Supplementary Information

Supplementary Note 1: SBayesS model

Let us consider an individual-level data-based multiple regression model in a GWAS data set:

y=X8+e (1)

where y is the vector of phenotypes adjusted for all fixed effects, X is the column-centered genotype matrix, 3 is
the vector of SNP effects, and e is the vector of residuals with Var (e) = Io? for a sample of unrelated individuals.
Assuming Hardy-Weinberg equilibrium (HWE), the variance of the genotypes of SNP j is h; = 2p;q;, where
p; is the minor allele frequency (MAF) and ¢; =1 — p;. Let D be a diagonal matrix with D; = X;-Xj = hjn;,

where n; is per-SNP sample size. Multiplying both sides of (h]) by D™'X’ gives
D X'y =D 'X'XB+ D 'X'e (2)

Note that D~'X'y = b, the vector of least square estimates of SNP marginal effects from GWAS, and D1X'X =
D—:BD: where B = D~:X’XD": is the linkage disequilibrium (LD) correlation matrix among all SNPs [1].

Let € = D™!'X’e. Then, (H) can be written as

b=D:BD!3+e¢ (3)
Or, in a scalar form,
e
b= B; : 4
’ k=1 hjn; Pt @

with m being the total number of SNPs. Let O'g(]_, og(k and oy, x, denote the genotype variance of SNP j and

k and their covariance. Then, (H) can be simplified to

1 \/ZT;@Xj-,Xk Br + € (5)

where 3 X Xe = 0X;.X,, / o'g(j is the regression of SNP k on that of SNP j. In other words, we model the marginal
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effect of each SNP as a linear combination of other SNP effects with the weights being a function of regression
coefficient of SNP genotypes and per-SNP sample sizes. In contrast to the identity structure of residual variance

in (h]), the residuals in (H) are not independent in the presence of LD, because

Var(e) = Var (D 'X'e)
= D 'X'XD!o2

D :BD :o2 (6)



Let W =D :BD? and R = D~:BD~ 2. Finally, from (3) we have
b=Wg+e (7)

with Var (e) = Ro?2. This is a generic form of summary-data-based Bayesian regressions (SBR), which is similar
to the RSS model of Zhu and Stephens [2].

As in BayesS [3], we assume the effect size is related to MAF through parameter S:
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where S, 0/23 and 7 are considered as unknown. The prior for S is a standard normal distribution
S~ N(0,1)
The prior for 7 is a uniform between zero and one, namely
m ~ Beta(1,1)
The prior for 0'[23 is a scaled inverse chi-square distribution
J% ~ VgTEX;;

where vg = 4 and
vg — 2 Vph%
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where Vp is the phenotypic variance estimated from the summary statistics (as shown below) and h3, 7o and
Sy are the prior knowledge of SNP-based heritability, 7 and S, resepctively. Similarly, we give a scaled inverse
chi-square prior for o2 in (6)

oL~ VTN

where v, = 4 and

2=V 2y (1 k)
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We estimate the phenotypic variance of the trait following Yang et al [1]’s approach, which is based on the
stadard error of the marginal SNP effect estimate from GWAS. Because
of y'y — X X;b?

SE?2 = =
7 XX X/ X;




where O'JZ is the residual variance for the GWAS model fitting SNP j. Rearranging gives
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The phenotypic variance Vp is then calculated as the median of Vp ; across all SNPs [1]. Since Dj; = 2p;q;n;
but the allele frequencies from the publicly available summary data are often not exact, we substitute Vp ; by
Vp in (9) to reestimate p; given the input values of SEj;, b; and n;.

We call model (7) with the above prior as “SBayesS”. Specifying a different prior distribution to §; gives
SBR form of other Bayesian alphabet models. For example, a mixture prior of normals with different variances
for ; under SBR framework becomes SBayesR [4].

As shown above, when the LD correlations are computed using all SNPs in the GWAS sample, SBayesS
model is a linear transformation of the BayesS model without loss of information, in which case the two models
are equivalent in terms of posterior inference (Section ). However, it is impractical to store pairwise LD
correlations of all genome-wide SNPs in the computer memory and not always feasible to access individual-level
genotypes of the GWAS sample. Thus, we propose to use a sparse LD matrix that is computed from a reference
sample, ignoring the small LD correlation estimates due to sampling variation. In this case, SBayesS becomes
an approximation to BayesS. Assuming the LD reference sample is a random draw from the same population
of the GWAS sample, the discrepancy between SBayesS and BayesS arises from the sampling variance of LD
correlations used in SBayesS. Ignoring the sampling variance of LD estimates may cause a failure to converge
in the Markov chain Monte Carlo (MCMC) sampling process or a bias in parameter estimation (Section ). In
this study, we model analytically the sampling variance of LD estimates as part of the residual variance and
allow the estimate of residual variance to vary across SNPs (Section ). We show the MCMC sampling scheme

for the model parameters in Section and an efficient updating stragety in MCMC in Section .

