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ABSTRACT Label-free imaging techniques such as differential interference contrast (DIC) allow the observation of cells and
large subcellular structures in their native, unperturbed states with minimal exposure to light. The development of robust compu-
tational image-analysis routines is vital to quantitative label-free imaging. The reliability of quantitative analysis of time-series
microscopy data based on single-particle tracking relies on accurately detecting objects as distinct from the background, i.e.,
segmentation. Typical approaches to segmenting DIC images either involve converting images to those resembling phase
contrast, mimicking the optics of DIC object formation, or using the morphological properties of objects. Here, we describe
MATLAB based, single-particle tracking tool with a GUI for mobility analysis of objects from in vitro and in vivo DIC time-series
microscopy. The tool integrates contrast enhancement with multiple modified Gaussian filters, automated threshold detection for
segmentation and minimal distance-based two-dimensional single-particle tracking. We compare the relative performance of
multiple filters and demonstrate the utility of the tool for DIC object tracking (DICOT). We quantify subcellular dynamics of a
time series of Caenorhabditis elegans embryos in the one-celled stage by detecting birefringent yolk granules in the cytoplasm
with high precision. The resulting two-dimensional map of oscillatory dynamics of granules quantifies the cytoplasmic flows
driven by anaphasic spindle oscillations. The frequency of oscillations across the anterior-posterior (A-P) and transverse
axes of the embryo correspond well with the reported frequency of spindle oscillations. We validate the quantitative accuracy
of our method by tracking the in vitro diffusive mobility of micron-sized beads in glycerol solutions. Estimates of the diffusion
coefficients of the granules are used to measure the viscosity of a dilution series of glycerol. Thus, our computational method
is likely to be useful for both intracellular mobility and in vitro microrheology.
SIGNIFICANCE Differential interference contrast (DIC) time-lapse microscopy is widely used in cell and developmental
biology as a label-free method involving minimal perturbation. Single-particle tracking tools specific to DIC microscopy are
lacking. We have developed a computational tool for DIC object detection and tracking with a GUI and demonstrate its
utility by tracking intracellular yolk granules in the crowded cytoplasm of one-celled Caenorhabditis elegans embryos. The
frequency of the oscillatory flows of the granules compares well with that of spindle oscillation. Our method is also validated
by tracking the Brownian motion of micron-sized beads to estimate the viscosity of solutions in vitro. This tool could have
wider relevance for biophysical measurements of cellular mobility and subcellular mechanics.
INTRODUCTION

Label-free microscopy is widely used to study transparent
cells and tissues. In particular, differential interference
contrast (DIC) or Nomarski (1) and phase-contrast micro-
scopy (2) are standard modes built into biological micro-
scopes to generate image contrast using inherent features
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such as the anisotropy of refractive index and density.
Although fluorescence microscopy offers the advantage of
molecular specificity, the phototoxicity resulting from such
an approach in live imaging can alter cell physiology (3).
Because of the inherent advantages of reduced light exposure
andminimal intervention in the sample, label-free in vivo mi-
croscopy combined with computational image analysis con-
tinues to be relevant. Image segmentation of phase-contrast
images is relatively simpler because it involves distinguishing
dark objects against a bright background. As a result, a wide
variety of computational methods have been successfully
developed to quantify cellular and subcellular objects in
phase-contrast images (4–7). Objects in DIC images, on the
Biophysical Journal 120, 393–401, February 2, 2021 393

mailto:cathale@iiserpune.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2020.12.013&domain=pdf
https://doi.org/10.1016/j.bpj.2020.12.013


Chaphalkar et al.
other hand, are represented as a combination of light and dark
regions, giving a pseudo-three-dimensional effect, with a
typically gray background. Segmentation of such images is
more involved, with previous approaches relying on either
converting them to ‘‘pseudophase’’ (8) or extracting low-level
information such as gradient (9,10), shear direction (11,12),
spatial filtering using ‘‘Mexican hat’’ kernels to denoise com-
binedwith region-max to segment (13), and brightness fluctu-
ations (14). Although shape-specific methods have been
successfully used for tracking the dynamics of filopodia
(15) andmicrotubules (MTs) (14,16), they are limited in their
utility. Some alternative methods to particle tracking include
particle image velocimetry, which for example, has been used
to quantify intracellular flows by occurring after yolk-granule
mobility in DIC images (17), optical flow methods (18), and
differential dynamic microscopy based on intensity fluctua-
tion statistics in images (19) that have been used to measure
ciliary beat frequencies in vivo (20). Although such methods
are robust and work on in vivo data, ignoring the individual
identity of objects potentially could result in missing out in
changes in as a function of position or time. This in turn could
lead to ignoring important local effects thatmight be function-
ally related to in vivo heterogeneity in mobility. The absence
of a robust and general solution to detect intracellular struc-
tures in DIC at high particle densities has hindered further
quantification of label-free images.

