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Abstract

Magnetic refrigeration (MR), which is a method to cool matter using a magnetic

field, has been studied for application to refrigeration near room temperature. Re-

cently, MR research has also focused on a target temperature of 20 K for hydrogen

liquefaction. Most research to date has employed high magnetic fields (at least 5 T) to

obtain a large entropy change, which requires large energy costs to operate a super-

conducting magnet. Alternatively, we propose here a highly e�cient cooling technique

in which small magnetic field changes, �µ0H  0.4 T, can obtain a cooling e�ciency

of ��SM/�µ0H = 32 J kg
�1

K
�1

T
�1

, which is one order of magnitude higher than has

been achieved using typical magnetocaloric materials. Our method uses holmium,

which exhibits a steep magnetization change with varying temperature and magnetic

field. The proposed technique can be implemented with permanent magnets, making

it a suitable alternative to conventional gas compression–based cooling for hydrogen

liquefaction.
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Introduction

Storing energy is one of the most important issues for using renewable energy resources.

Although liquid hydrogen is expected to be used for energy storage, at present, a gas (helium

or hydrogen) compression cycle cooling technique is widely used for liquefaction of hydrogen,

which has high operation costs.[1]

Magnetic refrigeration (MR) is an alternative refrigeration technique to gas

compression.[2] MR, which is a method to cool matter using a magnetic field, was discovered

more than 100 years ago.[3, 4] For the past 50 years, MR has been intensively studied for

application to refrigeration near room temperature.[5] More recently, the MR research field

has expanded to investigations of low target temperature for the purpose of hydrogen lique-

faction, which requires refrigeration to the condensation temperature of 20 K.[2] MR cools

matter by using magnetic entropy changes that occur when a magnetic field is applied, a

phenomenon called the magnetocaloric e↵ect (MCE).[6] The MCE, also known as adiabatic

diamagnetization among low temperature physicists,[7] is quantified by the thermodynamic

formula based on the Maxwell relation.

�SM = µ0

Z
µ0H2

µ0H1

✓
@M(T,H)

@T

◆

H

dH (1)

where �SM is the magnetic entropy change during magnetic field (H) change from H1 to

H2 and M is the magnetization. Adiabatic temperature change defined by �T ⌘ �SM/C

(C is a specific heat) is also an important quantity to evaluate MR e�ciency of a material.

There are some candidate materials in the MR for the purpose of the hydrogen liquefac-

tion. For example, HoB2 has been recently reported to show the largest MCE �SM = 40.1

J kg�1K�1 in the MR materials with the phase transition temperature near the hydrogen

liquefaction.[8] RB4 (R =Dy, Ho) have also been recently discovered to show a large mag-

netic entropy change achieved by a strong coupling between spin and quadrupolar degrees of

freedom.[9] However, to date, high magnetic fields, not lower than 2 T, have been necessary

to obtain a large entropy change, requiring large energy costs to operate a superconducting

magnet.

A large �SM is related to a large magnetization change with varying temperature. For

this reason, ferromagnetic (FM) materials at their Curie temperature TC have conventionally

been considered for MR applications. Figure 1(a) shows a simple MR cycle A!B!C!A
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of a model FM material. Most reduction of the magnetic entropy can be realized only by

application of a magnetic field for which the Zeeman energy becomes comparable to the

thermal energy at TC. The required magnetic field is typically more than several Teslas

in the temperature range between the hydrogen (20.3 K) and nitrogen (77 K) liquefaction

temperatures. Thus, use of stronger magnetic fields leading to larger �SM in FM materials

has been considered more suitable for hydrogen liquefaction, even though the energy cost

of generating the magnetic field steeply increases in proportion to the square of the field

amplitude.

In this study, we note that magnetic materials exhibiting a large magnetization jump

(meta-magnetization) show a large magnetic entropy change �SM in a narrow magnetic

field range. In this case, the magnetization change achieved in minor cycles, A0!B0!C0!A0,

using a tiny field change can be almost identical to those obtained in the major A!B!C!A

cycle (shown in Fig. 1(b)) and cause a su�cient MR e↵ect. There are some examples to show

a large magnetization change in a narrow magnetic field range; for example, rare earth inter

metallic ErCo2[11] and oxide ceramic (Sm0.5Gd0.5)0.55Sr0.45MnO3.[12] In both cases, however,

it is necessary to apply a magnetic field higher than 3 T to change the magnetization. On

the other hand, the rare single metal holmium (Ho) exhibits a large magnetization change

in a smaller magnetic field lower than 1 T for the temperature range from 20 K to 50 K as

described bellow. Therefore, we selected the holmium (Ho) and studied its magnetocaloric

properties. Consequently, the large MCE can be driven by a tiny vibration of the magnetic

field, resulting in MR without a large energy cost.

