers collected at random** (Observations were taken during July 2017)

| Sl<br>No | Genotype | Sample             | Proportion<br>of bisexual<br>flowers | Remarks                           |
|----------|----------|--------------------|--------------------------------------|-----------------------------------|
| 1        | DPC 9    | Female flowers/    | 2/10                                 | Bisexuality (rudimentary stamens) |
|          |          | buds from terminal | 4/18                                 | indicated reversion in female     |
|          |          | or subterminal     | 3/15                                 | flowers.                          |

| 2 | DPC 17-S3     | position (10 opened,<br>18 partially opened<br>and 15 unopened)<br>Flowers/buds<br>appearing externally<br>as female | Total:<br>9/43=20.93%<br>4/4=100% | Flowers with rudimentary stigma (2<br>nos) and rudimentary stamens (2<br>nos were observed                                                                                                    |
|---|---------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | M 574-<br>OS1 | Terminal<br>flowers/buds of the<br>spike collected at<br>random.                                                     | 6/14;<br>42.85%                   | Flowers with rudimentary stigma (1<br>no), with rudimentary tubular style<br>and fused stigma (2 nos) and typical<br>bisexual flowers with well-<br>developed stigma (3 nos) were<br>observed |
| 4 | DPC 9-<br>OS2 | Terminal<br>flowers/buds of the<br>spike collected at<br>random                                                      | 3/4= 75%                          | Flowers with rudimentary stamens (2 nos) and bud externally appearing as male but bisexual with ovary and stigma (1 no)                                                                       |
| 5 | DPC 107       | Terminal flower<br>buds                                                                                              | Nil                               | All terminal buds female                                                                                                                                                                      |
| 6 | DPC 21        | Terminal flower<br>buds                                                                                              | Nil                               | All terminal buds female                                                                                                                                                                      |

## C. Bisexuality observed in inflorescences of castor genotypes (July 1st week, 2017)

| Genotype  | Phenotype                             | Number of<br>inflorescences<br>analysed | Total<br>number of<br>flowers | Number of<br>bisexual<br>flowers |
|-----------|---------------------------------------|-----------------------------------------|-------------------------------|----------------------------------|
| RG-156    | Monoecious                            | 15                                      | 506                           | 4<br>(0.79%)                     |
| DPC 17-S3 | Apical male                           | 18                                      | 833                           | 12<br>(1.44%)                    |
| M574-OS1  | Staminate (Terminal hermaphrodite)    | 27                                      | 561                           | 1<br>(0.17%)                     |
| DPC 9-OS2 | Staminate (Terminal<br>hermaphrodite) | 6                                       | 240                           | 2<br>(0.83%)                     |

## **D.** Alteration of sexuality of terminal flower to female in staminate genotypes by July, 2017

| M574-OS1                          | M574-OS1                |                          |                                      |  |  |  |  |  |  |  |  |
|-----------------------------------|-------------------------|--------------------------|--------------------------------------|--|--|--|--|--|--|--|--|
| Inflorescence<br>/Branch<br>order | No. of bisexual flowers | No. of female<br>flowers | Remarks                              |  |  |  |  |  |  |  |  |
| 4                                 | 0                       | 0                        | All male                             |  |  |  |  |  |  |  |  |
| 5                                 | 0                       | 1                        | Tip female, Stage V of inflorescence |  |  |  |  |  |  |  |  |
| 6                                 | 1                       | 0                        | Tip bisexual rudi stamens            |  |  |  |  |  |  |  |  |
| 6                                 | 0                       | 0                        | All male                             |  |  |  |  |  |  |  |  |
| 6                                 | 0                       | 0                        | All male                             |  |  |  |  |  |  |  |  |

| 7                | 0 | 3 | Tip male                           |
|------------------|---|---|------------------------------------|
| 7                | 1 | 0 | Tip bisexual rudi stamens          |
| 7                | 0 | 0 | All male                           |
| 7                | 0 | 0 | All male                           |
| 8                | 0 | 7 | Tip male, lower branch many female |
|                  |   |   | flowers                            |
| 8                | 0 | 2 | Tip female                         |
| 8                | 0 | 1 | Tip female                         |
| 10               | 1 | 0 | Tip bisexual                       |
| 10               | 0 | 1 | Tip female                         |
| <b>DPC 9-OS2</b> |   |   |                                    |
| 4                | 0 | 0 | Tip male, Stage VII                |
| 4                | 0 | 1 | Tip female, Rest male, Stage V     |
| 5                | 0 | 0 | Tip male Stage VII,                |
| 5                | 0 | 1 | Tip female, rest male              |
| 6                | 0 | 0 | Tip male, Stage IV complete male   |
| 6                | 0 | 1 | Tip female                         |
| 6                | 0 | 4 | Tip female, many female near tip   |
| 6                | 0 | 1 | Tip female, rest male              |
| 7                | 0 | 1 | Tip female, Stage VII              |
| 8                | 0 | 1 | Tip female, Stage VII              |
| 8                | 0 | 1 | Tip female                         |