Caenorhabditis elegans embryos are ideal samples for
in vivo computational imaging in DIC because they are opti-
cally transparent and lack pigments. DIC-microscopy-based
mutational screens have been used to understand embryonic
cell divisions (21) and spindle mechanics (22). Algorithms
used to identify features in C. elegans embryos include a
shortest path method to automatically identify embryo
stages and quantify boundary dynamics during divisions
(23,24). Similarly, active contours have been used to track
spindle dynamics (25,26). The analysis of intracellular dy-
namics by segmentation-based approaches has been
restricted to quantifying centrosome positional dynamics
(22,27,28). At the same time, detailed theoretical models
of the mechanics anaphase spindles and their oscillations
in C. elegans based on molecular motors and MTs have
been developed (29–31). However, a comparison between
theoretical predictions and experiments continues to be
limited by the methods available for noninvasive measure-
ment of intracellular mechanics. Although label-free quan-
titative microscopy could address this need, it requires the
development of methods for precise segmentation in a
crowded environment from such images.

Here, we describe a DIC-object-tracking (DICOT)
method that combines a novel filtering approach that we
refer to as scaling of Gaussian (SoG). Combined with a dis-
tance-based, single-particle tracking approach, we employ it
to analyze in vivo cytoplasmic flow dynamics in a one-cell
C. elegans embryo and as a means of estimating viscosity
from bead diffusion in glycerol solutions.
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MATERIALS AND METHODS

DIC segmentation and tracking

We implement multiple filters combined with automated threshold detec-

tion to segment objects in each frame, followed by a minimal distance

tracking method to connect object and build tracks. As a first step, the

user chooses one of the filters: Gaussian, difference of Gaussian (DoG), in-

verse Laplacian of Gaussian (iLoG), or an SoG. The SoG filter is calculated

as a difference between a Gaussian function hG with a filter of size ksize and

a standard deviation s and the following scaled mean:

hSoG ¼ hG � hhGiðl�fÞ; (1)

where f is the strength of the difference-based scaling by the mean and l is

a switch parameter typically set to 1 for DIC images. A value of l ¼ �1 is

useful for dark objects against a bright background. The steps involved in

the process of filtering and segmentation are described in the Algorithm

Box (Supporting Materials and Methods) and Fig. 1. The filter is a modified

Gaussian and comparable with a DoG filter because of the subtraction oper-

ation. Of the four user-provided inputs to SoG, two are easily determined by

the user with l ¼ 1 for DIC images and the kernel size ksize estimated from

the characteristic size of the objects, with the only free parameters being the

standard deviation s of the Gaussian and sensitivity (S) factor f for scaling

by the mean, which control the spread and height of the filter, respectively.

The filter is implemented in MATLAB (The MathWorks, Natick, MA).

The filtered image is contrast adjusted by scaling between the minimal

and maximal values of the histogram and segmented by using the pth root

of the value output by Otsu’s method, t. We find
ffiffiffi
t

p
, i.e., p ¼ 2, to be

optimal for the objects we have tested.

Segmentation results in centroids of multiple granule (Fig. 1 b) that are

connected to form tracks based on two input parameters: 1) search radius

(rs) to define the local neighborhood that depends on particle velocity,

and 2) minimal time frames (Tmin), which a track spans. The pair-wise dis-

tance dj(Dt) between every j
th centroid in successive frames t and tþ Dt are

linked if the minimal distance is less than the search radius rs. Centroids that

do not form a part of any trajectory are treated as new start points. To avoid

artifacts due to poor statistics, short tracks are eliminated if they span less

than Tmin number of frames. Image noise was simulated as multiplicative

speckle noise with zero mean and increasing variance using the inbuilt func-

tion imnoise in MATLAB (The MathWorks), and the error of positional ac-

curacy was tested by finding the distance between the ground truth (GT) and

the automated detection in a representative frame from a DIC image time

series of the C. elegans embryo.
Embryo time series

Multiple time series of C. elegansN2 embryos (N2_15, N2_18, and N2_20)

were taken from a published database (http://www.ens-lyon.fr/LBMC/

NematodeCell/2010/12/) reported by Valfort et al. (32). Typically 450

frames (Dt ¼ 0.5 s) were analyzed by selecting a subset of frames corre-

sponding to the onset of anaphase spindle oscillations.
Microscopy of bead suspensions in glycerol

