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Supplementary Notes 

Supplementary Note 1. Data collection 

Experimentally-derived thermal tolerance limits data for 2,038 species in 513 families, 200 

orders, and 41 classes across terrestrial, freshwater, intertidal, and marine realms (1,515, 148, 

155, and 214 species respectively) were obtained from the GlobTherm dataset1. Published 

measurements of upper and lower thermal tolerance limits included lethal and critical thermal 

metrics. The latter are defined as experiments that used the loss of a key ecological function as 

the end point (i.e., locomotion for ectotherms, and edge of thermal neutral zone for endotherms). 

Data were excluded when lethal temperature limits were recorded at intervals greater than 2 °C 

due to the uncertainty associated with estimating when death occurred in the interval. The 

GlobTherm dataset only contains measures of thermal limits at endpoint (i.e. a key ecological 

function is lost for CTmax, when metabolic rate becomes dependent on temperature for TNZ or, 

% death for lethal measures)1. Different experimental measures are often associated with 

different groups of organisms and in part, this is why we analysed endotherms (all measured 

using TNZ), plants and algae (almost exclusively lethal experiments), ectotherms (majority are 

critical limits) separately (for more information on the phylogenetic analyses see below). 

Classification of realms (marine, intertidal or freshwater terrestrial) followed the IUCN Red List 

of Threatened Species version 32, World Register of Marine Species WoRMS3 and AlgaeBase4. 

Animal species were broadly defined as ectothermic (lineages other than mammals and birds) or 

endothermic (mammals and birds), according to their thermoregulation understood in broad 

sense. We grouped photosynthetic organisms (plants and macroalgae) together in most analyses 

and plots (hereafter grouped as “plants”). Plants in this context were all species in the Phylum 

Streptophyta as well as species in the Phylum Chlorophyta, Phaeophycacea and Rhodophyta. 



This grouping scheme does not necessarily accommodate monophyletic taxa but responds to the 

similarities in the estimation of critical thermal metrics and to balance the number of species in 

each category. As shown below (Phylogenetic validation section), results are qualitatively robust 

to grouping decisions, but it remains to be tested if the pattern hold for each monophyletic 

taxonomic group as more data on thermal tolerance become readily available. Geographic 

coordinates reflect the latitude and longitude at the location at which the experimental organisms 

from which thermal metrics were measured, were collected (see Fig. 1a in main text). 

To overcome many of the challenges associated with comparisons among phylogenetic trees (i.e. 

different dating methodologies, (e.g.5) we extracted all estimates of clade age from the 

evolutionary time tree of life6, which is the largest, most comprehensive calibrated tree that 

exists to date7. We assume errors in the phylogeny to be consistent across it. Further, to check for 

robustness of our results, we run sensitivity analyses with alternative phylogenetic hypotheses 

(see Phylogenetic validation analyses section below). Clades were grouped into four broadly 

defined palaeoclimate categories following8: (1) full glaciation, (2) partial glaciation, (3) partial 

warm, and (4) warm to reduce errors associated with matching clade ages to climate estimates in 

deep geological time. We assume that the broad palaeoclimate categories approximate the actual 

(local and temporal) conditions under which clades originated. While this assumption could add 

noise to the analysis, the coarse resolution of our data and the large numbers of clades 

represented, lead to the expectation that general patterns should still emerge, if present8. The 

dating of the palaeoclimate categories are based on a broad consensus of the major deep time 

climate trends of the Earth’s history (Fig. 1)9,8. Complex organisms only evolved after the 

‘snowball Earth’ period between 850 and 590 Mya. Since this time only two subsequent major 

glaciations, where the tropical zone has contracted have occurred, between 325 and 240 Mya, 



and the present cool period (Fig. 1). An additional brief glaciation occurred at approximately 430 

Mya9,8. However, the Earth was a primarily tropical planet, when most phyla originated during 

the Cambrian ‘explosion’ and when most present day organisms evolved during the Mesozoic 

and early Tertiary9,6. Species were assigned to the paleoclimatic level corresponding to the 

taxonomic order to which they belong, as this level provided the greatest replication of 

paleoclimatic category through time, a requirement needed to disentangle the effects of 

temperature at clade origin from time for speciation: for results regarding additional taxonomic 

levels see Supplementary Table 1. Whilst imperfect, higher taxonomic ranks (i.e. order level) 

have been shown to align with phylogenetic temporal banding, providing homogeneous units of 

comparison for phenotypic divergence, as it is in our case10. 