## Supplementary Table S5. Weather parameters during sample collection in different castor genotypes used for scanning electron microscopy

CDD: Cumulative Degree Days; GDD: Growing Degree Days;  $T_{max}$ : Daily maximum temperature;  $T_{min}$ : Daily minimum temperature;  $T_{avg}$ : Daily average temperature. Mean of the values for 2 weeks before date of sample collection are given.

| Date of<br>Sample | Days<br>After |                   |                                    | eather param<br>before sample |                                                                     |                                         |                                        |
|-------------------|---------------|-------------------|------------------------------------|-------------------------------|---------------------------------------------------------------------|-----------------------------------------|----------------------------------------|
| collection        | Season        | Planting<br>(DAP) | CDD<br>(from<br>date of<br>sowing) | Mean<br>GDD ±<br>SE (Mean)    | $\frac{\text{Mean } T_{\text{max}}}{\text{\pm SE}_{(\text{Mean})}}$ | Mean<br>T <sub>min</sub> ± SE<br>(Mean) | Mean<br>T <sub>avg</sub> ±SE<br>(Mean) |
| RG 156            |               |                   | sowing)                            |                               |                                                                     |                                         |                                        |
| 19-09-2014        | 2014-2015     | 60                | 983.5                              | $16.0 \pm 0.45$               | $29.3 \pm 0.89$                                                     | $22.7 \pm 0.17$                         | $26.0 \pm 0.45$                        |
| 28-10-2014        |               | 99                | 1618.4                             | $15.2 \pm 0.53$               | $31.2 \pm 0.96$                                                     | $19.2 \pm 0.13$                         | $25.2 \pm 0.53$                        |
| 27-01-2015        |               | 190               | 2660.6                             | $9.5 \pm 0.38$                | $28.5 \pm 0.29$                                                     | $10.5 \pm 0.61$                         | $19.5 \pm 0.38$                        |
| 03-03-2015        |               | 225               | 3129.2                             | $15.5 \pm 0.59$               | $33.4 \pm 0.51$                                                     | $17.5 \pm 1.01$                         | $25.4 \pm 0.59$                        |
| 06-04-2016        | 2015-2016     | 262               | 4031.8                             | $19.8 \pm 0.26$               | 38.1 ± 0.24                                                         | $21.5 \pm 0.45$                         | $29.8\pm0.26$                          |
| DPC 21            | I             |                   | 1                                  |                               |                                                                     | 1                                       | 1                                      |
| 26-01-2015        | 2014-2015     | 189               | 2650.1                             | $9.4 \pm 0.35$                | $28.3 \pm 0.29$                                                     | $10.5 \pm 0.61$                         | $19.4 \pm 0.35$                        |
| 02-02-2015        |               | 196               | 2725.3                             | $10.4 \pm 0.28$               | $28.9 \pm 0.23$                                                     | $12.0 \pm 0.50$                         | $20.4\pm0.28$                          |
| 13-02-2015        |               | 207               | 2855.8                             | $11.5 \pm 0.41$               | $29.8 \pm 0.33$                                                     | $13.3 \pm 0.64$                         | $21.5 \pm 0.41$                        |
| DPC 9             | •             |                   |                                    | •                             |                                                                     |                                         |                                        |
| 19-09-2014        | 2014-2015     | 60                | 983.5                              | $16.0 \pm 0.45$               | $29.3 \pm 0.89$                                                     | $22.7 \pm 0.17$                         | $26.0\pm0.45$                          |
| 28-10-2014        |               | 99                | 1618.4                             | $15.2 \pm 0.53$               | $31.2 \pm 0.96$                                                     | $19.2 \pm 0.13$                         | $25.2 \pm 0.53$                        |
| 27-01-2015        |               | 190               | 2660.6                             | $9.5 \pm 0.38$                | $28.5 \pm 0.29$                                                     | $10.5 \pm 0.61$                         | $19.5 \pm 0.38$                        |
| 13-02-2015        |               | 207               | 2855.8                             | $11.5 \pm 0.41$               | $29.8 \pm 0.33$                                                     | $13.3 \pm 0.64$                         | $21.5 \pm 0.41$                        |
| 25-06-2015        |               | 339               | 5372.1                             | $17.8 \pm 0.6$                | $31.4 \pm 0.84$                                                     | $24.2 \pm 0.46$                         | $27.8 \pm 0.6$                         |
| 27-11-2015        | 2015-2016     | 131               | 2083.0                             | $13.5 \pm 0.35$               | $29.6 \pm 0.51$                                                     | $17.4 \pm 0.63$                         | 23.5 ±0.35                             |
| 06-04-2016        |               | 262               | 4031.8                             | $19.8 \pm 0.26$               | $38.1 \pm 0.24$                                                     | $21.5 \pm 0.45$                         | $29.8 \pm 0.26$                        |
| M574-OS1          |               |                   |                                    | ·                             |                                                                     |                                         |                                        |
| 19-09-2014        | 2014-2015     | 60                | 983.5                              | $16.0 \pm 0.45$               | $29.3 \pm 0.89$                                                     | $22.7 \pm 0.17$                         | $26.0 \pm 0.45$                        |
| 28-10-2014        |               | 99                | 1618.4                             | $15.2 \pm 0.53$               | $31.2 \pm 0.96$                                                     | $19.2 \pm 0.13$                         | $25.2 \pm 0.53$                        |
| 13-06-2015        |               | 327               | 5167.5                             | $22.0\pm0.40$                 | $37.4 \pm 0.71$                                                     | $26.5 \pm 0.29$                         | $32.0 \pm 0.40$                        |
| 26-11-2015        | 2015-2016     | 130               | 2070.5                             | $13.6 \pm 0.32$               | $29.7 \pm 0.52$                                                     | $17.4 \pm 0.61$                         | $23.6 \pm 0.32$                        |
| 06-04-2016        |               | 262               | 4031.8                             | $19.8 \pm 0.26$               | $38.1 \pm 0.24$                                                     | $21.5 \pm 0.45$                         | $29.8 \pm 0.26$                        |