Glycerol (99% GC; Sigma-Aldrich) solutions in water with increasing

concentrations 0, 10, 20, 30 and 40% (vol/vol) were used to resuspend

monodisperse polystyrene beads (National Institute of Standards and

Technology Traceable Particle Size Standards; Bangs Laboratories,

Fishers, IN) of a diameter of 1 mm. For diffusion measurements, the beads

were diluted 1:100 (vol/vol) to get sufficient separation, so their mobility

can be considered to be independent of crowding effects. The solution

containing the bead suspension was flowed into a double-backed tape

chamber (dimensions: 1 cm � 1 cm � 0.01 cm) sandwiched between a

http://www.ens-lyon.fr/LBMC/NematodeCell/2010/12/
http://www.ens-lyon.fr/LBMC/NematodeCell/2010/12/
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FIGURE 1 Detecting yolk-granules in a

C. elegans embryo in DIC. (a) The yolk granules

of a C. elegans embryo in the one-celled stage

in DIC microscopy from the mid-plane are

segmented using a novel scaling of Gaussian

(SoG) method combined with automated thresh-

olding. Scale bar, 5 mm. (b) The workflow is

described using a representative region of interest

(ROI) of the embryo image (box with dashed

blue line from (a)); shown is a filtered image by

convolving the image with an SoG filter (parame-

ters: ksize ¼ 9 and s ¼ 1.25), resulting in enhanced

contrast; shown is a segmented image obtained by

thresholding by a modified Otsu’s method; and

centroids of detected objects (asterisk) are overlaid

on the original image. To see this figure in color, go

online.
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slide and a coverslip (Medicos Supplies, Pune, India). Samples were

imaged using a 40� (NA 0.9 or 0.65 ELWD) lens on a Nikon Eclipse

Ti-E inverted microscope (Nikon, Tokyo, Japan) at 30�C by a temperature

control system (Okolab, Pozzuoli, Italy). Images were acquired every

0.5 s for 1 min with an Andor Clara2 CCD camera (Andor Technology,

Belfast, UK).
Data analysis

The yolk granules were classified into four regions based on the apparent

axis along which they were maximally displaced: anterior (A), posterior

(P), or one of the transverse axes—transverse 1 (T1) or transverse 2 (T2).

The x- and y-positions with time were used to calculate the distance from

their respective origins in x (Dx) and y (Dy), and the distance was averaged

for each region (Dy for the A-P axis and Dx for the T1-T2 axis). The fre-

quency of oscillation was estimated using a fast Fourier transform. An

average curve was estimated for each region as follows:

1) Shift the origin of the position time series of the yolk granules, rj,t (where

r is either the x- or y-position), with respect to their initial positions in x

(Dx) and y (Dy), resulting in a new series r�j;t:

i ¼ 0

8><
>:

r�j;t ¼ rj;t � rj;1

rði¼ 0Þ ¼

X
j j t

r�j;t

nj j t

; (2)

where n is the number of tracks at a given time point t and j represents

the identity of the track.
2) Calculate the average time-series ri for the i
th iteration by estimating the

deviation of every particle from the average curveobtained at the previous

iteration (i � 1), subtracting the mean deviation ðhDrj;tiÞ and averaging

over each track at a given time point (njjt) for all time points as follows:

i > 0

8>>>><
>>>>:

Drj;t ¼ rj;t � ri�1

r�j;t ¼ rj;t �
�
Drj;t

�

ri ¼

X
j j t

r�j;t

nj j t

: (3)

3) Consider the curve to be the optimal average curve and stop the iteration
when the global deviation across all tracks N is smaller than a threshold

value d:

iþþ; iff

(PN
j

�
Drj;t

�
N

R d: (4)

We find the global deviation saturates for d < 10�4 within 5–10 itera-

tions. All data analysis was performed using a code written in MATLAB

R2017b (The MathWorks).
Estimating the diffusion coefficient of bead
mobility

The effective diffusion coefficient (D) of bead motility was estimated from

a fit to the mean-square displacement (MSD) plot as a function of time
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interval (t) using methods described previously (33,34). The anomalous

diffusion model MSD ¼ 4 � Deff � ta was applied to the MSD data using

a Levenberg-Marquardt nonlinear least-square routine implemented in both

MATLAB (The MathWorks) and SciPy (Python 3.6) (35). The anomaly

parameter a was found to be �1, indicating diffusion without drift or

restriction.

As an alternative method to cross-check our estimates, we measured the

diffusion coefficient of beads based on an approach originally described by

Perrin (36). The displacement along the x (Dx) and y axes (Dy) for every

successive step of each trajectory were plotted in a frequency histogram

and fit to a standard Gaussian expression:

PðDxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p
t
exp�Dx2=2s2 ; (5)

where s is the standard deviation for one-dimensional diffusion that is

related to the diffusion coefficient (D) by s ¼ ffiffiffiffiffiffiffiffi
2Dt

p
.