  



Supplementary Note 2. Phylogenetic analyses 

2.1. Rationale of tempo and mode analyses 

Phylogenetic analyses tested the tempo and mode of evolution of thermal limits based on 

statistics indicative of common-use evolutionary models. Specifically, we studied the tempo of 

evolution by comparing the rates of evolution of both upper and lower thermal limits to test if, as 

previously proposed11, the evolution of upper thermal tolerance has been subject to stronger 

constraints through evolution, evolving more slowly than tolerance to cold temperatures. We first 

investigated the tempo of evolution by quantifying the σ² parameter, or the rate of evolution of 

each trait in each grouping (e.g. endotherms, ectotherms, plants together with algae). Parameter 

σ² measures the rate of accumulation of phenotypic variation in a trait with evolutionary time. 

Following12, we quantified the mode of evolution of upper thermal limits and lower thermal 

limits by comparing the Ornstein-Uhlenbeck model of evolution against common alternative 

evolutionary models such as the Brownian Motion model (BM), which predicts an accumulation 

of phenotypic variation proportional to time and normally distributed; or the White Noise model 

(WN), which predicts a random distribution of phenotypic variation not associated to the degree 

of relatedness among species. We reported the likelihood of each model as well as parameter α 

that measures the strength of the stabilizing selection in an Ornstein-Uhlenbeck (OU) model of 

evolution. Values of α near zero are equivalent to a BM of evolution and, values of α > 0 

indicating a strong tendency towards an optimum value13. Because α scales with the depth of the 

phylogeny, we utilized log values of α after rescaling the phylogenetic tree to a maximum height 

of 1, for which values –log α = 4.0 would equate to a BM evolution of the trait and, values –log α 

= -4.0 are considered as evidence for strong stabilizing selection (see14). 

  



2.2. Phylogenetic validation analyses 

We choose the TimeTree15 for our phylogenetic hypothesis because it is the largest, multi-taxon, 

more comprehensive dated phylogenetic tree to date. We validated our results by comparing the 

estimates of tempo and mode of evolution based on Hedges et al.’s6 phylogeny against the results 

obtained by replicating the analyses with different phylogenetic hypotheses for subgroups of taxa 

(see Supplementary Table 3 below). Specifically, we re-analysed data for: (1) plants using Zanne 

et al.’s phylogeny16; (2) ectotherms based on a phylogenetic tree for amphibians17, and another 

phylogenetic tree for squamate reptiles18, and (3) endotherms. In the latter case we obtained 100 

trees randomly sampled from the posterior distribution of phylogenetic trees, which were 

available for both birds19 and mammals20. Despite their nested phylogenetic position within 

reptiles, Aves were treated as a separate group because of the markedly different thermal biology 

and, hence, different metrics of thermal tolerance used for endotherms and ectotherms1. Doing so 

allows us to better account for phylogenetic uncertainty, which was not possible for other taxa. 

We did not reanalyse the tempo and mode of evolution of thermal limits for arthropods nor for 

algae because well resolved comprehensive published phylogenies were not available. Results 

are consistent regarding the faster rates of evolution observed for lower than for upper thermal 

limits, regardless the different temporal scales used across phylogenies. The stabilizing selection 

model (OU) fits the data better than alternative BM or WN models, also for the validation set of 

individual phylogenies. Nevertheless, the pattern of stronger directional selection for upper 

thermal limits recorded in Table 1 in the main text is only observed for mammals and plants in 

the individual group analyses. In any case, a thorough comparison of selection strength between 

upper and lower thermal limits will only be possible once more comprehensive data on thermal 



tolerance and more comprehensive phylogenetic hypotheses are available. Phylogenetic analyses 

were computed using the R packages ‘ape’21,‘phytools’22,‘geiger’23, ‘pez’24 and ‘PDcalc’25. 

 

2.3. Simulation tests for models of evolution  

Both the BM and OU models assume that traits are continuous and normally distributed, but 

thermal tolerance data, particularly heat tolerance data may be left-skewed as there is an overall 

lack of extreme heat-tolerant species. To circumvent this issue and assess to what extent BM and 

OU models can reveal statistical differences for our data-i.e. how the models behave with 

skewed versus normal data-we run a simulation test comparing differences across models applied 

to our raw data and to our data after normalization. We used the Monte Carlo approach described 

in Boettiger et al26 to evaluate the adequacy of our models and the informative value of the 

phylogenetic data. Doing so helped us confirm that we used the best possible model (among the 

candidates) to represent our data. To do so, we conducted pairwise comparisons between 

Ornstein-Uhlenbeck (OU) and Brownian motion (BM), OU and white noise (WN) and BM and 

WN models of evolution. Hereafter, the more complex model in each comparison is denoted as 

“M1”, and the simpler model as “M0”. For each comparison, the parameters for both models were 

estimated from the observed data and used to compute the statistic  as: 

 = -2 (LnLikM0 – LnLikM1)   Eq. 1 

where LnLikM0 and LnLikM1 are the maximum-likelihood of model M0 and M1, 

respectively. This  statistic can be interpreted simply as a likelihood ratio, which is a common 

statistic for model choosing26. Then, we simulated n = 999 datasets using the original parameters 

estimated for M0, and the likelihoods for M0 and M1 were then re-estimated using the simulated 



data. Finally, we obtained a distribution for the  statistic (hereafter “sim M0”) from the 

maximum-likelihood of the models fitted to the simulated datasets. If the observed  falls to the 

right of the 97.5th percentile of sim M0, then the null hypothesis that M0 is more suitable than M1 

can be rejected at the 5% nominal alpha (i.e. the data does not come from M0; model adequacy). 