Ho is known as an antiferromagnetic (AFM) material with helicoidal spin structure.[13–

16] The phase transition from the paramagnetic to AFM helicoidal phases occurs at T = 132

K, which is followed by appearance of the ferromagnetic phase below T = 20 K in zero

magnetic field.[13] The MCE of Ho in a strong magnetic field (6 T) has been reported.[17]

However, in some AFM cases, such as Ho, a large and steep magnetization change, caused by

the metamagnetic transition, occurs even when a small magnetic field is applied. The critical

field, µ0Hc, that results in a large magnetization change is much smaller than that generated

by a superconducting magnet; for example, µ0Hc = 0.2 T at T = 20 K, and µ0Hc = 1.0

T at T = 50 K. A large change can also be driven by a tiny variation of magnetic field

�µ0H ⇠ 0.4 T at each µ0Hc. We thus anticipate that an e�cient MCE can be obtained

in Ho without using a strong magnetic field.
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Results and Discussion

Magnetic entropy change

Steep and large magnetization changes were observed in Ho single crystals when a mag-

netic field was applied along the hexagonal [101̄0] direction (Fig. 2). The changes are caused

by the metamagnetic phase transition corresponding to a magnetic structure change from

the spiral structure (spin-slip structure) to the FM (T < 10 K) or the other spiral structure

(T > 10 K).[18, 19] The field-induced spiral structure, called the helifan structure, which

has many propagation vectors including the higher harmonics, possesses a uniform magne-

tization with M = 3 T at T = 10 K, which is described in detail elsewhere.[20, 21] It is

important to note that the steep magnetization change occurs with a tiny magnetic field

change at each temperature. The spin arrangement is therefore drastically changed only in

the narrow field region.

From the magnetization at various temperatures shown in Fig. 2, we estimated the

magnetic entropy change, �SM(µ0H1, µ0H2), induced by changing the magnetic field from

µ0H1 to µ0H2. Figure 3 shows �SM(0, µ0H) in the case that the magnetic field increases

from zero. It can be seen that �SM(0, µ0H) remains almost zero below the metamagnetic

transition field µ0Hc; then, it abruptly decreases at µ0Hc and again becomes constant.

The magnitude of �SM(0, µ0H = 2 T) is roughly �10 J kg�1 K�1 at µ0H = 2 T. The

Relative Cooling Parameter was estimated to ⇠ 0.5 kJ/kg at µ0H = 2 T. (see also in

supplementary Figure 3) This magnitude is comparable to �SM(0, µ0H = 2 T) for the

typical magnetocaloric material HoAl2 and is much smaller than the �SM(0, µ0H = 9 T)

of �28 J kg�1 K�1 for that same material. It is, however, too hasty to conclude that Ho

is inferior to HoAl2, because the increase of �SM(0, µ0H) with magnetic field is gradual

despite the fact that the energy cost of generating a magnetic field of 9 T is (9/2)2 times

larger than that for 2 T.

In this context, it is valuable to introduce a new figure of merit: the magnetocaloric

e�ciency index, defined as ��SM(µ0H1, µ0H1 + �µ0H)/�µ0H. As shown in Fig. 4,

��SM(µ0H1, µ0H1 + �µ0H)/�µ0H of Ho is quite high only in the narrow range around

µ0Hc(T ). The height, |�SM |/�µ0H = 32 J kg�1K�1T�1, is one order of magnitude larger

than that of HoAl2, as shown in the inset. This shows that MR can be made highly e�cient
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not only by changing the magnetic field from zero but also by using the narrow range where

the metamagnetic transition occurs. Needless to say, it is not practical if the absolute am-

plitude of the temperature change in a refrigeration cycle is too small in comparison with

the temperature di↵erence required for refrigeration devices, regardless of e�ciency; hence,

the actual temperature change caused by such magnetic field changes in Ho was examined

next.