The viscosity h was estimated from Stokes-Einstein relation D ¼ kBT/

6phr, where the radius of the beads (r) is 0.5 mm and kBT is the product

of Boltzmann’s constant and temperature (K), taken as 4.1 pN-nm.
Code performance and availability

A typical time series with 450 frames of 450� 300 pixels required 5–10min

to processwith 200 particles per frame on a LinuxWorkstationwith two Intel

Xeon processors (2.20 GHz) and 64-GB RAM. The program has a GUI-

based, user-friendly interface (Fig. S1) compatible with MATLAB2019b

and higher (The MathWorks). The source code has been made OpenSource

and can be accessed here: https://github.com/CyCelsLab/DICOT. Addition-

ally, we have also released a command-line tool with the source code here

https://github.com/CyCelsLab/DICOT_cmd, compatible with MAT-

LAB2017b and higher (The MathWorks), to allow for rapid modifications

of the program and the easy addition of new filters.
RESULTS AND DISCUSSION

Testing the detection accuracy of intracellular
granules in DIC images

The quality of single-particle tracking (SPT) depends on the
accuracy of the object detection. To achieve high-accuracy
tracking, we test multiple filtering approaches, Gaussian, in-
verse Laplacian of Gaussian (iLoG), difference of Gaussian
(DoG), and the scaling of Gaussian (SoG). These filters are
then combined with segmentation by thresholding based on
Otsu’s method to detect objects in DIC images. The SoG fil-
ter scales a standard Gaussian filter (hG) with the mean
ðhhGiÞ and an S factor f as follows:

hSoG ¼ hG � hhGiðl�fÞ: (6)

When the image contains bright objects against a dark
background, typical for both DIC and fluorescence, image
l is set to 1, whereas it is set to �1 for dark objects against
a bright background (Fig. S3). The S factor f is used to
enhance the degree of contrast between the fore- and back-
ground. The SoG filter is a simpler version of the DoG filter
hDoG ¼ hG1(s1) � hG2(s2), where hG1 and hG2 are two
Gaussians, and s1 and s2 define the respective spread. For
a DoG filter when s2 [ s1, the difference approximates
396 Biophysical Journal 120, 393–401, February 2, 2021
SoG (Fig. S2). At the same time, the LoG filter, based on
the second derivative of a Gaussian, can also be mapped
to DoG under specific conditions of Gaussian filters (37)
due in part to the fact that they are based on a Gaussian.
However, the simplicity in using SoG scaling on a Gaussian
by a scalar value by the use of a single S parameter f and
estimation of filter size from object size, as compared
with multiple or derivatives of Gaussians, suggests a
simplicity that could be more user-friendly for optimization
in the analysis of diverse experimental data sets. The filtered
images are thresholded based on a modified Otsu’s method
(38), resulting in object detection.

The detection method appears to identify the majority of
birefringent yolk granules in a DIC image time series of
C. elegans embryos as identifiable by eye (Fig. 1 a). The
enhanced contrast achieved by SoG filtering allows object
segmentation by automated thresholding (Fig. 1 b). To quan-
tify the extent of correctly detected yolk granules, we have
used six randomly selected frames in the time series in two
representative regions of interest (ROIs), one anterior and
one posterior, to account for any spatial differences
(Fig. 2 a; Fig. S4) andmarked yolk granulesmanually to serve
as the GT of detection (Fig. 2 b). The output from DICOT
analysis was then classified based on the Euclidean distance
of the granule coordinates (x-y-positions) detected by the al-
gorithm to the ‘‘true coordinate’’ into the following classes.

True positives (TP)

The distance of the centroid identified by the algorithm lies
within a threshold (tdist) distance of the interactively anno-
tated point. A tdist of two pixels was chosen to account for
human error while selecting centroid of granule.

False positives (FP)

Detections obtained from the algorithm at a distance to the
GT greater than tdist are classified as false positives.

False negatives (FN)

All manual annotations that were not detected by the algo-
rithm are classified as false negatives.

To quantify how well DICOT works at object detection,
we estimate three variables: sensitivity (S), precision (P),
and the F1 score. S is defined as the ratio of correct detec-
tions by the algorithm (TP) and all detections both true
and false, as described by the following expression:

S ¼ TP

TPþ FN
: (7)

An alternative measure, P is the fraction of correctly clas-
sified detections out of total detections from the algorithm as
given by the following:

P ¼ TP

TPþ FP
: (8)

https://github.com/CyCelsLab/DICOT
https://github.com/CyCelsLab/DICOT_cmd


a

b

g h

f

c d e

FIGURE 2 P of yolk-granule detection in DIC. (a) ROIs from the anterior (A) (line) and posterior (dashed line) regions of a DIC image time series of

a C. elegans embryo were used to estimate (b) the ground truth (GT; solid circle) through manual annotation of granules and classify detections based on

the algorithm as either true positives (open circle), detected by the algorithm, as well as manually false positives (asterisk), those identified by the al-

gorithm but not manually, and false negatives (open square), those that were identified manually but the algorithm failed to detect. (c–e) The mean 5

standard deviation (SD) from n ¼ 6 ROIs measuring S (dotted line, Eq. 7), P (dashed line, Eq. 8), and the F1 score (solid line, Eq. 9) of detection are

plotted to examine the effect of three different parameters input to DICOT, namely (c) the filter size ksize (with s ¼0.5949, f ¼ �0.0354), (d) the stan-

dard deviation of the filter s (ksize ¼ 7), f ¼ 0.0354), and (e) the S factor f (with s ¼ 0.5949, ksize ¼ 7). The fixed values were taken from a systematic

scan of all three parameters (Fig. S6) and are marked with a vertical dotted line. (f) Shown is the frequency distribution of the positional detection error

in pixels based on filtering by either Gaussian (dash-and-dot line), inverted iLoG (solid line), DoG (dashed line), or SoG (dotted line) is plotted with

(bottom) the box-plot representing the data scatter. Here, the following symbols have the described meaning: open circle, mean; midline, median; and

whiskers, minimum and maximum. (g) The effect of multiplicative speckle noise on positional detection error was examined for a range of variance

values of the noise function. Two representative images of variance 0 and 0.042 were filtered based on the optimal parameters for detection by filtering

and segmentation based on either Gaussian (open circle), iLog (cross), DoG (plus sign), or SoG (asterisk) filters. The error is the distance from the GT

(solid circle). (h) The mean (left) and median (right) positional detection error for increasing variance of noise ranging is plotted. To see this figure in

color, go online.
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Finally, the F1-score (F1) combines both measures of P
and S as follows:

F1 ¼ 2 � P � S

Pþ S
: (9)
We find the S, P, and F1 are affected similarly by kernel
size ksize and s (Fig. 2, c and d), whereas f < 0 is optimal
for S and F1 but not P (Fig. 2 e). Increasing the filter size
(ksize) results in reduced S, whereas Pwasmaximal for values
greater than six pixels, and the F1 score is optimal for ksize
Biophysical Journal 120, 393–401, February 2, 2021 397
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between five and seven pixels. Based on a comparison be-
tween manual detection (Fig. S5 a) with SoG, Gaussian, in-
verted LoG- and DoG-based image filters (Fig. S5, b–d) of
qualitatively SoG are comparable with LoG and DoG
filtering (Fig. S5 e). Evaluation of the P, S, and F1 score,
compared for two different methods of scoring, suggests
that the SoG and DoG are comparable in their performances
(Fig. S6, a–c). In contrast, we find the statistics of positional
detection error is the lowest for SoG compared with the other
filtering methods tested in terms of mean, median, and out-
liers (Fig. 2 f). To avoid any biases, we scanned multiple pa-
rameters for each filter systematically across a range of
comparable values and used those parameters that maxi-
mized the F1 score (Fig. S7, a–d). Although the error result-
ing from filtering by SoG, iLoG, and DoG is comparable, we
FIGURE 3 In vivo microrheology of C. elegans yolk-granule mobility. (a) T

embryo taken from the Valfort et al. data set (32) (N2 embryo time-series

NematodeCell/2010/12/) are marked to highlight the regions of the embryo in

(P; blue), and two transverse regions, T1 (green) and T2 (magenta). Scale bar,

and in y (Dy) across the A-P axes of individual granules are plotted as a funct

A (red), P (blue), T1 (green), and T2 (magenta) regions. (c) The probability o

A (red), P (blue), T1 (green), and T2 (magenta) regions (open circle). Solid ci

to the online edition. To see this figure in color, go online.
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find increasing ‘‘noise’’ in the image (Fig. S8) changes the po-
sitional detection error with SoG and iLoG, showing the
smallest error and greater robustness comparedwith the other
filters (Fig. 2, g and h). This suggests that our method is
optimal for the analysis of in vivo time series of C. elegans
embryos. We proceeded to track the granule mobility and
quantify the flow in the cytoplasm.
Oscillatory dynamics of yolk granules at
anaphase

One-celled embryos of C. elegans in the anaphase experi-
ence cytoplasmic flows in the midplane driven by MT-motor
interactions observed in terms of yolk-granule movement
(31,39). This is driven by the oscillatory nature of the
hree representative DIC image time series of the midplane of a C. elegans