Equivalence between SBayesS and BayesS

Here, we show that when the LD correlations are computed using all SNPs in the GWAS sample, SBayesS and
BayesS models are equivalent in terms of posterior inference. Without loss of generality we assume 7 = 0, the

posterior distribution of 3 in SBayesS is

f(B|b,else) o f(Db ,@,else) f(B)
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Note that

WR™'W = D:BD :D:B 'D:D :BD:
— D:IBD:
= DiD :X'’XD:D:

= X'X

and

WR"!b = D:BD :D:B'Dtb
— Db

= X/y

Thus, the posterior distribution becomes
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This is equivalent to the posterior distribution given the indivdiual genotype and phenotype data. It can be

f(B]Db,else) x exp {—

2
I@/ (X/X+ Z;G—l> ﬂ+2,3,X/y

shown that the above is the kernel of a multivariate normal distribution, i.e.
B|b,else ~ MV N (C'r,C™'0?)

where C = WR™IW +

022 G 1l=XX+ Z—;G_l and r =W'R7'b = X'y. It is recognized that C and r are the
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left- and right-hand sides of the mixed-model equations

[WRT'W+G'A]3 = WR™'b (10)
C r

with A = 02/ U%. It can be further shown that in the Gibbs sampling, the full conditional distribution of j;

is

’I“j 0'3
Bj |b,B_;,else ~ N a,a (11)
where
1 1
rj = Djbj—> DZ?BjyDi B (12)
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Consequence of ignoring LD sampling variation
The consequence of using a sparse LD matrix is that it can potentially bias the mean of the full conditional
distribution for 3;. Let k denote a SNP in nonzero LD with the target SNP and [ denote a SNP that does not
have significant LD with the target SNP. The r; in (12) can be written as
1 1 1 1
r; = Djbj— Z D? Bj.D; Br — Z D? By D} By
k 1
1 1
= Djbj— Y DZBjD} B —t;
k

= r*_ tj (13)

The full conditional of 5; in (11) becomes

Pt g2
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When reduced LD matrix is used, Bj; is set to be zero, we therefore completely ignore ¢; and do not adjust the
mean of the full conditional by the effects of SNPs in very low LD. However, although individual LD is trivial,
the sum of them can be substantial after multiplied by n because Var (35, X;X;) = D;Var (3, Bji) o« nm

under the null. This may break the property of MCMC and fail the Gibbs sampling.

Modelling LD sampling variance

The use of a sparse LD matrix from a reference sample will result in two sources of sampling variation. The
first is the difference in sampling variance between the reference and GWAS samples for the LD correlations
included in the sparse LD matrix. The second is the sampling variance of LD correlations that are set to be
zero. As shown above, ignoring these sampling variations will result in a bias of the mean in the full conditional
distribution of 5; and thereby biases in the estimation of other model parameters. Here, we account for both
sampling variations in the model, as described below.

Suppose the observed LD correlation between SNP j and k equal to the true population LD (p,i) plus a

deviation (tilde refers to the LD reference sample):

Bjr = pjk+jk

Bijr = pjx+ gjk
Then, the LD correlation in the GWAS sample is

Ejk + 6j — gjk if Pjk 75 0
o[ B )
ik if pjr =0



Let Aj; denote the unobserved quantity in (14), i.e.

In (7), we can write

W=W"4+W"~ (15)

where W = D~2BD: is the observed data, and W~ = D=2 AD? is not observed. Substituing (15) in (7) give
b=W'B+n (16)

where 7 = W™ 3 + € are the new residuals that contain difference in sampling deviation of LD between the
GWAS and reference samples when the population LD is not zero, and sampling deviation of LD in the GWAS
sample when the population LD is zero.

Conditional on A, the residual variance is
Var (n]|A) = W'GW~ 02 + Ro? (17)

with R = D~ :BD . However, this cannot be computed because A is not observed.

Considering both 3 and A as random, the diagonal value of Var (n) in 16 is

Var(n;) = E[Var(nilAj)]+ Var[E(n;]A;)]
= E[(W;) GW;or+ D;'02] +0
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When pji, # 0,

Var(Ajg) = Var () + Var (gjk) —2Cov <5jk,gjk)
(=) (=) ;
= y + i —2Cov <5jk,5jk) (19)

If there is no sample overlap between the LD reference and GWAS samples, then Cov <5j;€,gjk) = 0. If we
compute LD from the GWAS sample itself, then Var (Aj;) = 0.
When pj;i, =0,

1
Var (Ajk) =Var (6jk) = ;
J

If we estimate p;i by éjk and assume there is no sample overlap between the LD reference and GWAS
samples, substituting these results in (18) gives

Var(n;) = Dt

; (20)

0
n; m;
—Ls3+—L | o) +0?
m m

where m? is the number of SNPs not in population LD with SNP j, 02 is the trait genetic variance, and

is the total sampling variance for non-zero LD. In practice, we approximate p;. by Ejk. In the absence of
sample overlap between the LD reference and GWAS samples, Cov <5jk,5jk) = 0. In the case of complete
sample overlap, s? =0.

Similarly, considering both 8 and A as random, the off-diagonal value of Var (n) in 16 is

Cov (n;,mr) = E[Cov(n;,ni| Ay, Ap)]+ Cov[E (0| Aj), E (| Ag)]
= E[(W;) W, o} + D, ByD; to?| +0
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Thus, the sampling variance of LD correlations only affect the diagonal but not off-diagonal values of the residual
variance.

According to the derivation above, we have the following observations:

1. The LD sampling variance only affects the variance but not covariance of the model residuals. Thus,

accounting for the LD sampling variance in the Gibbs sampling of j; is straightforward (see below).



