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Fig. S1: Comparison between deterministic velocities (red) and trajectory-calculated velocities (blue). 
  



 

 
 
Fig. S2: Potential energy landscape representations of a three-species toggle switch. (A) Schematic of the three-species 
toggle switch. (B) A potential object for the three-species toggle switch, in which the color represents the potential 
energy at each coordinate. (C) Potential energy surface constructed using the first two principal components of the 
trajectories used to generate (B). The surface retains two steady states seen in (B) while retaining an intuitive 3D 
representation.  
  



 

 
 
Fig. S3: Comparison between the potential energy surfaces generated using different mRNA synthesis distribution 
models. All distributions have been constrained to be positive and scaled to have the same mean and variance. 
  



 

 
 
Fig. S4: Effect of inducer addition and removal on the toggle switch landscape and its effect on cells (magenta overlay) 
for burst size = 2. (A) Initial conditions for a toggle switch at t = 0 with cells in magenta. (B) Time course of inducer 
concentration applied to the system. (C) Effect of the change in landscape after inducer addition to the toggle switch 
system at different times: (i) t = 100, (ii) t = 101, (iii) t = 110, and (iv) t = 200. There is an instantaneous change in 
landscape followed by a transition to the induced valley. (D) Effect of the change in landscape after inducer removal 
to the toggle switch system at different times: (i) t = 201, (ii) t = 210, (iii) t = 300, and (iv) t = 1200. While the 
underlying landscape is reversible after inducer removal, cells do not transition to the other valley even after large 
amounts of time due to the lack of stochastic transitions.  
  



 

 
 
Fig. S5: Effect of inducer addition and removal on the toggle switch landscape and its effect on cells (magenta overlay) 
for burst size = 10. (A) Initial conditions for a toggle switch at t = 0 with cells in magenta. (B) Time course of inducer 
concentration on the system. (C) Effect of the change in landscape after inducer addition to the toggle switch system 
at different times: (i) t = 100, (ii) t = 101, (iii) t = 110, and (iv) t = 200. There is an instantaneous change in landscape 
followed by a transition to the induced valley. (D) Effect of the change in landscape after inducer removal to the toggle 
switch system at different times: (i) t = 201, (ii) t = 210, (iii) t = 300, and (iv) t = 1200. The underlying landscape is 
reversible after inducer removal and, further, cells transition back to the other valley given large amounts of time due 
to stochastic transitions. Based on the cell positions in D (ii-iv), this path is along the bridge between the two valleys. 
  



 
 
Fig. S6: Effect of cooperativity on a self-activating toggle switch (A) Schematic of a self-activating toggle switch 
with the corresponding equations and parameter values. r represents the relative ratio of activating binding and 
inhibitory binding;   is the relative increase in production rate upon self-activation. (B – F) Landscapes for different 
values of self-activation binding cooperativity. Increase in cooperativity initially results in increase of A and B at the 
saddle point, eventually resulting in a third stable steady state at high A and high B. Further increases in cooperativity 
lead to stronger demarcations between the stable steady states leading to higher potential barriers. 
  



 

 
 
Fig. S7: Effect of inducer on a tristable self-activating toggle switch (A) Schematic of a self-activating toggle 
switch with inducer (B)Effect of inducer on the potential of the two non-induced states showing preferential 
destabilization of the A high, B high state followed by the A low, B high state. (C) Landscapes for different inducer 
concentration showcasing sequential destabilization and reduction in potential barriers with increasing inducer. 
  



Supporting Text 

Methodology for landscape generation 

Overview 

Multiple simulations of the model are run using kinetic Monte Carlo with input conditions that are 

sampled from the phase space of interest. These individual simulations are tracked through time 

and used to generate a probability distribution of the existence of a cell at a given point in the phase 

space. This probability (𝑃) is then converted to a potential (𝑈) described by 𝑈 ൌ െln ሺ𝑃ሻ.  

 
Input 

Input conditions for the simulations are sampled randomly from a uniform distribution across the 

phase space of interest. A uniform distribution ensures that all points in the phase space are covered 

and there is minimal bias in generating the landscape. 