N2_15, N2_18, and N2_20 taken from http://www.ens-lyon.fr/LBMC/

which yolk-granule mobility was analyzed: the anterior (A; red), posterior

5 mm. (b) The change in position along x (Dx) across the transverse axes

ion of time (gray lines). Colored lines represent the mean profiles for the

f oscillatory frequencies, P(f), is plotted from mean distance-time data for

rcles indicate the dominant frequencies. For color references, please refer

http://www.ens-lyon.fr/LBMC/NematodeCell/2010/12/
http://www.ens-lyon.fr/LBMC/NematodeCell/2010/12/
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spindle movement, which has been quantified in previous
work (25,26,31,32). Because yolk granules are thought to
be passively mobile in the cytoplasm (22), our approach
to particle tracking could provide a spatial map of this cyto-
plasmic mobility driven by spindle oscillations. We can suc-
cessfully track multiple DIC image time series of the
midplane of these embryos and classify them into anterior
(A), posterior (P), or two transverse regions, T1 and T2
(Fig. 3 a; Video S1), because granules remain largely rela-
Deff = 0.17 m2/s
 = 1.07

Deff = 0.52 m2/s
 = 1.02
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FIGURE 4 Microrheology of glycerol solutions from bead mobility. (a–c) 1-m

imaged to measure the bead mobility. The beads were tracked (colored lines)

colors correspond to glycerol concentrations (%v/v) in water: (a) 0% (red), (b) 20

estimated from the diffusion of 1-mm-sized beads in solutions of glycerol conce

ROIs). (e) Histograms of the instantaneous displacement of beads in X and Yob

sion coefficientDwas then estimated based on s¼ ffiffiffiffiffiffiffiffi
2Dt

p
from the Gaussian fit an

in color, go online.
tively restricted to a region of the embryo. The time-depen-
dent displacement of granules along either the y axis for
regions A and P, or along the x axis for T1 and T2, display
oscillatory behavior that is captured by an average curve
(Fig. 3 b) obtained by iterative optimization to individual
trajectories (Fig. S9). The oscillations along the two axes
A-P and T1-T2 are out of phase, as expected from spindle
geometry and the incompressible nature of the cytoplasm.
The dominant frequency of oscillation based on Fourier
Deff = 0.33 m2/s
 = 1.06

ycerol 40% Glycerol

y ( m)

 ( m) x ( m)

 ( m)

m-diameter beads suspended in increasing concentrations of glycerol were

and the MSD 5 SD (line with gray area indicting SD) calculated. Track

% (magenta), and (c) 40% (blue). Scale bar, 2 mm. (d) Shown is the viscosity

ntrations ranging from 0 to 40%. Values represent mean 5 SEM (n ¼ 10

tained from tracking were fitted to a standard Gaussian. The effective diffu-

d the Stokes-Einstein relation used to estimate viscosity h. To see this figure
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analysis of average trajectories along both axes is 40 mHz
(Fig. 3 c). Our estimate is based on the statistics of�102 tra-
jectories of yolk granules per cell. This estimate matches the
reported oscillatory frequency of 40 mHz measured using
pairs of centrosomes in each cell (25,26,32). Thus, our
approach to yolk-granule tracking provides detailed spatio-
temporal information and better statistics as compared with
centrosome movement to understand the mechanics of cyto-
plasmic flows.
Microrheology of beads in glycerol solutions

We test the accuracy of our approach to object tracking by
quantifying the diffusive mobility of 1-mm polystyrene
beads in multiple dilutions of glycerol solutions (0–40%
v/v) from DIC image time series (Videos S2, S3, and S4).
From the trajectories of the bead mobility, we estimated
the MSD ðhr2iÞ as a function of time t of multiple beads
and fit it to a model of diffusive mobility hr2i ¼ 4Dta

(Fig. 4, a–c) as described in our previous work (34). The
value of the anomalous diffusion exponent a obtained
from fitting is �1, confirming that bead mobility is diffu-
sive. The diffusion coefficient D is then used to estimate
the viscosity h (Fig. 4 d) based on the Stokes-Einstein rela-
tion h ¼ kBT/D6pr, where r is the granule radius and kBT
the thermal energy scale. We also estimated the value of vis-
cosity from the same trajectories by alternatively following
a method originally described by Perrin (36) by fitting
Gaussian functions to the one-dimensional displacement
along x and y axes (Fig. 4 e). Both methods yield viscosity
values that are consistent with published values (40) for
glycerol solutions (Fig. S10). Thus, we believe our method
can serve as a convenient tool for microrheology and
mobility of label-free DIC imaging of micron-sized objects,
both intracellular and in vitro.
CONCLUSIONS