Direct measurement of temperature change

In order to confirm that a Ho sample is actually cooled/heated by the proposed process,

we measured temperature change, �T , by reading a temperature sensor placed directly

on the Ho sample (within the adiabatic condition). The measurement was performed by

applying a small magnetic field of µ0Hac = 0.4 T on a bias magnetic field of µ0H0. The

µ0H0 was changed from 0 to 1.6 T every 0.1 T. In the case of µ0H0 = 0.5 T, the sample

temperature rose from 28.2 K to 29.7 K when the magnetic field was changed from 0.5 T to

0.9 T, and returning the field to 0.5 T returned the temperature to 28.2 K (see the inset of

Fig. 5(b)). Such thermal cycles with amplitudes approximately 1 – 1.5 K were observed for

the conditions µ0H0  µ0Hc  µ0H0 +�µ0H, whereas small temperature changes occurred

under other conditions, as shown in Fig. 5(b).

As mapped in Fig. 5(a), the bias field conditions were in agreement with predictions

from �SM(µ0H0, µ0H0 + �µ0H) (Fig. 3). In other words, adjusting the bias field enables

us to cool the sample by 1 – 1.5 K at any temperature in the range between 20 K and

50 K. The relative amplitudes of these temperature changes correspond to several percent

of the initial temperature and are comparable to those of conventional MR materials that

have been examined for commercial refrigerators.[24] On the other hand, their absolute

amplitudes seem much smaller in comparison with the requirements to cool a gas at 77 K

to the hydrogen liquefaction temperature range. To solve this problem, we must consider

utilization methods that can apply the excellent performance observed in Ho in practical

MR systems.
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Practical system

In this section, we discuss a practical MR system that uses small magnetic field changes

and Ho metal. The MR system called Active Magnetic Regenerator (AMR) was introduced

by Barclay and Steyert in 1982.[25] AMR refrigerator prototypes have been demonstrated

using superconducting magnets (4–7 T).[26] For the AMR system, it is necessary to dis-

tribute di↵erent types of magnetic materials that have di↵erent transition temperatures, in

order to obtain a large MCE in di↵erent temperature ranges (Fig. 6(a)).[25, 27]

We propose the AMR system with Ho shown in Fig. 6(b). Because the temperature at

which �T reaches its maximum value significantly depends on the bias magnetic field µ0H0

in Ho (Fig. 5), the system can be realized by a combination of a fixed µ0H0 distributed in

space and an oscillating field �µ0H distributed in time. The MR system is composed of (i)

some pairs of permanent magnets with di↵erent constant magnetic fields, (ii) magnetocaloric

material (Ho) movable in its position inside the system, and (iii) refrigerant (Helium gas).

Helium is a gas even below 20 K and chemically inactive. Aligning pairs of permanent

magnets, one can realize spatial distribution of the bias magnetic field µ0H0 from 0.2 T

to 1.2 T. To change the magnetic field, the whole magnetic material is moved horizontally

(in the figure) to the nearest permanent magnet position so that �µ0H = ±0.2 T. The

magnetocaloric material is an assembly of small pieces of single crystals so that the gas

refrigerant can flow among the pieces.

The operation of the system is performed as follows (Fig. 6(c)):

1. Moving the magnetocaloric material from the i-th position to the neighboring per-

manent magnet adiabatically, one obtains additional magnetic field at the i-th position,

µ0H
i

0+�µ0H. Then, the temperature of the magnetocaloric material rises from the original

value T
i

0 to T
i

0 + �T
i

1 due to the entropy change at position i. The additional quantity of

heat expressed as �q
i

1 is generated at the i-th position.

2. The system is connected to one thermal bath (high-temperature side) and loses a total

quantity of heat �Q1 =
P

�q
i

1 by the gas refrigerant flow. The temperature of the magne-

tocaloric material is returned to T
i

0 at the i-th position.

3. After returning to the adiabatic condition, the magnetocaloric material is positioned back

to the origin, resulting in magnetic field change at the i-th position back to µ0H
i

0. Then, the

temperature of the magnetocaloric material decreases from T
i

0 to T
i

0 ��T
i

2. The additional
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quantity of heat at the i-th position is ��q
i

2.