2. The LD sampling variation has two components, one due to the use of a different reference sample for LD
information and the other due to the use of a sparse LD matrix, both of which are proportional to the

0
genetic variance. If LD are estimated from the GWAS sample, Var (n;) = Dj_1 (%O’g + Jf). Further, if

the genome-wide full LD matrix is used, Var (n;) = Dj_log, the same as that in (6).

3. If SNP j is independent of all other SNPs, m$ = m—1and s7 = 0. Therefore, Var (n;) = Dj_1 (2=l 4 02) =

m

D; ' (02 —0?) =D;* (yly - Dy aé) /n; , which is the residual variance under a single-SNP GWAS model.

4. Under some conditions, e.g., small n; but large n;, s? can be greater than 1. Thus, in the presence of

LD sampling variance, the total residual variance (in the square brackets of (20)) can be greater than the

phenotypic variance of the trait.

MCMC sampling scheme

The joint distribution of the data and parameters in model (7) is

f(b,,B,’ﬂ',S,O’%7J§) o |RO—§ 7% exp{_Qig (b_W/B)/R_l (b_Wﬂ)/}
m 1 2
X ]1;[1 [(hj 05) 2exp{—2hfjgg}7T—&—q5(1—7r)]

To obtain a joint posterior sample for parameter inference, we iteratively sample each parameter from its full
conditional distribution. Except S, the full conditional distribution has a closed form for all the parameters, as
shown below.

To deal with the mixture prior for ;, we introduce an indicator variable §;
0; ~ Bernoulli(m)

such that

~ N(0,h303), &;=1
Bi

=0, 5;=0

We first sample §; unconditional on 3; and then sample §; conditional on §;, which has been shown to have

slightly better mixing. The full conditional distribution for ¢; is

0; |b, else ~ Bernoulli(i)



where

f(b|d; =1,else)m

= f(blo; =1,else)m+ f(b|d; =0,else) (1 —m)
f(blé; =0,else) 1 —7 !
= |1 21
+f(b|5j=1,else) ™ (21)
It is obvious that
_1 1 , _
f(b|6; =0,else) = (2 |R|o?) 2 exp{%‘2 adi R 1badj} (22)

where begi =b -3, oy W . B is the adjusted b for all the other SNP effects except SNP j. Fortunately, we do
not need to compute this quantity because it will be cancelled in the likelihood ratio in (21), as shown below.

For f(b|d; = 1,else), to be unconditional on f;, we compute
f(bl|d; =1else) = /f(b|(5j =1, B;,else) f (B;) dp;

" | 2\ ()’
(27 [R|02) * exp {—ngdelbadj} (M) exp { 20102* } (23)
e JBY Je;

This equation is derived based on integrating /3; out of the joint distribution of b and 3;, which is closely related

to the full conditional distribution of 3;, as shown next. Also see below for the definition of USJ’_*, C7 and rj.
Substituting (22) and (23) into (21) gives the full conditional probability for ¢; = 1.
Let ag;‘ = (%53 + ﬁ) 03 + 02, which explicitly models the sampling variation of LD as described above.

The full conditional distribution of §; (11) is

Bj

b8 else ~ N (2 % 24)
7—j7eseN Cj*aC]* (

2%
with 7% as in (13) (ignores ¢; the cumulative effects of SNPs in chance LD) and C} = D; + has% It can be
598
seen that instead of adjusting for the “leftover” effect from the mean, we shrink the mean towards zero while
increase the variance (uncertainty) of the posterior distribution, because agj /Cr =1/ (Dj / Uz: +1/h3 O‘g).
Given the sampled values of § and 3, the full conditional distribution for , 0[23 and S is the same as in

BayesS, with the sampling procedure elaborated in the Supplementary Note of Zeng et al [3].

2

The full conditional distribution for the residual variance o; is

Jg |b, else ~ 1/873)(,;2 (25)

2

where ve = o + v, and 72 = (€'e 4+ v¢,72) /ve with v, and 72 being the prior values. The residual sum of

squares (€’e) can be computed as



de = (y—XB)(y—XB)
= yy-28Xy+8XX3
Yy —28'r + B (r —rag;)

Yy = B'r — B'raq (26)

where r = Db and r,q; =r — XX is the adjusted right-hand-side from the right-hand-side updating strategy
(see below). The total sum of squares y'y is computed from (9) and the median is used as the estimate of y'y

in (26).

The right-hand-side updating strategy and parallel computing

The MCMC implementation requires a computation of r; in (12) for m x ¢ times where m is the number of
SNPs and t is the number of MCMC iterations. This is where the most majority computing time is spent. It
can be seen from (12) that the summary-data level model is already much more efficient than the individual-
data level model, because the vector-by-vector products Xg»y and X}Xk are replaced by scalar products D;b;
and Dj% BjkDé . However, the adjustment of D;b; (the right-hand-side r of the mixed-model equations (10))
for all the other SNP effects is still too computationally intense given over a million of SNPs. To improve
computational efficiency, we adopted the so-called right-hand-side updating algorithm for genomic prediction

in the context of animal breeding [5]. We set out to compute a vector of adjusted right-hand-side
reg =r—Cg3

, where r = Db and C = DzBD2 (note that here C is defined different from that in (10)). For each SNP, we
compute

i = Tadj; + CjjB;

and use r; in the full conditional distribution of 3; (24). After a new value of 3; is sampled, we update the
adjusted right-hand-side