Complementarily, to test the power of this test (i.e. the probability of correctly rejecting M0 when 

data comes from M1; informative value of data), we simulated n = 999 datasets using the original 

parameters estimated for M1 instead and followed the same procedure as above to create a 

distribution for the  statistic (hereafter “sim M1”). The fraction of  values of sim M1 that falls 

to the right of the 95th percentile of sim M0 represents the power of the test at 5% nominal alpha. 

All the analyses were conducted with the geiger R package23 using both raw and normalized data 

(best transformation obtained with the bestNormalize R package27. 

  



Supplementary Note 3. Statistical analyses 

We used Random Forest models (RF) to investigate the relationships between upper or lower 

thermal tolerances and palaeoclimatic category at clade origin, biogeographic location, and 

evolutionary age. We present results using a broader and more inclusive definition of thermal 

limits that combined lethal and critical limits allowing higher species coverage in all groups. 

However, thermal tolerance in ectothermic animals and plants is measured using critical and 

lethal end-points, therefore we also analysed lethal and critical measures separately for these 

groups. In ectotherms and plants differences in experimental design are known to affect 

estimates of thermal tolerance, therefore for the smaller subset of species with data available we 

re-run the RF models including ramping rate and pre-treatment temperature as covariates.   

 

RF models are a powerful machine-learning method that produce accurate predictions without 

overfitting the data28. An additional advantage of RF models over traditional parametric linear 

modelling approaches is that they do not assume stationarity (i.e. they can model scale 

dependence relationships) nor linearity. Complex non-linear relationships present in our data (see 

Fig. 1b in main text) advised against fitting conventional linear models. Further, RF models do 

not rely on the assumption that predictors are independent, and thus, collinearity among 

predictors can be dealt with by tuning regularization parameters29. For example, the temporal 

nature of model predictors such as clade age and the palaeoclimate category ensured a given 

amount of collinearity between these predictors (r > 0.5). Furthermore species collected at higher 

latitudes were more often originated at a time the earth was glaciated than those collected closer 

to the equator (for lower thermal limits F(1,1) =18.0, p <0 .001 and for upper thermal limits 

F(1,1) =35.8, p <0 .001). 



 

The models iteratively samples bootstrapped subsets of data to construct multiple independent 

decision trees, which are combined into a composite predictive forest model. To determine the 

best split at each node, each independent tree is grown with a randomly selected subset of the 

predictor variables. In the composite model the relative importance of each predictor is estimated 

as the average over all trees total decrease in node impurities (i.e. analogue to the variance 

explained) that results from splitting the focal variable. The importance of each predictor as 

given by increase in MSE values was ranked, from 1 (indicating the strongest predictor) to 0 

(indicating no predictive power).  

 

Each model was fitted 100 times, using 500 trees and average and errors around importance 

estimations were calculated to check for model stability. Pearson correlations were used to assess 

the sign of the relationship between the focal variables and predictor variables. The results are 

presented summarizing the percentage of variance explained by each model (pseudo-R2) and the 

relative importance of each predictor. All analyses were conducted in R version 4.0.330. 

Accounting for only one tolerance metric for each taxonomic group does not affect significantly 

the relative importance of the predictors associated with our three hypotheses (see 

Supplementary Table 6). Similarly, including ramping rate pre-treatment temperature in the 

models as covariates for the limited number with available data does not change the overall 

ranking of predictors associated to our three hypotheses. However, pre-treatment and ramping 

rates both appeared as important variables in the analyses (see Supplementary Table 6). 