4. The system is connected to the other thermal bath (low-temperature side) and loses heat

�Q2 =
P

��q
i

2, making the system temperature return to T
i

0. Then, the system cools the

thermal bath by �Q2 =
P

��q
i

2.

In the present AMR system with Ho, it is not necessary to use di↵erent materials to

obtain a large MCE at di↵erent positions. The temperature that shows a large �T can be

varied by selecting the position of the material under di↵erent bias magnetic fields. The

highest e�ciency can be achieved in the wide temperature range from 20 K to 50 K. In

other words, the temperature dependence of �SM can be e↵ectively flat and the value

can be kept at a high level over the entire the temperature range. Actually, the level for

�µ0H = 0.4 T in Ho is comparable to�SM that is achieved by using a well-designed complex

material (ErAl2)0.312/(HoAl2)0.198/(Ho0.5Dy0.5Al2)0.490 for �µ0H of 3 T.[28] Furthermore,

the temperature gradient can be actively adjusted by controlling the field magnitude in

accordance with continuous temperature readings.

Potential materials

We also investigated what types of materials, other than Ho, can be used for the pre-

sented AMR system. The material should show steep magnetization change with varying

temperature and magnetic field. ErCo2 is a known magnetocaloric material with a first-order

magnetic phase transition, which has a large ��SM = 33 J kg�1K�1 at 5 T.[11] Above the

magnetic phase transition temperature 32 K, ErCo2 shows a metamagnetic phase transition;

for example, µ0Hc = 1.6 T at T = 35 K. The estimated maximum magnetocaloric e�ciency

index for ErCo2 is ��SM/�µ0H = 29 J kg�1K�1T�1 at µ0H = 2 T and T = 36 K, which

is comparable to the case of Ho. However, the field needed to achieve metamagnetism in

ErCo2 above T = 36 K, such as µ0Hc = 3 T at T = 38.5 K and µ0Hc = 4.2 T at T = 42.5

K, might be too high to reach by using permanent magnets.

Another rare earth single metal, dysprosium (Dy), also shows metamagnetism with low

phase transition fields (µ0Hc < 1.1 T) for the temperature range between 85 K and 178.5

K.[29] The magnetization curve with increasing field in Dy is similar to that of Ho apart from

the temperature range. We therefore expect that Dy has a comparable ��SM/�µ0H value

and would be useful for the presented AMR system for cooling in a di↵erent temperature
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range. There are some other materials that show metamagnetism. In Co(S0.88Se0.12)2, the

working temperature range is from 10 K to 60 K, and the field required ranges from 2 T

to 7 T. [30, 31] (Sm0.5Gd0.5)0.55Sr0.45MnO3 also shows a steep magnetization change for the

temperature range from 70 K to 120 K, and the critical field is from 1 T to 6 T for this

range.[12] Therefore, these materials are not suitable for the presently proposed system or

hydrogen liquefaction due to the high working temperature and the high required fields. We

thus argue that Ho metal is one of the best materials to use for the presented AMR system

with the combination of a normal electromagnet and permanent magnets.

Conclusion

In summary, MR research has long concentrated on searching for materials that show a

large entropy change in a strong magnetic field. Here, we have proposed a system in which

a tiny magnetic field change �µ0H  0.4 T on top of a small magnetic field µ0H0 < 1

T achieves e�cient MR by using a material (holmium) that exhibits steep magnetization

changes in a small magnetic field. It should be emphasized that the present work does not

find a large conventional magnetocaloric e↵ect, corresponding to �SM in a high magnetic

field. We have presented in this paper that a tiny change of magnetic field can achieve the

high e�cient MR by using materials with steep magnetization changes such as holmium.

In addition, it is not necessary to use a superconducting magnet with large operation cost

in the present system. The proposed technique is a suitable alternative to conventional gas

compression–based cooling for hydrogen liquefaction and could become a standard technique

for low-temperature MR. Finally, it is hoped that this work opens a new research field focused

on low-field MR for realizing low-cost MR in the near future.