1d 1d
g =Toq +Cj (87 — ;)

The benefit of this updating strategy comes from three sides. First, the computation of r; for each SNP becomes
trivial (reducing from vector to scalar operation). Second, the vector of r,q; needs to be updated only when
either B}’ld or 6§Lew is not zero, thus the sparse genetic architecture will lead to a substantial gain in speed.
Third, due to the use of a sparse LD matrix, the vector of C; has a large proportion of zero and therefore only
a small fraction of r,g4; according to nonzero C; elements needs to be updated. In summary, the right-hand-side
updating strategy substantially improves computational efficiency by taking the advantages of the sparse genetic

architecture and the sparse LD correlation matrix. We further improve the efficiency by implementing a parallel

10



computing for sampling 3; of SNPs located on different chromosomes, and then combine results across threads
to estimate the global parameters such as m, 0[23, S and etc. This led to about 4 times faster when 4 cores were

used with OpenMP library in our real trait analysis.

Algorithm pseudocode

Our SBayesS algorithm is implemented in GCTB based on the following pseudocode:

Algorithm 1 SBayesS algorithm

1: Initialise parameters and read summary statistics
2: Reconstruct X’X and X'y from summary statistics and LD reference panel (D = diagonal elements of X'X)
3: Calculate r* = X'y — X'X3
4: for i = 1 to number of iterations do
5: for 7 = 1 to number of SNPs do
6: Calculate Ug;,* = (%sf + ﬁ) 02 +0?
7: Calculate the right hand side r; = r; — D;f3;
o2*
8: Calculate the left hand side C; = D; + 0,578
9: Calculate the posterior probability flor 0; = 1 with Pr(§; = 11|b,6P) = exp[log(Lol)_log(Ll)], where
log(Lo) —log(L1) = log(1 — m) — 0.5(log(C; ") — log((2p;q;)°03) + C;'r3) —logm
10: Sample d; based on the posterior probability
11: if § =1 then .
12: Sample 3; from the full conditional distribution N (&, Uci] )
J J
13: Update r* = r* + X/Xj(ﬁ§z_1) — B;), where X'X; is the j'h column of X'X and ﬂ](z_l) is the
sampled value from the last iteration
14: else
15: if BJ(.“U = 0 then
16: Update r* =r* + X’Xjﬁj(-i_l)
17: end if
18: end if
19: end for
5
2 .. . . . 2. —2 . (2piq:)S +Uﬁ@ TﬁO)
20: Sample o7 from the full conditional distribution vg75x,, * with vg = my.+vg, and 753 = —r
21: Sample S from the full conditional distribution using HMC algorithm
22: Sample 7 from the full conditional distribution Beta(myz + ag,m — myz + bo)
e'etve, 12 .
23: Sample o2 from the full conditional distribution v.72x; 2, where v, = n+ v, and 72 = (tlioeo) with
ee=y'y - B'Xy-pr
24: Calculate the total genetic variance o2 = %
0,2
25: Calculate the SNP-based heritability h%yp = P
26: end for

Supplementary Note 2: Our genetic architecture parameter estima-
tors are subject to SNP set and sample size

SNP-based heritability (h%yp), polygenicity (m) and the relationship between MAF and effect size (S), all of
which are defined with respect to a certain set of SNPs (see the definition of h%y p as an example [6]). Because
the estimators for the genetic architecture parameters are based on the SNP markers rather than the actual

causal variants, the estimates therefore rely on the tagging of the SNPs to the causal variants. For example,
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our polygenicity estimate will be lower than that at the causal variants if many causal variants are not observed
and poorly tagged by the SNPs (as shown in Supplementary Figure 4 in Zeng et al. [3]). In addition to the SNP
panel, sample size can also affect our parameter estimates. As sample size increases, the polygenicity estimate
is expected to increase because of the increased power to detect nonnull SNPs with very small effect sizes until
all the genetic effects are detected. The other parameters, h% yp and S, are estimated based on the nonnull
SNPs, therefore the estimators of these parameters are also SNP set and sample size dependent.

Despite the expected differences, the parameter estimates from the real traits were by-and-large consistent
between different GWAS sample sizes. We randomly sampled 120k individuals from the UKBv3 dataset, per-
formed GWAS and ran SBayesS. The correlation was 0.99 for SNP-heritability, 0.95 for polygenicity and 0.81
for the S parameter (Supplementary Fig. 6¢). Compared to SNP-based heritability and polygenicity, the corre-
lation for the S parameter was lower. In addition to the reason that S depends on the SNPs that are identified
with nonzero effects and the number of which was larger with N=350k, the lower correlation for S was also
because the S parameter is a hyper-parameter, which is more difficult to estimate and thereby estimated with
a higher degree of uncertainly (i.e., a larger standard error).

To further investigate the property of our estimators, we performed a simulation based on the real trait
results. That is, for each of the 18 traits in our benchmarking analysis, we simulated a trait using the estimated
h%yxp, ™ and S as the true values for the heritability, the proportion of causal variants and the S at the
causal variants. Then, we ran SBayesS with the GWAS summary statistics computed with n = 350K or 120K,
excluding the causal variants in the SNP panel. Supplementary Fig. 7a shows that ﬁ% ~p Was slightly lower than
the heritability at the causal variants (because of imperfect tagging), 7 is slightly higher than the proportion
of causal variants (because of multiple SNPs jointly capturing a causal variant), and S is almost unbiased.
Supplementary Fig. 7b shows that the estimates with different sample sizes are highly concordant when the
SNPs have a good tagging ability (in the simulation, we sampled causal variants from the 1.1 million common
SNPs and left out the causal variants). This suggests that the additional variation and mean difference observed
in the real data analysis (Supplementary Fig. 6¢) are likely to be due to the insufficient tagging of HapMap3
common SNPs to the unobserved causal variants.