 

 



Supplementary Note 4. Additional analyses 

We investigated the hypothesis that thermal tolerance breadth will increase with greater time for 

trait evolution by examining the relationship between thermal tolerance breath and clade age for 

ectotherms, endotherms and plants. Increases in thermal breadth with clade age were primarily 

driven by increases in the variation of lower thermal limits (lower temperatures) consistent with 

our finding (Supplementary Fig. 8) and the findings of others that upper thermal limits are more 

conserved than lower thermal limits11, and that most taxa originated under periods of warm 

palaeoclimates8. Thermal tolerance breadth was calculated as the difference between upper and 

lower thermal limits (upper thermal limit - lower thermal limit) when upper and lower thermal 

limit data were available for the same species investigated. Estimates of clade age at the Order 

level (natural log transformed for normality) were extracted from the evolutionary time tree of 

life6. We choose to extract all estimates of clade age from the evolutionary time tree of life6 as 

this is the largest, most comprehensive calibrated tree that exists to date7 and to control for the 

issues associated with comparisons among phylogenetic trees (i.e. different dating 

methodologies). We assume errors in the phylogeny to be consistent across it. Comparisons were 

made at the Order-level as taxonomic classifications are more robust at high taxonomic levels 

(i.e. Order-level and above) compared to the lower taxonomic ranks31. Further, the Order 

taxonomic level has been shown to align with phylogenetic temporal banding, providing 

homogeneous units of comparison for phenotypic divergence as is the case in our study10. For 

further details on data collection see Supplementary Note 1. 

 

  



Supplementary Note 5. Discussion of caveats and limitations of data and analyses 

The GlobTherm dataset1 used in this study is the largest taxonomically-wide cross-realms dataset 

of species thermal physiological limits that has been compiled to date. The dataset does contain 

some common geographic and taxonomic data biases. For instance, there are fewer studies 

located in regions that are hard to access either due to geography (i.e. Northern Canada and 

Russia, and the deep ocean), or citation indexing barriers (i.e. where studies are published in 

languages other than English). Taxonomically, the data set is biased towards Chordata, while 

algae, plants, and, to a greater extent, invertebrates, are underrepresented. For instance, the 

analysed dataset (Globtherm) contains approximately 250 plant species (not including algae) for 

which experimental estimates of upper and/or lower thermal tolerances are available, which 

represent ~40 Orders, which is a rather limited representation of all extant plant Orders. It will be 

interesting to see if the patterns we report will hold as data for more taxa become available. 

These biases are recurrent in most large global ecological data sets. With respect to our analyses, 

despite the biases in the dataset, a large number of clades are represented across latitudes (see 

Fig. 1a in main text) and thus, it is our expectation that general patterns should still emerge, if 

present. 

 

The Globtherm dataset was designed to be a database of comparable thermal tolerance metrics. 

To achieve its goal, preference was given to sources that used the most widely used methods and 

measurements and only included data from adults. However, differences in experimental design, 

can affect the estimates of thermal end-point. This is particularly relevant to endotherms when 

experiments use different ramping rates and pre-treatment temperatures. Data on ramping rate 

and pre-treatment temperature is available for a limited number of taxa in GlobTherm and 

including such treatments as covariates in our RFs did not change our conclusions qualitatively 



(Supplementary Table 6). Our finding is consistent with previous studies that have shown the 

magnitude of the effect of ramping rate and pre-treatment temperature do not affect the 

interpretation of global patterns in thermal limits using the Globtherm dataset32.  

 

Different experimental measures of thermal tolerance limits are associated with different taxonomic 

groups. These differences between experimental estimates of thermal tolerance is why we focused our 

comparisons on similar metrics and groups rather than across those metrics. Endotherms are all 

measured using TNZ, plants and algae are almost exclusively lethal experiments, and in 

ectotherms are majority of experiments measure critical limits. Plants were also analysed separately 

because, experiments with plants tend to focus on tissue rather than whole-organism survival. Like all 

synthesis studies, our study relies on the assumption that further study-level variation is homogeneous 

rather than biased across our studied variables. 

 

Intraspecific variation in thermal tolerance is sometimes documented in physiological 

experiments. It is of great importance in defining species’ geographical distribution and 

sensitivity to the ongoing global change33,34. Nevertheless, data on intraspecific variation is not 

available for a majority of species, which leads to a trade-off between taxonomic extent and the 

level of detail in the data. While the GlobTherm dataset does an effort to incorporate 

intraspecific variation in measurements of both upper and lower thermal limits, we discarded 

including within species variation in our analyses. This choice is due to our questions being 

focused on the interspecific (and above) level, our intent to increasing taxonomic coverage – i.e. 

there are no intra-specific data for a majority of the species – and to avoid additional bias derived 

from uneven and heterogeneous existence of data on intra-specific variation in thermal 

tolerances.  



Previous compilation of species thermal limits have been criticized for prioritizing data coverage 

over data quality35, although patterns were shown to hold despite variability in data suitability36. 

This work aligns with views emphasizing coverage and applying a more ‘relaxed’ data selection 

criteria36. We ‘intentionally’ disregard intraspecific variation, by prioritizing the selection of the 

most consistent and highest quality measurements of thermal tolerance available at the species 

level. Hence, our analyses rely on the assumption that variation among species would override 

the effects of within-species variation in thermal tolerances. Only future augmentation of 

experimental data on thermal tolerances, by measuring the tolerances of several individuals 

belonging to diverse populations representative of a given species, will allow establishing 

whether this assumption holds or it does not.  