 
Simulation methodology  

For the simulations, we have chosen a kinetic Monte Carlo method with no approximations 

(Gillespie algorithm). This methodology captures the features required for analysis, including 

bistability and biological noise. However, other simulation methods can also be used for landscape 

generation if the resulting trajectories sufficiently capture the characteristic features needed to 

understand and analyze the system. In this paper, to convert the deterministic equations based on 

concentration into individual propensity functions based on number of molecules, a system 

Avogadro number (𝑁஺) was employed. A smaller 𝑁஺ leads to higher stochasticity while a larger 

𝑁஺ approaches a deterministic regime (Fig. S8). This parameter should be chosen to reflect the 

average number of molecules within the system and/or to capture the associated stochasticity and 

variance. The mean number of molecules in the system is proportional to 𝑁஺ while the coefficient 



of variation scales inversely with the square root of 𝑁஺. This follows from the fact that the 

underlying probability distribution in the Gillespie algorithm follows a Poisson distribution for 

which the coefficient of variation is 𝜆ି
భ
మ, where 𝜆 is the mean. 

 
Fig. S8: (A) Landscapes generated for different system 𝑁஺ where the x-axis is number of molecules of A and y-axis 
is number of molecules of B. (B) Plot of coefficient of variation of the number of molecules at steady state with the 
fitted power law curve.  
 

Number of trajectories 

The number of trajectories should be chosen so that it offers good coverage of the entire phase 

space. Practically, this represents the limit beyond which additional trajectories do not qualitatively 

change the landscape significantly. This limit in our system is reached with 10,000 cells. Beyond 

this, additional cell trajectories do not change the landscapes significantly (Fig. S9). This is also 

confirmed by a quantitative convergence analysis (1) that tracks the standard deviation of the 

percentage of cells in each steady state (Fig. S10) and shows that 10,000 is the least number of 

cells with a low standard deviation in steady-state occupancy frequency while having a mean 

steady state occupancy frequency consistent with a higher number of cells. 

 
Fig. S9: Landscapes generated for different numbers of cells (or alternatively, different numbers of initial conditions). 



 
Fig. S10: Quantitative convergence analysis showing the percentage of cells in each steady state with error bars 
showing the standard deviation across three independent replicates.  
 

Simulation length 

Simulation time must be chosen such that both steady state and intermediate details are captured 

in the landscape. This is the minimum time beyond which there is negligible change in steady state 

potentials. Choosing longer simulation times would result in underweighting the approach to 

steady state within the probability distribution used to construct the potential energy function, 

which would obscure intermediate dynamics on the potential surface. The simulation length should 

be maintained across multiple parameter changes to provide a commensurate comparison between 

landscapes. In our simulations, this time was determined to be 100 (dimensionless units) (Fig. 

S11). 

 
Fig. S11: Mean steady-state potential on the landscape for different simulation lengths. 
 

Trajectory sampling 



To visualize the landscape, we generate a probability distribution based on the probability of a cell 

existing with a particular phase space specification at any point during the simulation. While every 

point in the simulation trajectories could be used for generating the probability distribution, this 

results in exceedingly large file sizes and proves difficult for analysis. To overcome this, we 

sample each trajectory at specific intervals of time. This sampling can change between systems 

and can be determined by identifying the minimum time interval below which there are no 

qualitative changes in the landscape. In our system, this time interval is 0.1. Finer sampling, as in 

the 0.01 case, does not notably change the landscapes (Fig. S12). 

 
Fig. S12: Landscapes generated for different sampling intervals. 
 

Potential energy generation 

Using the common statistical mechanics conceptualization, we convert the probability function to 

a pseudo-potential energy using 𝑈 ൌ െln ሺ𝑃ሻ. This energy surface is then “smoothed” using spline 

interpolation and visualized in MATLAB using the surf function.  

 
Velocity generation 

To generate the velocities, we use a finite-difference formula on the trajectories. For a cell whose 

trajectories are represented in terms of two variables, A and B, both of which are functions of time, 

the velocity 𝑣⃗ at a time 𝑡௜ is given by 

𝑣⃗ ൌ 𝑣஺ሬሬሬሬ⃗ ൅ 𝑣஻ሬሬሬሬ⃗ ሺ1ሻ 
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where 𝑎ො and 𝑏෠ are unit vectors in the directions of increasing A and B, respectively. 

The phase space is then discretized into unit blocks, and the average and coefficient of 

variation of all the velocity vectors originating within each block is calculated. These velocity 

averages are represented by the relative lengths of each arrow shown in the landscape (as 

visualized by the quiver function in MATLAB). The coefficient of variation is then represented 

by the relative size of the circle around the base of each arrow (visualized using scatter in 

MATLAB). The discretization of the phase space depends on the level of detail required from the 

landscape. Larger unit blocks are better used for landscapes where less variability is expected while 

smaller unit blocks are better for visualizing regions where the velocity vectors have large 

variances (e.g., at the valley edges) (Fig. S13). 

 
Fig. S13: Landscapes generated for different grid sizes. 
 