Finally, we ran SBayesS-strat with function annotations using the down-sampled dataset, and found a good
consistency for different sample sizes (correlation r = 0.99 for h%yp enrichment, r = 0.93 for polygenicity
enrichment, r = 0.87 for h3,, enrichment and 7 = 0.73 for the estimated S; Supplementary Figure 31). Given
a higher degree of uncertainty (a larger standard error), the S parameter estimates with the two different sample
sizes were reasonably consistent, although the correlation for the S parameter was lower than that for h% np and
polygenicity as explained above. Compared to the per trait estimate (Supplementary Fig. 6¢), the polygenicity
enrichment estimates in the stratified model were much less sensitive to sample size because the extra number
of small effects detected by a larger sample size in a functional category is likely proportional to that in the

whole genome and therefore cancelled out in the ratio.
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Supplementary Note 3: Simulation of GWAS summary statistics

The objective is to simulate the GWAS summary statistics b and their stanadard errors with an arbitrary

sample size n given a reference sample. Consider model

y=XB+e

Let D be a diagonal matrix with D; = 2p;q;n;. The genotype matrix X is centered but not standardised.
D X'y =D 'X'X3 +D X'e
Let B be the LD correlation matrix.

b=D:BD:3+D 'Xe

=b+e

Assuming normality,

b~ N (D—%BD%ﬁ,D—%BD—%af)

The LD matrix B is estimated from the reference sample of a relatively small sample size. In order to
remove chance LD and facilitate computation, we follow the method in O’Connor and Price [7] to convert the
full matrix into a positive semidefinite block diagonal matrix. The first step is to convert the full matrix into a
block diagonal matrix with 50 blocks, each containing a LD window size of 2Mb (the total chromosome length

is 100Mb in the simulation). The next step is to perform an eigen decomposition on each block:
B, =V, %,V

To remove noise and ensure a positive definite LD matrix, we removed the non-positive eigenvalues in 3; and
the corresponding eigenvectors in V;. The last step is to re-normalize each block to have the diagonal values

equal to one:

where J; is the diagonal matrix corresponding to the diagnal of B;.
Thus,
b =D :B*D:j3

Since

— 11 -1
B} =1, "V,2?2 VI *

(3 (3

[NIE
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let uw ~ N(0,1), then

Thus,

2

where 0? ~ o;. The standard error of Ej (SE) is the square root of

Var <bj) = Dj_la?,j = Dj_1 (0’5 — 2quj@?>

Supplementary Note 4: Maximum likelihood estimation of S

Here, we derive the maximum likelihood estimate (MLE) of S given the true effect sizes (3) of m causal variants.

Since our model is

Bj ~ N (0. h7o3)

where h; = 2p;(1 — p;), the likelihood function is

m\»—A
[N

(Bl S.03) :f[ 95)

expd -
P thag

Thus, the log-likelihood function, after dropping out the normalising constant, is

m m 2

:—fZIOgh logag Z—g
j=1 ]

Taking the partial derivatives of £ with respect to S and 0%, respectively, gives

Zlogh + 507 22( 10gh>

oL -
507 = 307 2Zs

e
The MLE of S and 0'% can be obtained by solving the above equations that set to be zero. In the simulation

study, we used optim function in R to find the MLE of S.

Supplementary Note 5: Standard error of predicted evolutionary pa-
rameter

We estimated the standard eror of predicted evolutionary parameter by considering a random coefficient linear
model. Our model for predicting an evolutionary parameter is: 0=X' ,@ where X is a vector of the three genetic

architecture parameter estimates from SBayesS and their respective polynomial terms and ,5‘3\ is a vector of the
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weights estimated from the reference dataset of simulation. There are two sources of estimation uncertainty.
The first one is the uncertainty in estimating X by SBayesS. The second source is the uncertainty in estimating

,@ by the polynomial regression in training. The estimation variance of 9 can be therefore written as

where Var (X) is the variance-covariance matrix of the posterior estimates computed from the MCMC samples
of SBayesS and Var (B) is the estimation variance matrix of the weights obtained from the polynomial regression

in the reference dataset. The true values of X are unknown and therefore we replace them by their estimates X.
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Supplementary Figures
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Supplementary Figure 1 Benchmarking SBayesS with BayesS using the same data in the
chromosome-wide analysis across 18 UKB traits. The comparison was based on the unrelated
individuals of European ancestry in the interim release of the UKB data (max n=120k) and
~500k array genotyped common SNPs (MAF>0.01). In the SBayesS analysis, the full LD matrix
that included all pairwise LD was used for each chromosome. Data are presented as posterior