 

We acknowledge that BM and OU models, which are heuristic tools for describing and 

interpreting potential evolutionary patterns37 may not be fully realistic models of trait 

evolution38,39. However, by comparing these simplistic models we infer whether the evolution of 

thermal tolerance is best described by random increase of phenotypic variation in proportion to 

time or that phenotypic variation is subject to some sort of constraint (i.e. an OU-type evolution). 

We do not test for greater or lesser trait skew (one possible outcome of a strong physiological 

boundary in trait evolution), but instead we test for trait evolution to be closer to Brownian vs. 

evolving towards an “attractor” trait value. The latter would be consistent with several scenarios 

such as hard boundaries, strong trade-offs for thermal limits away from the attractor, or optimal 

fitness at the attractor 

 

A more refined test of the deep-time hypothesis would require examining data on both the 

distribution of palaeoclimates and the palaeo-biogeography (i.e. palaeo-distributions of species 



and their ancestors), unfortunately, such data do not exist at the deep-time. In general deep time 

estimation of climate is challenging and known to be associated with measurement errors9. 

However, there is a general consensus on the dating for the majority of the Earth’s major deep 

time climate trends. Thus, we assumed that the climate a clade experienced at its origin should be 

correlated with broadly defined palaeoclimate categories: (1) full glaciation; (2) partial 

glaciation; (3) warming and (4) warm following8.   

 

  



Supplementary Tables 

Supplementary Table 1. A one-way ANOVA of the effect of deep-time climate legacies on 

thermal tolerance of species belonging to orders of terrestrial and aquatic (a) ectotherms, (b) 

endotherms and (c) plants to accompany Figure 2 in text. 
Taxa metric realm df f p 

Ectotherms  upper Terrestrial 1,632 9.326 0.002 
 

 Aquatic 1,287 0.318 0.573 

 lower Terrestrial 1,373 125.7 >0.001 

 
 

Aquatic 1,113 10.63 0.001 

Endotherms upper Terrestrial 1,321 0.858 0.355 

  Aquatic 1,16 4.289 0.055 

 lower Terrestrial 1,504 0.773 0.380 

  Aquatic 1,27 1.187 0.285 

Plants upper Terrestrial 1,69 4.560 0.036 

  Aquatic 1,143 2.675 0.104 

 lower Terrestrial 1,173 11.92 >0.001 

  Aquatic 1,36 0.076 0.784 

      

 

  



Supplementary Table 2. Tempo and mode of evolution of upper and lower thermal tolerances 

calculated at the family and order levels by aggregating-i.e. using median values-of the thermal 

tolerances of species within each corresponding family or order. The patterns of faster tempo of 

evolution for cold tolerance found at the species level, hold at higher levels for Endotherms and 

Plants (at the family level), but overall, differences in the tempo of evolution among upper and 

lower limits decrease with phylogenetic depth. In other words, the marked consistent differences 

in the tempo of evolution of upper and lower thermal limits emerges at the species levels. 

Regarding the mode of evolution, the OU model is more likely than BM and WN models at the 

family level, but null models are equally likely at the order level, possibly due to the lower 

statistical power as n decreases. Note that only species with resolved taxonomic data at all levels 

were included in analyses15.  

Taxa level metric n 
TEMPO 

(σ²) 

MODE  LnLik 

OU 

LnLik 

BM 

LnLik 

WN (-log α) 

Ectotherms 

Family upper Temp 115 0.225 -0.360 -392.617 -396.721 -407.858 

 lower Temp 86 0.178 -0.409 -281.478 -287.055 -302.134 

Order upper Temp 49 0.145 -0.241 -171.430 -172.605 -174.426 

  lower Temp 38 0.107 -0.351 -126.068 -128.393 -131.433 

Endotherms 

Family upper Temp 114 0.141 -0.799 -289.472 -295.528 -292.434 

 lower Temp 133 0.657 -0.916 -434.721 -445.152 -436.978 

Order upper Temp 39 0.152 -1.301 -105.508 -111.249 -105.507 

  lower Temp 42 0.380 -0.842 -135.802 -138.900 -135.811 

Plants 

Family upper Temp 31 0.294 -1.245 -99.740 -104.293 -99.749 

 lower Temp 48 0.430 -0.133 -167.303 -168.988 -176.977 

Order upper Temp 27 0.326 -1.301 -88.329 -93.377 -88.326 

  lower Temp 30 0.112 3.301 -90.019 -90.018 -108.931 

Plants & 

Algae 

Family upper Temp 43 0.233 -0.240 -142.812 -144.433 -169.369 

 lower Temp 57 0.402 -0.432 -201.529 -204.424 -213.413 

Order upper Temp 35 0.271 -0.333 -121.755 -123.877 -135.253 

  lower Temp 37 0.127 0.570 -118.198 -118.243 -136.557 

 