## Supplementary Table S7. Castor genotypes with distinct sex expression used for the study.

\* M 574-OS1 (green stem and spiny capsules) and showing bisexual flowers at the tip (frequency 3/20) were found among monoecious red stem plants. The next generation segregated into green and red stem plants with spiny and non-spiny capsules respectively. The inflorescence of quaternary orders and above which were completely male were taken for studies.

| Sl. | Line                                     | Stem   | Bloom                                         | Sex expression                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|------------------------------------------|--------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No  |                                          | colour |                                               |                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1   | DCS 107                                  | Green  | Double                                        | Monoecious variety with 3-4 whorls or 30-<br>50 % male flowers at bottom and female<br>flowers on top. Female flowers also found<br>in lower whorls                                                                                                                                                                                                                                              |
| 2   | RG 156                                   | Green  | Single                                        | Monoecious germplasm accession with 70-<br>80% male flowers at bottom and female<br>flowers on top> No female flowers seen in<br>lower whorls                                                                                                                                                                                                                                                    |
| 3   | DPC 9                                    | Green  | Nil                                           | Pistillate line, Late revertant                                                                                                                                                                                                                                                                                                                                                                  |
| 4   | DPC 9<br>outcrossed<br>selection-OS2     | Green  | No bloom/<br>single<br>bloom in<br>segregants | Pistillate line, has bisexual flowers in tip<br>and near tip in lower orders and<br>monoecious with male flowers in lower<br>orders of branching. Completely male<br>inflorescence in higher order above 4 <sup>th</sup><br>branching order. Used as male line in the<br>study                                                                                                                   |
| 5   | DPC-16                                   | Red    | Nil                                           | Pistillate line, tip flower bisexual, behaves<br>as monoecious with some branch orders<br>having male flowers. 5 different<br>phenotypes observed. viz., Completely<br>pistillate, Pistillate with terminal bisexual<br>flower and few bisexual flowers, pistillate<br>with terminal male flower, Predominantly<br>pistillate with few random male flowers<br>and male or female terminal flower |
| 6   | DPC-17-<br>Selection S3                  | Red    | Double                                        | Apical Interspersed male flowers (ISF)                                                                                                                                                                                                                                                                                                                                                           |
| 7   | DPC-21                                   | Green  | Double                                        | Pistillate line with ISF (Interspersed staminate flowers) seen throughout inflorescence after capsule setting.                                                                                                                                                                                                                                                                                   |
| 8   | *M574-OS1<br>outcrossed<br>selection-OS1 | Green  | Double                                        | Monoecious variety with less number of female flowers and terminal bisexual till 3 <sup>rd</sup> order of branching. Above 3-4 <sup>th</sup> branch order fully male inflorescence. Used as male line                                                                                                                                                                                            |

Supplementary Table S8. Number of inflorescences used for studies on stage transitions, growth and architecture of inflorescence in various castor genotypes.