means +/- posterior standard errors.
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Supplementary Figure 2 Assessing the performance of SBayesS with different chi-squared
thresholds used to make the sparse LD matrix. We computed summary statistics for 18 traits
using the interim release of the UKB data (max n=120k) with ~1.1 million HapMap3 common
SNPs. The sparse LD matrix was computed from a random sample of 50k unrelated individuals
in the full UKB data with a chi-squared threshold of 6, 10 or 15 (corresponding to a r2 threshold
of 1, 2 or 3x10-4, respectively). a) Distributions of the numbers of SNPs detected in LD with the
target SNP given different chi-squared thresholds; b) Comparison between SBayesS results with
chi-squared thresholds of 6 and 10; c) Comparison between SBayesS results with chi-squared

thresholds of 10 and 15. Data are presented as posterior means +/- posterior standard errors.
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Supplementary Figure 3 Benchmarking SBayesS with BayesS given different SNP panels. We
used the unrelated individuals of European ancestry in the interim release of the UKB data (max
n=120k) and two SNP panels (~500k Affymetrix array SNPs and ~1.1 million HapMap3 SNPs)
for the SBayesS analysis. The sparse LD matrix was computed from a random sample of 50k
unrelated individuals from the full UKB cohort at a chi-squared threshold of 10. a) Comparison
between SBayesS and BayesS using array SNPs; b) Comparison between BayesS results using
HapMap3 and array SNPs; c¢) Comparison between SBayesS results using HapMap3 and array
SNPs. For a fair comparison of m between panels, the number of SNPs with nonzero effects is

shown in b) and c). Data are presented as posterior means +/- posterior standard errors.
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Supplementary Figure 4 Distributions of MAF of common SNPs (MAF>1%) in Affymetrix
Axiom array and HapMap3 from the interim release of the UKB data. The array SNP panel was
more enriched with low-frequency SNPs and had only a small overlap with the HapMap3 SNP
panel. This may explain the differences in genetic architecture parameter estimates between
array and HapMap3 SNPs (Supplementary Fig. 3). For example, the array SNPs might be more
efficient to capture the low-frequency variance and therefore had slightly higher total SNP-
based heritability. However, the majority of the common SNPs in HapMap3 Panel is believed to
have better tagging to the causal variants. Thus, it is reasonable that the polygenicity estimates
were lower than those with array SNPs because the model does not need multiple SNPs in low
LD with the causal variants to jointly capture the causal effects. Similarly, a stronger estimate of
S is expected because if the causal effects spread on multiple SNPs in LD, each SNP would have a
relatively small effect size, which will dilute the signal for the relationship between effect size

and MAF.
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Supplementary Figure 5 Benchmarking SBayesS with BayesS given different reference sample

sizes. We used the unrelated individuals of European ancestry in the interim release of the UKB

data (max n=120k) and ~500k Affymetrix array common SNPs. The sparse LD matrix was

computed from a random sample of a) 50k, b) 20k or c) 4k unrelated individuals from the full

UKB data at a chi-square threshold of 10. The inflation in parameter estimation increased when

the reference sample size was too small. When the reference sample size was 4k, SBayesS

analysis for height did not converge. Data are presented as posterior means +/- posterior

standard errors.
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Supplementary Figure 6 Benchmarking SBayesS with BayesS given different GWAS sample

sizes. a) and b) Comparison between SBayesS and BayesS using the unrelated individuals of

European ancestry in the interim (max n=120k) and full (max n=350k) releases of the UKB data

and ~500k Affymetrix array SNPs. ¢) Comparison between SBayesS results given GWAS sample

size of 350k and 120k using ~1.1 million HapMap3 SNPs. The sparse LD matrix used in SBayesS

was computed from a random sample of 50k unrelated individuals from the full UKB data ata

chi-squared threshold of 10. Data are presented as posterior means +/- posterior standard

errors.
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Supplementary Figure 7 SBayesS results of the simulation study based on the parameter

estimates from the real trait analysis. a) Comparison of parameter estimates based on the SNP

markers (causal variants excluded) and the true parameter values at the causal variants in the

simulation. b) Comparison of parameter estimates with GWAS sample sizes of 350K and 120K.

Data are presented as posterior means +/- posterior standard errors.
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Supplementary Figure 8 Benchmarking SBayesS with BayesS given different LD references.

We used phenotypes from a random sample of 300k unrelated individuals of European ancestry

from the full UKB data and ~500k Affymetrix array SNPs. The sparse LD matrix with a chi-

squared threshold of 10 used in SBayesS was computed from a) a subset sample of 50k UKB

individuals, b) an independent sample of 50k UKB individuals, or c) 50k unrelated individuals
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from the GERA dataset. d) When GWAS data were from the UKB European population, using a
sample (n = 9948) of South Asia ancestry as LD reference in SBayesS (1.1 million HapMap3
SNPs) resulted in a severe bias to the genetic architecture parameter estimates and a failure in
convergence for 11 out of the 18 traits (61%) with a chromosome-wide full LD matrix (all traits
were failed in convergence when using a sparse LD matrix with the default sparsity, i.e., chi-
squared statistic threshold of 10). Data are presented as posterior means +/- posterior standard

errors.
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Supplementary Figure 9 Comparison between SBayesS and SBayesRS for the analyses of 18
quantitative traits in the UKB. a) Estimates of genetic architecture parameters, i.e. S, SNP-based
heritability and polygenicity. b) Estimated number of SNPs that explain 0.001-0.01%, 0.01-0.1%
and >0.1% of the total SNP-based heritability in SBayesRS and SBayesS. Data are presented as
posterior means +/- posterior standard errors. c) Estimated number of SNPs with nonzero
effects as well as that in the small, medium and large mixture components in the simulation on
chromosomes 21 and 22. The band inside the box is the median, the bottom and top of the box
are the first and third quartiles, respectively (Q1 and Q3), and the lower and upper whiskers are