The yolk-granule mobility in C. elegans embryos demon-
strated here suggests the frequency of oscillation of granules
matches that of the spindlemovement. Although it oncemore
suggests the passive nature of yolk-granule mobility, it also
provides a spatiotemporal readout of the forces that drive
spindle motility. The previous estimates of the viscous drag
acting on the spindles (22,41) andmore recent measurements
of the viscoelastic nature of the cytoplasm (42) suggest the
relevance of such a tool for quantifying cytoplasmic flows.
Combining the measurement of intracellular yolk-granule
mobility with spindle movement could improve our under-
standing of the mechanobiology of asymmetric cell division.
Indeed, the proliferation of deep-learning methods in cell
image analysis, as exemplified by the effective use of
U-nets for segmentation from bright-field images (43), sug-
gests the approaches we describe in combination with
learning approaches could further improve detection and
400 Biophysical Journal 120, 393–401, February 2, 2021
analysis. Our implementation of the tool as a GUI with inter-
active parameter optimization as well as choice of multiple
filters is likely to allow for use on multiple data sets. In
conclusion, our approach represents a general method for
segmentation and tracking of both in vitro and in vivo DIC
microscopy data. In the future, this tool could improve our
understanding of subcellular mechanics using label-free mi-
croscopy for cellular and developmental processes, not just
limited to the C. elegans embryo.
SUPPORTING MATERIAL
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1 Algorithm

The algorithm is described in Box ??.

Algorithm 1 The routine describing image filtering using SoG and segmentation.
SoG

Image, Img ← INPUT(filename)
Kernel-size, ksize ← INPUT(int)

3: Kernel-spread, σ ← INPUT(float)
ObjectType, λ← INPUT(bright=1,dark=-1)
Sensitivity, φ← INPUT(float)

6: Strength of threshold, p ← INPUT(int)

h
′′
G(i, j) = e

−(x2+y2)

2σ2

hG(i, j) =
h
′′
G(i,j)∑ksize

i

∑ksize
j h

′′
G

9: h
′
(i, j)G = hG − 〈hG〉

hSoG = λ · h′G(i, j)− φ〈hG〉
imFiltered ← hSoG(i, j) ~ Img(n1, n2)

12: Threshold, τ ← Otsu( imFiltered )

if imFiltered(j,k)>
p√
τ then

15: imFiltered(j,k)← 1
else

imFiltered(j,k) ← 0
18: end if

1



2 Supplemental Tables

Sample ksize σ λ φ p
E. coli [DIC] 11 3.25 1 0 3
E. coli [DAPI] 11 3.25 1 0 3
Beads [Phase] 5 1.75 0 0.01 1
MT [Rh] 15 1.25 1 0 1
Rice (edge) 3 1.25 1 0 1
Rice (blob) 11 2.5 1 0 0.97

Table S1: Parameters of the SoG filter for varied samples. The parameters input
to the SoG filter for detecting objects in diverse imaging modes (DIC, phase contrast and
fluorescence microscopy) are listed, with the outputs seen in Fig. ??.
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3 Supplemental Figures