  



Supplementary Table 3. Tempo and mode of evolution of upper and lower thermal tolerances 

of amphibians, squamates, mammals, birds and terrestrial plants. For birds and mammals, we 

show means and standard deviations for each parameter, computed from a random sample of 100 

trees from the posterior distribution. For all other taxa, we first added any congeneric species for 

which we had thermal tolerance information but were not included in the phylogeny as 

polytomies, and then, we randomly resolved the polytomies 100 times. Note that quantitatively, 

estimates for σ² differ from those in Table 1 given the different temporal scaling utilized in the 

individual phylogenies for each taxonomic group and in Hedges et al.15. Qualitatively, the 

patterns of faster evolution for lower thermal limits and, of stabilizing selection as the preferred 

model of evolution, hold.  

Taxa metric n TEMPO (σ²) 
MODE  

LnLik OU LnLik BM LnLik WN 
(-log α) 

Reptiles upper Temp 268 138.842 ± 17.538 -0.542 ± 0.089 -647.778 ± 9.157 -668.906 ± 14.885 -687.106 ± 0 

 lower Temp 201 343.938 ± 93.52 -1.022 ± 0.157 -542.177 ± 6.974 -583.634 ± 21.653 -550.288 ± 0 

Amphibians upper Temp 98 1.000 ± 0.263 -0.981 ± 0.167 -253.036 ± 3.297 -276.975 ± 10.585 -255.219 ± 0 

 lower Temp 39 1.427 ± 0.264 -0.917 ± 0.231 -111.222 ± 0.877 -116.237 ± 2.811 -112.092 ± 0 

Mammals upper Temp 216 0.886 ± 0.153 -1.881 ± 0.475 -564.216 ± 1.835 -640.158 ± 16.454 -566.395 ± 0 

 lower Temp 329 2.688 ± 0.674 -1.481 ± 0.618 -1048.425 ± 11.979 -1126.441 ± 38.069 -1062.477 ± 0 

Birds upper Temp 100 0.821 ± 0.544 -1.002 ± 0.255 -270.857 ± 5.425 -306.677 ± 23.006 -273.597 ± 1.654 

 lower Temp 173 7.932 ± 4.983 -1.276 ± 0.068 -603.159 ± 16.19 -700.044 ± 48.122 -591.515 ± 2.587 

Plants upper Temp 56 3.224 ± 0.121 -2.089 ± 0.036 -183.789 ± 0.083 -223.781 ± 1.073 -184.182 ± 0 

 lower Temp 132 3.378 ± 0.417 -1.623 ± 0.062 -441.541 ± 1.202 -493.843 ± 5.669 -451.807 ± 0 

   



Supplementary Table 4. Phylogenetic signal accounting for one tolerance metric in each group 

(metric or metrics for the majority of records within each group, analysed separately). 

  limit metric n TEMPO (σ²) MODE (-log α) LnLik OU LnLik BM LnLik WN 

Ectotherms upper CTmax 471 0.689 ± 0.269 -1.018 ± 0.13 -1268.184 ± 47.751 -1296.528 ± 63.219 -1451.793 ± 0 

  lower CTmin  247 1.088 ± 0.383 -1.229 ± 0.084 -705.268 ± 24.663 -730.315 ± 32.883 -734.057 ± 0 

Endotherms upper UTNZ 314 0.596 ± 0.174 -1.262 ± 0.029 -817.904 ± 10.895 -886.26 ± 24.997 -830.211 ± 0 

  lower LTNZ 495 2.059 ± 0.178 -1.027 ± 0.049 -1597.682 ± 8.854 -1665.761 ± 18.368 -1655.963 ± 0 

Plants upper CTmax 20 0.374 ± 0.237 -0.378 ± 0.242 -58.789 ± 0.687 -60.597 ± 2.452 -61.272 ± 0 

  lower LT50 71 1.183 ± 0.355 -0.493 ± 0.23 -236.013 ± 4.195 -241.515 ± 7.279 -250.602 ± 0 

Plants &  upper LT50 7 0.091 ± 0.002 3.301 ± 0 -16.747 ± 0.01 -16.747 ± 0.01 -16.895 ± 0 