| Sl | Variety   | Stage 1 | Stage 2 | Stage 3 |   | Stage 4 |   |       | Total |
|----|-----------|---------|---------|---------|---|---------|---|-------|-------|
| No |           |         |         |         | Α | B       | C | Total | -     |
| 1  | DCS 107   | 10      | 5       | 4       | 2 | 2       | 1 | 5     | 24    |
| 2  | RG 156    | -       | 5       | 9       | 5 | -       | - | 5     | 19    |
| 3  | DPC 9     | 4       | 3       | 4       | 5 | 2       | - | 7     | 18    |
| 4  | DPC 21    | 2       | 15      | 4       | 2 | -       | - | 2     | 23    |
| 5  | DPC 17 S3 | -       | 14      | 4       | - | -       | 6 | 6     | 24    |

A. Number of buds tagged for studies on stage transition of castor inflorescence

### B. Number of inflorescences used for floral architecture studies

| Sl | Variety   |           | Total    |            |    |
|----|-----------|-----------|----------|------------|----|
| No |           | Secondary | Tertiary | Quaternary |    |
| 1  | DCS 107   | -         | 13       | -          | 13 |
| 2  | RG 156    | 6         | 1        | 14         | 21 |
| 3  | DPC 9     | -         | 12       | 10         | 22 |
| 4  | DPC 17 S3 | 1         | 17       | -          | 18 |
| 5  | M574-OS1  | -         | -        | 8          | 8  |

Supplementary Table S9. Sequence of primers or oligonucleotides used for amplification of control and candidate genes.

| SI.<br>No | Gene                                                                       | Gene ID | Forward Primer 5'- 3'  | Reverse Primer 5´- 3´  | Product<br>size<br>using<br>RNA/RT-<br>PCR<br>(bp) | Product<br>size<br>using<br>genomic<br>DNA<br>(bp) |
|-----------|----------------------------------------------------------------------------|---------|------------------------|------------------------|----------------------------------------------------|----------------------------------------------------|
| Cont      | rol genes                                                                  |         | -                      |                        | \ <b>1</b> /                                       | × 1 /                                              |
| 1         | EF-1<br>(Elongation Factor -1 Delta)                                       | 8266315 | AGGAGTATTCAGATGGAAGGAC | TTGAAGGCCACAATATCACAAC | 191                                                | 482                                                |
| 2         | UBQ<br>(Ubiquitin-40S ribosomal protein S27a)                              | 8265906 | GCGGAAAGATGCAGATCTTCG  | TCCTCTCAATCGCAGCACCAG  | 233                                                | 233                                                |
| 3         | ACT<br>(Actin)                                                             | 8267071 | TTCCCAGGCATTGCTGATAG   | TGTGGACAATTGATGGTCCAG  | 197                                                | 531                                                |
| 4         | PGK<br>(Phosphoglycerate Kinase)                                           | 8259993 | TGGACCTGATGCGATCAAGAC  | ACACCCTTTCCACTGAGCTC   | 153                                                | 235                                                |
| 5         | GADPH<br>(Glyceraldehyde-3-phosphate<br>dehydogenase, Cytosolic)           | 8272110 | TACACTGATGAAGATGTCGTC  | ACAGTCTTTCTCATTGCACAG  | 193                                                | 488                                                |
| 6         | SND<br>(Sand protein homologue/ Vacuolar<br>fusion protein MON1 homologue) | 8261010 | CATATGTTGGCATTGGTGGTC  | TGAGTCTTGTGTGGACCATTC  | 190                                                | 304                                                |
| Cand      | lidate genes                                                               | •       | •                      |                        |                                                    | •                                                  |
| 1         | ACS<br>(1-aminocyclopropane-1-carboxylate<br>synthase)                     | 8287433 | GCATCGTTATGAGCGGAGG    | TGGGATCAGTTGAACTCCTG   | 149                                                | 1096                                               |
| 2         | ACS-1<br>(1-aminocyclopropane-1-carboxylate<br>synthase 1)                 | 8286682 | CAATCGGGTAACGTTCGATC   | AATCTTCACACCAGTTCGCC   | 169                                                | 1131                                               |
| 3         | DEF<br>(Deficiens)                                                         | 8273018 | GAGTTCATTAGCCCTGGCAC   | TCAGATCCTCACCCATCCTC   | 175                                                | 419                                                |
| 4         | SDR<br>(Short-chain dehydrogenase reductase<br>2a)                         | 8287923 | GCCAGAGCAAACCCTTCATG   | GGCTAGTATTGTTCCAGGAG   | 199                                                | 479                                                |

| 5 | WUS       | 8267096 | GCATCTTCATCTTCAACTACTG | TTGATCTTCTCCATCTTCTAGG | 219 | 718 |
|---|-----------|---------|------------------------|------------------------|-----|-----|
|   | (Wuschel) |         |                        |                        |     |     |