Status lampMenu bar Tool bar Message display box

Image 
parameters 

panel 

Object 
detection 

panel 

Tracking 
panel 

Image file 
name

Image 
display

View mode 
with frame 
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Figure S1: GUI interface for the DIC object detection and tracking code. The
program has a GUI interface with a single pane. The menu bar can be used along with
the icons to (i) select and parse the image data, (ii) detect objects and interactively view
the results in the image-pane and (iii) the tracking panel to determine the criteria to track
detected objects. The buttons on the very bottom export the statistics into text files as well
as calculate mean square displacement (MSD) plots and fit the average curve either to an
anomalous diffusion or diffusion and drift model. A detailed user guide is provided with the
source code at https://github.com/CyCelsLab/DICOT.
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Figure S2: The 2D profiles of comparable DoG and SoG filters. First row A DoG
filter is created by subtracting a Gaussian filter G2 with σ2 = 10 from G1 with σ1 = 2.21 to
create a DoG filter that strongly resembles an Second row SoG filter. Here, the difference
between a Gaussian with σ = σ1 = 2.5 and a constant, the product of the mean of the
Gaussian with λ−φ where λ = 1 is the switch parameter and φ = 0.01 the sensitivity factor.
The sum of square errors between these two functions is 1.07× 10−5.
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Figure S3: SoG applied to diverse images. Object detection from images acquired in
different modes of microscopy was attempted by SoG filtering. (Top-Bottom) Escherichia coli
cells in DIC, E. coli stained with DAPI in fluorescence, micron size beads in phase contrast
microscopy (holes filled in threshold image before overlay), rhodamine labelled microtubules
(MT) in fluorescence and rice grains (∗MATLAB demo image) processed by either edge or
blob-detection. DICOT parameters for each of the samples are listed in Table ??.
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Figure S4: Multiple ROIs used to evaluate object detection. The C.elegans embryo
time-series (N2 20 c 1001-1450) with frame numbers (top to bottom) 78, 295, 177, 335, 341,
and 306 are overlaid with contour of regions of interest (ROIs) selected in anterior and
posterior domains of the embryo. The representative panels from the anterior and posterior
ROIs were manually annotated to mark lipid granules to serve as the ground truth GT (red
dots) and after SoG image-filtering and segmentation used to determine true positives TP
(blue circles), false positives FP (yellow circles) and false negatives FN (red squares), as
described in the methods section. Scale bar 10 µm.
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Figure S5: Comparing filters for DIC object detection. (a) An ROI from a mid-plane
DIC image of a C. elegans embryo was manually annotated to mark lipid granules (blue
circles). (b) Four different image filters were tested: Gaussian (blue), Inverted LoG (red),
DoG (ochre) and SoG (purple). (c) Contour maps of multiple filters used to convolve the
data are compared: Gaussian σ = 2.25, inverted Laplacian of Gaussian (iLoG) σ = 2.25,
difference of Gaussian (DoG) taken between two functions with σ = 1.25 and 2.25 and
Scaling of Gaussian (SoG) σ = 2.25. All filters have the same kernel size, i.e. 9 pixels.
(c) The filtered output images (d) are then segmented by an automated threshold and the
contours of detected objets (green) are used to estimate centroids (red dots) and compared
to manual annotations (blue circles).
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Figure S6: Filters compared for sensitivity, precision and F1-score. (a) An ROI
from a mid-plane DIC image of a C. elegans embryo was manually annotated to mark lipid
granules to serve as the ground truth GT (red dots) and compared to image-filtering with
Gaussian, inverted Laplacian of Gaussian (iLOG), difference of Gaussian (DoG) and scaling
of Gaussian (SoG). The respective true positives TP (blue circles), false positives FP (yellow
circles) and false negatives FN (red squares) were determined as described in the methods
section, comparing centroid and region-max based object detection. (b, c) The F-score,
sensitivity and precision calculated from these comparisons for (b) centroids and (c) region-
max based identification of objects are plotted.
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Figure S7: Detection accuracy estimated by F1-score to compare filters. (a) Gaus-
sian, (b) inverted Laplacian of Gaussian (iLoG), (c) difference of Gaussian (DoG) and (d)
scaling of Gaussian (SoG). For all filters the range of ksize was 3 to 15, σ was scanned over
a range 0.1 to 5 with steps of 0.0495 while for DoG σ1 = σ while σ2 was varied between 0.1
and 2 with steps of 0.211. For SoG the sensitivity factor φ was sampled between -0.1 and
0.1 with steps of 0.002. Colorbar indicates the F1-score.
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Figure S8: Increasing noise of DIC image. A single frame of a DIC image of C. elegans
was subjected to increasing speckle noise with increasing variance of the noise ranging from
0 to 0.08. These images were used to test the error in positional detection using multiple
filtering algorithms.
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Figure S9: Convergence of cost function to granule oscillations. (a,b) The change
of global deviation δ of the average curve to yolk granule oscillations (seen in Fig. 3(c)) are
plotted on a (a) linear scale (b) semi-log scale.
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Figure S10: Viscosity estimated using DICOT compared to literature. The estimates
of viscosity, η, obtained from tracking diffusing beads based on fitting the MSD (red) is
compared to that using fits to the histogram of displacements (green). Both estimates are
compared to bulk viscosity measurements of glycerol solutions [?]. All experimental estimates
of η are mean±s.e.m. For n=10 fields of view.
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4 Supplemental Videos

Video SV1: C. elegans embryos with tracked granules. The granules in a time series of
C.elegans first embryonic division are tracked (blue dot - current position of granule, red line
- trajectory of granules) using DIC tracking method. The time series have been described
by Valfort et al. [?] (Image-Database). Scale: 5 µm; ∆t: 0.5 s.
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Video SV2: Beads diffusing in water. A representative time series of 1 µm beads diffusing
in water tracked (blue dot - current position of granule, red line - trajectory of granules, yellow
numbers - particle identifier) using SoG filter. Scale: 10 µm; ∆t: 0.5 s

Video SV3: Beads diffusing in 20% glycerol. A representative time series of 1 µm beads
diffusing in 20% (w/v) glycerol tracked (blue dot - current position of granule, red line -
trajectory of granules, yellow numbers - particle identifier) using SoG filter. Scale: 10 µm;
∆t: 0.5 s
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Video SV4: Beads diffusing in 40% glycerol. A representative time series of 1 µm beads
diffusing in 40% (w/v) glycerol tracked (blue dot - current position of granule, red line -
trajectory of granules, yellow numbers - particle identifier) using SoG filter. Scale: 10 µm;
∆t: 0.5 s
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