Algae upper LT100 6 0.948 ± 0.07 -1.104 ± 0.043 -83.49 ± 0.496 -88.624 ± 0.629 -90.348 ± 0 

 
upper CTmax 28 0.42 ± 0.253 -0.011 ± 0.28 -81.363 ± 2.116 -82.056 ± 3.527 -109.839 ± 0 

  lower LT50 73 1.124 ± 0.252 -0.62 ± 0.195 -242.659 ± 3.837 -249.737 ± 6.79 -257.481 ± 0 

 

  



Supplementary Table 5. Results from random forest models for each upper and lower thermal 

tolerance metric for ectotherms, endotherms and terrestrial plants including algae. Variable 

importance is measured according to the increase in MSE due to removal of each variable, and 

re-scaled so that sum of importances equals 1, for interpretability. These values are summarized 

in Figure 4 of the main text. 

taxa Metric n pseudo-R² Age  Palaeoclimate 
Current 

climate 

Ectotherm 
upper Temp 916 0.74 ± 0.002 0.5 ± 0.003 0.059 ± 0.003 0.441 ± 0.003 

lower Temp 400 0.715 ± 0.002 0.446 ± 0.004 0.053 ± 0.003 0.501 ± 0.003 

Endotherm 
upper Temp 338 0.133 ± 0.003 0.509 ± 0.004 0.014 ± 0.002 0.476 ± 0.005 

lower Temp 333 0.179 ± 0.004 0.545 ± 0.005 -0.019 ± 0.002 0.435 ± 0.005 

Plants & 

algae 

  

upper Temp 200 0.828 ± 0.004 0.344 ± 0.008 0.028 ± 0.002 0.628 ± 0.009 

lower Temp 29 0.515 ± 0.007 0.148 ± 0.011 0.051 ± 0.008 0.801 ± 0.015 

 

  



Supplementary Table 6. Sensitivity of Random Forest results to use of one single metric 

accounting for one tolerance metric in each group and using as model predictor either only the 

three proxies in Supplementary Table 5-i.e. Age, Palaeoclimate, and Current Climate-or adding 

as additional covariates pretreatment and ramping rate.  

taxa limit metric n pseudo-R² Age  Palaeoclimate Current climate Pretreatment Ramping 

Ectotherm upper CTmax 768 0.682 ± 0.003 0.577 ± 0.004 0.071 ± 0.003 0.352 ± 0.004   
 

lower CTmin 316 0.604 ± 0.003 0.309 ± 0.005 0.092 ± 0.006 0.599 ± 0.004   

 upper CTmax 438 0.759 ± 0.002 0.346 ± 0.006 0.082 ± 0.007 0.148 ± 0.004 0.235 ± 0.005 0.189 ± 0.005 

  lower CTmin 140 0.526 ± 0.005 0.206 ± 0.006 0.025 ± 0.003 0.46 ± 0.009 0.31 ± 0.007  

Plants &  upper CTmax 50 0.749 ± 0.009 0.444 ± 0.02 0 ± 0 0.556 ± 0.02   

     algae upper LT50 23 0.588 ± 0.021 0.326 ± 0.024 0.326 ± 0.024 0.348 ± 0.026   

 upper LT100 90 0.31 ± 0.013 0.283 ± 0.013 0.09 ± 0.006 0.627 ± 0.011   

 lower LT50 10 0.266 ± 0.02 -0.294 ± 0.046 -0.346 ± 0.057 -0.361 ± 0.062   

 lower LT100 26 0.019 ± 0.008 0.495 ± 0.029 0.097 ± 0.03 0.408 ± 0.039   

 upper CTmax 5 0.571 ± 0.052 0.366 ± 0.028 0 ± 0 0.319 ± 0.026 0.315 ± 0.026  

 
upper LT100 10 0.436 ± 0.068 0.791 ± 0.071 0.011 ± 0.005 0.186 ± 0.07 0.012 ± 0.004  

lower LT100 6 0.46 ± 0 0.106 ± 0.016 0.273 ± 0.025 0.322 ± 0.025 0.299 ± 0.023  

  



Supplementary Figures 

 

Supplementary Figure 1. Relationships between order age in million years (mya) and lower 

(blue triangles) and upper (news circles) thermal tolerance limits for ectotherms, endotherms and 

plants, for marine (a, c, e) and terrestrial (b, d, f) species. Background shading is coloured to 

represent paleo climate at time of clade origin (partial warm and warm palaeoclimate categories 

in shades of red, and full and partial glaciation palaeoclimate categories in shades of blue). For 

endotherms, the axis is broken so that upper and lower thermal limits can be clearly delineated. 

Source data are provided as a Source Data file.   



 

Supplementary Figure 2. Illustration of approximate changes in palaeoclimate categories with 

time in million years (Mya) adapted from8. Within palaeoclimate variation was adapted from40. 