Q1-1.51IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1.
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Supplementary Figure 10 Estimation of the three genetic architecture parameters using
SBayesS with simulated data for quantitative traits or case-control studies with different
population (k) and sample (p) prevalence. The band inside the box is the median, the bottom
and top of the box are the first and third quartiles, respectively (Q1 and Q3), and the lower and
upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1. We used
the full UKB data (n=350k]) for simulations, where 5k SNPs were randomly chosen from ~1.1
million HapMap3 common SNPs as causal variants with true $=-0.5, and the trait heritability
was set to be 0.1, 0.3, 0.5 or 0.7 (at the liability scale for the binary trait). The sparse LD matrix
used in SBayesS was computed from a subset sample of 50k UKB individuals with a chi-squared
threshold of 10. The simulation was repeated 30 times for each scenario. When k=0.05, p=0.5
and true heritability=0.1, the polygenicity estimate tend to bias upward with large estimation
variation, which is likely due to insufficient power to distinguish the model that fits only causal

variants from that fits multiple SNPs in LD with the causal variants.
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Supplementary Figure 11 Comparison between SBayesS results including versus excluding
SNPs in the MHC region across 44 complex traits in this study (26 UKB complex traits, 9 UKB
diseases and 9 diseases from public GWAS). Data are presented as posterior means +/-

posterior standard errors. Colours indicate different traits and diseases.
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Supplementary Figure 12 Comparison between SBayesS results based on LD from GERA and

UKB (a random subsample of 50k unrelated individuals) using published GWAS summary data

for 9 diseases. Data are presented as posterior means +/- posterior standard errors. Colours

with acronyms indicate different traits, whose full names are shown at the bottom of the figure.
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Supplementary Figure 13 Estimation of the three genetic architecture parameters for 35
complex traits (including diseases) in UKB (max n=350k) and 5 common diseases from

published GWAS (labelled with publications) by SBayesRS. Shown are the posterior means

S SNP-based heritability
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Posterior mean

(dots) and standard errors (horizontal bars) of the parameters for each trait. The colour

indicates the category that the trait belongs to. The vertical bar shows the median of the

estimates across traits in each category. Pi2, Pi3 and Pi4 show the proportions of SNPs in the

small, medium and large effect size components of the mixture distribution in SBayesRS. Traits

are in the same order as in Figure 2 for comparison. Coronary artery disease (van der Harst et al

2018), Vitiligo (Jin et al 2016) and Ulcerative Colitis (Liu et al 2015) and Breast cancer

(Michallidou et al 2017) did not have converged results.
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Supplementary Figure 14 Variational patterns of the estimated genetic architecture
parameters under different scenarios of evolutionary simulations, when selection coefficients
followed a mixture distribution. The Simons et al. pleiotropic model was used to generate
genetic effects. The x-axis shows the values of three input parameters in evolutionary
simulations. The y-axis shows the distribution of the genetic architecture parameter estimated
by SBayesS. Colour shows the results under the model of Simons et al with n,=1, 2, 4 or 10. It
can be seen that different n; only affected the SNP-based heritability. The band inside the box is
the median, the bottom and top of the box are the first and third quartiles, respectively (Q1 and
Q3), and the lower and upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively, where

IQR = Q3 - Q1.
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Input parameters in evolutionary simulations

Supplementary Figure 15 Variational patterns of the estimated genetic architecture

parameters under different scenarios of evolutionary simulations, when selection coefficients

followed a mixture distribution. The Eyre-Walker model was used to generate genetic effects

(r = 0.5and ¢ = 0.1). The x-axis shows the values of three input parameters in evolutionary

simulations. The y-axis shows the distribution of the genetic architecture parameter estimates,

where the polygenicity parameter is represented by the number of nonnull SNPs for better

benchmarking. “True, Common QTLs”: parameters computed directly from the simulated

genetic effects of all common causal variants; “SBayesS, Common QTLs” (or “SBayesRS, Common

QTLs"): SBayesS (or SBayesRS) estimates using the genotype data of the common causal
variants and the phenotypes; “SBayesS, Common SNPs” (or “SBayesRS, Common SNPs”):
SBayesS (or SBayesRS) estimates using the genotype data of 36k common SNPs and the

simulated genetic values. The band inside the box is the median, the bottom and top of the box

are the first and third quartiles, respectively (Q1 and Q3), and the lower and upper whiskers are