Method

A single crystal of Ho was purchased from the Crystal Base company, Japan. The sample

was cut into small pieces of 8 mg for magnetization measurement, and into plate-like shapes

with dimensions approximately 5 ⇥ 5 ⇥ 0.5 mm3 and 276 mg mass for the thermal mea-

surement. For magnetization measurement, we used the magnetic properties measurement

system (MPMS) manufactured by Quantum Design (QD). For direct measurement of tem-
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perature change, a zirconium oxy-nitride thin-film thermometer called CernoxTM (CX-SD,

Lake Shore Cryotronics) was placed on the large surface of a plate-shaped sample with a

small amount of Apiezon N grease. The sample assembly was inserted into the QD physical

properties measurement system (PPMS). Temperature and magnetic field were controlled by

the PPMS. The sample space was continuously pumped by a turbo pump and the pressure

was kept below 10�5 Pa (10�7 torr), to reach adiabatic conditions.

Data availability

The data that support the plots within this paper and other findings of this study are

available from the corresponding author upon reasonable request.

Code availability

No computer code was used in this study.
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Figure legends

FIG. 1: (a) Thermal variation of magnetic entropy change in typical magnetic fields (H) from

H/J = 0 to H/J = 5.0 (where J is the ferromagnetic exchange constant) for ferromagnetic cases

simulated in a previous theoretical study in Ref. [10]. The temperature is normalized to the Curie

temperature TC. (b) Schematic illustration of magnetic refrigeration (MR) cycle for the case of

antiferromagnetic (AFM) material that shows a metamagnetic phase transition. Magnetic fields

are represented by zero field µ0H = 0 and finite fields H1 < H2 < H3 < H4 < H5. For the

AFM case in (b), the metamagnetic phase transition occurs over a small magnetic field change,

�H = |H2 �H3|, during the MR cycle A0!B0!C0!A0.
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FIG. 2: Magnetization curves along the hexagonal [101̄0] direction at temperature from 2 K to 200

K in holmium single crystal.
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FIG. 3: Magnetic entropy change �SM as a function of temperature and magnetic field along the

hexagonal [101̄0] direction in holmium single crystal. The �SM data are estimated by Eq. (1)

with an integral range from µ0H1 = 0 T to µ0H2 = µ0H, from the observed magnetization data.
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FIG. 4: Magnetic field dependence of magnetic caloric e�ciency, ��SM/�µ0H (J kg�1K�1),

for the temperature range from 20 K to 45 K in Ho. The magnetic field was applied along the

hexagonal [101̄0] direction. The ��SM/�µ0H data are calculated by ��SM divided by �µ0H =

0.1 T. The ��SM is estimated by using Eq. (1) with the integration range from µ0H1 = µ0H

to µ0H2 = µ0H + �µ0H. For comparison between the present results and those for a typical

magnetocaloric material, the e�ciency for ferromagnetic HoAl2 is also shown in the inset. The

data for HoAl2 were taken from a previous paper.[22]
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5

FIG. 5: (a) Mapping of temperature change �T as a function of the bias magnetic field µ0H0 and

temperature. (b) Typical heat cycles when the magnetic field rises from each µ0H0 by �µ0H = 0.4

T. The inset shows a magnification of the most e�cient cycle for µ0H0 = 0.5 T and T = 28.2 K.
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FIG. 6: (a) Schematic illustration of a cross section of Active Magnetic Regenerator (AMR)

setup.[2, 26] The AMR constitutes a superconducting magnet, magnetocaloric materials, refrig-

erant space, and heat baths (low- and high-temperature sides). The magnetocaloric materials

have di↵erent phase transition temperatures to obtain a large magnetocaloric e↵ect at each posi-

tion. (b) Possible setup of the proposed magnetic refrigeration (MR) system using a small change

of magnetic field. The system constitutes pairs of permanent magnets, magnetocaloric material

(holmium), refrigerant space, and heat baths. The set of permanent magnets generate a magnetic

field gradient from 0.2 T to 1.2 T as a bias magnetic field µ0H0 to change the magnetic phase

transition temperature of the magnetocaloric material Ho. The magnetic field change �µ0H is

realized by mechanically moving the magnetocaloric material in the horizontal direction in this

figure. (c) The MR cycle of the proposed AMR system. The gray color in the magnetic field and

temperature graphs denotes the bias field µ0H0 and the original temperature T0, respectively. The

colored areas in the graphs are the changes in the magnetic field �µ0H and temperature �T .
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