Overall, blue colours indicate periods of cold paleoclimate–i.e. partial or full glaciations-and 

yellow-orange shades indicate periods with warm paleoclimate. 

  



 

Supplementary Figure 3 Tempo and mode of evolution of upper (red) and lower (blue) thermal 

tolerance limits of (a) ectotherms, (b) endotherms and (c) terrestrial plants. The velocimeters 

above illustrate the rate of evolution as measured by σ². Estimates of σ² are computed as the 

average between the results for the smoothed and unsmoothed phylogenetic trees in15. Note that 

the temporal axes are in the same scale (1500 to 0 Mya) to allow for comparison of the rates of 

accumulation of phenotypic variation through time across our data. 

  



Supplementary Figure 4 Pairwise comparisons between the Ornstein-Uhlenbeck (OU), 

Brownian motion (BM) and white noise (WN) models that were tested to describe the mode of 

evolution of the lower and upper thermal tolerances for all species, ectothermic species, 

endothermic species, terrestrial plants and plants and algae (raw data). Each plot represents a 

different contrast. The yellow distributions are δ values obtained by bootstrapping under the 

simpler of the two models (sim M0), whereas the green distributions are δ values obtained under 

the more complicated of the two models (sim M1). The horizontal dotted lines show the value of 

the observed δ. The p-values are based on the rank of the observed δ in relation to sim M0 (i.e. p 

= 0 if the observed δ falls to the right of the highest value of sim M0, and p = 0.999 if the 

observed δ falls to the left of the lowest value of sim M0). The power is the fraction of  values 

of sim M1 that falls to the right of the 95% quantile of sim M0 (i.e. statistical power of the test at 

5% nominal alpha). The “*” symbol indicates those tests where the null hypothesis was accepted 

at 5% nominal alpha (i.e. p > 0.025, two-tailed test). 



Supplementary Figure 5 Pairwise comparisons between the Ornstein-Uhlenbeck (OU), 

Brownian motion (BM) and white noise (WN) models that were tested to describe the mode of 

evolution of the lower and upper thermal tolerances for all species, ectothermic species, 

endothermic species, terrestrial plants and plants and algae (normalized data). Each plot 

represents a different contrast. The yellow distributions are δ values obtained by bootstrapping 

under the simpler of the two models (sim M0), whereas the green distributions are δ values 

obtained under the more complicated of the two models (sim M1). The horizontal dotted lines 

show the value of the observed δ (blue and red for lower and upper thermal tolerances, 

respectively). The p-values are based on the rank of the observed δ in relation to sim M0 (i.e. p = 

0 if the observed δ falls to the right of the highest value of sim M0, and p = 0.999 if the observed 

δ falls to the left of the lowest value of sim M0). The power is the fraction of  values of sim M1 

that falls to the right of the 95% quantile of sim M0 (i.e. statistical power of the test at 5% 

nominal alpha). The “*” symbol indicates those tests where the null hypothesis was accepted at 

5% nominal alpha (i.e. p > 0.025, two-tailed test). 



 

Supplementary Figure 6 A classification tree illustrating the relationships between upper and 

lower thermal limits and predictors variables including paleoclimatic origin (Paleoclimate), 

temperature extremes experienced by species (Temp max and Temp min) and evolutionary age 

(Age) fitted using random forest for (a-b) ectotherms, (c-d) endotherms and (e-f) plants including 

algae. The colour scheme illustrates each predictor’s relative importance in a yellow to green 

scale. Significance from permutation tests41 computed while fitting classification trees is 

indicated (***P < 0.01, **P < 0.05, *P < 0.1, n.s.P ≥ 0.1). Box-plots are represented for each 

species group resulting from classification trees, with boxes bounded within the first and third 

quartiles, medians represented by thick horizontal lines within each box and, whiskers extending 

to the minimum and maximum values that do not exceed 1.5 times the interquartile range from 

the median (provided by default in R function ‘boxplot’).  



 

Supplementary Figure 7. Random Forest results based on one thermal tolerance metric only per 

group of taxa: CTmax (N = 768) and CTmin (N = 438) for ectotherms panel a, UNZ (N=338) 

and LNZ for endotherms (N=333) panel b and L100 (N=90) and L100 (N=26) for plants panel c. 

Note that, while overall results are congruent with those reported in the main text, shifts in 

predictor importance with respect to the models in Fig. 4 are due to smaller subsets of data being 

used to build these models (for details in sample sizes see Supplementary Table 5-6). Sample 

size (N) is the number of biologically independent species. Error bars represent 95% confidence 

intervals.  



 

Supplementary Figure 8. The relationship between the natural log of order age and thermal 

tolerance breadth in °C for endothermic (orange) and ectothermic (blue), and plants (green). 

Error bands represent 95% confidence intervals for fitted lines. 
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