Models used for simulation 

Genetic toggle switch by Gardner et al. (2) 

For two proteins, A and B, that cross-antagonize by binding to the opposite DNA and preventing 

subsequent protein production, the rates of change are given by 
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where 𝛼௜ and 𝛽௜ are the basal rates of production and cooperativity of cross-antagonistic binding, 

respectively. 

 
DNA copy number 

The production term in the original model is valid for regimes in which there are a large number 

of DNA molecules so that the rate can be determined as a weighted average of the production rates 

during the unbound (active) and bound (inactive) states. However, in cases with a single DNA 

copy number, the DNA is either bound or unbound and thus the production rate cannot be 

considered an average of the two states. We explicitly model this behavior by setting the 

production term for molecule 𝑖 (being repressed by molecule 𝑗) as either 0 or 𝛼௜ with the following 

probabilities based on the cross-antagonistic binding propensities 

𝑃ሺ𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 ൌ 𝛼௜ሻ ൌ
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For two copies of DNA, as in the S/G2/M phases of the cell cycle, we simulate them by 

independently considering two molecules of DNA that are either bound or unbound based on the 

probabilities above. These two DNA molecules are then each active for half as much time as when 

a single molecule is within the system, and this propensity is given by 𝛼௜/2. 

 
Transcriptional bursting 

Under bursty transcription, multiple protein molecules are formed under a single burst of 



production. Instead of explicitly modeling two-stage transcription and translation, we posit that 

every time the protein production term is chosen by the Gillespie algorithm, there are multiple 

protein molecules produced. This number is sampled from a Poisson distribution with different 

means depending on the “burst size” of the protein. This assumption is valid under cases where 

the mRNA degradation rates are much greater than the protein degradation rates (see derivation 

below). 

 The two-stage model proposed by Strasser et al. (3) is 
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where 𝑑௜, 𝑚௜, and 𝑛௜ are the DNA, mRNA, and protein concentrations respectively. 𝜏௝
ି and 𝜏௝

ା are 

the unbinding and binding rate constants of protein 𝑛௝ and DNA 𝑑௜. 𝛼௜ and 𝛾௜ represent the 

production and degradation rate constants of mRNA. Similarly, 𝛽௜ and 𝛿௜ represent the production 

and degradation rate constants of protein. We consider both (𝑖 ൌ 𝐴, 𝑗 ൌ 𝐵ሻ and ሺ𝑖 ൌ 𝐵, 𝑗 ൌ 𝐴ሻ 

pairings. 

 For this model to reduce to the form of the Gardner model, we apply the quasi-steady-state 

assumption (QSSA) to the mRNA and DNA rate equations. This reduces the protein rate equations 

to 
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For further congruence through scaling, we let 𝑛௜
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To determine the validity of the QSSA, we apply a scaling analysis to the DNA and mRNA 

equations. Let 𝑑′௜ ൌ 𝑑௜ and 𝑚′௜ ൌ
ఊ೔
ఋ೔
𝑚௜. Then, 
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Thus, the QSSA is valid when 𝛿௜ ≪ 𝜏௝
ି and 𝛿௜ ≪ 𝛾௜. In other words, the DNA and mRNA kinetics 

have to be much faster than the protein kinetics. 

 
Toggle switch with inducer 

In this version of the toggle switch, we explicitly incorporate inducer molecules that increase 

synthesis of one protein by binding to the other protein and abrogating its ability to bind its target 

DNA to repress gene expression. The following equations represent this augmented toggle switch 

with inducers 𝐼஺ and 𝐼஻ of proteins A and B, respectively. In deriving these equations, we have 

assumed that the rates of inducer binding and unbinding to their respective proteins are much faster 

than other processes in the system. 
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where 𝐼௜ represents the concentration of inducer of 𝑖, 𝑧௜ represents the selectivity of 𝑗 binding to 



the inducer of 𝑖 compared to cross-antagonistic binding to the DNA of 𝑖, and 𝑎௜ represents the 

cooperativity of inducer binding. All conditions within the paper involving an inducer have been 

simulated with 𝐼஻ ൌ 0, 𝑧஻ ൌ 1, and 𝑎஻ ൌ 1. 
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Additional Supporting Files 

Video S1. Dynamically changing landscape under sinusoidal input 

Video S2. Dynamically changing landscape with cells overlaid at frequency = 0.05 

Video S3. Dynamically changing landscape with cells overlaid at frequency = 0.5 

Video S4. Dynamically changing landscape with cells overlaid at frequency = 0.1 

Video S5. Dynamically changing landscape with cells overlaid at frequency = 0.2 

Data S1 (TrajectoryBasedLandscapes.zip). Compressed folder with MATLAB code for 

visualization and C++ code for toggle switch trajectory generation 
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