Q1-1.5IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1.
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Supplementary Figure 16 Variational patterns of the estimated genetic architecture
parameters under different scenarios of evolutionary simulations, when selection coefficients
followed a mixture distribution. The Eyre-Walker model was used to generate genetic effects.
The x-axis shows the values of three input parameters in evolutionary simulations. The y-axis
shows the distribution of the genetic architecture parameters estimated by SBayesS. Colour
shows the results under the Eyre-Walker model with T = 0.2,0.5, 0.8 or 1. It can be seen that the
genetic architecture parameter estimates were subject to 7. Each box plot shows the results of
25 independent simulation replicates. The band inside the box is the median, the bottom and
top of the box are the first and third quartiles, respectively (Q1 and Q3), and the lower and
upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1.
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Supplementary Figure 17 Variational patterns of the estimated genetic architecture
parameters under different evolutionary simulation scenarios, when selection coefficients
followed a normal distribution. The Simons et al. pleiotropic model with n; =1 was used to
generate genetic effects (Methods). The x-axis shows the values of three input parameters in the
evolutionary simulations. The y-axis shows the distribution of the genetic architecture
parameter estimates, where the polygenicity parameter is represented by the number of
nonnull SNPs for better benchmarking. “True, Common QTLs”: parameters computed directly
from the simulated genetic effects of all common causal variants; “SBayesS, Common QTLs” (or
“SBayesRS, Common QTLs”): SBayesS (or SBayesRS) estimates using the genotype data of the
common causal variants and the phenotypes; “SBayesS, Common SNPs” (or “SBayesRS, Common
SNPs”): SBayesS (or SBayesRS) estimates using the genotype data of 36k common SNPs and the
simulated genetic values. Each box plot shows the results of 25 independent simulation
replicates. The band inside the box is the median, the bottom and top of the box are the first and
third quartiles, respectively (Q1 and Q3), and the lower and upper whiskers are Q1 - 1.5 IQR
and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1.
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Supplementary Figure 18 Comparison of OLS estimates of S based on the true causal effects

under the mixture distribution and the normal distribution for simulating the selection

coefficients.

34



0.01
°
[ )
o L ]
°
T o’
£ o
3 -
@ o
(7] °
% -0.5 ﬁ*o hd
> o ©&© o
g L
) [ 3 ®,
°
() “.
s °
o o
..
[ ]
®eo
~1.04 °
° [ ]
[ ]
1.0 05 0.0

Maximum likelihood estimate

log10(Ave. sel. coef.)

-2
-3

-4

Supplementary Figure 19 SBayesS estimates of S using causal variant genotypes are

consistent with the MLE estimates based on the causal variant effects.
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Supplementary Figure 20 Prediction R2 in cross-validation for predicting the evolutionary
parameters using a polynomial regression with the simulated data under the Simons et al or
Eyre-Walker model. The predictors in the polynomial regression were the estimated genetic
architecture parameters, which were hZyp, t and S in SBayesS or hyp, i1, ft,, ft3, 714 and S in
SBayesRS. The response variables were § (average selection coefficient), m,, (proportion of
mutational targets) or h2, (mutational heritability) at log10 scale, or exclusive parameters
specific to each model, namely, the number of traits (n.) in the model of Simons et al. and 7 and
0?2 in the Eyre-Walker’s model. The prediction Rz was computed from cross-validation with
80% of simulation data used as training and the rest as validation. It can be seen that there was

reasonably high power to predict 5, m,,, and h2, but no power to predict n; and 7.
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Supplementary Figure 21 Prediction of the evolutionary parameters for 44 complex traits and

diseases based on a negative selection model where selection coefficients followed a normal

distribution. a) Distribution of the predicted evolutionary parameters under different scenarios:

methods used for estimating the genetic architecture parameters (SBayesS and SBayesRS) and

pleiotropic effect models used for simulations (the Simons et al. and Eyre-Walker models). b)

Distribution of predicted evolutionary parameters for four trait categories. Each box plot shows

the results for a number of traits in a category, with each trait having four results from analyses

using different estimation methods and simulation models. The band inside the box is the

median, the bottom and top of the box are the first and third quartiles, respectively (Q1 and Q3),

and the lower and upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR =

Q3 - Q1.
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Supplementary Figure 22 Predicted values of the evolutionary parameters based on the
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Supplementary Figure 23 Summary of the 21 functional annotation categories from the LDSC

baseline model. a) The proportion of 1.1 million HapMap3 common SNPs used in the analysis in

each functional category. b) The distribution of the number of annotations for each SNP.
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Supplementary Figure 24 Estimation of parameters and their enrichment under different
simulated models of genetic architecture across functional annotation categories. We used the
UKB data with ~1.1 million HapMap3 common SNPs for simulation and considered three
models to simulate the distribution of causal effects. In model 1, the proportion of causal
variants was set to 0.5, 2, 3, 4 and 5% for the repressed, DHS, enhancer, conserved and coding
regions, respectively, and 1% for the rest of the genome, with the variance of causal effects = 1.
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In model 2, the variance of causal effects was set to 0.5, 2, 3, 4 and 5 for the five functional
annotation categories and 1 for the rest of the genome, with the proportion of causal variants =
1%. In model 3, we varied both the proportion of causal variants and the variance of causal
effects across categories as in model 1 and 2. The trait heritability was set to 0.5. The annotation
data were selected from the LDSC baseline model, which had extensive annotation overlaps.
When a causal variant had more than one annotation, we randomly assigned one of the
overlapping annotations to the causal variant in the simulation. In the analysis, we used the true
annotations, where all annotations were mutually disjoint in each replicate, and then run the 2-
component SBayesS-strat model. Results are a) Estimated polygenicity parameter under
different models; b) Estimated effect variance under in different models; c) Fold enrichment in
polygenicity compared with that in per-SNP heritability under different models; and d) Fold
enrichment in per-NZE heritability compared with that in per-SNP heritability under different
models. In a) and b), the true value is shown in red bar and the number in the a-axis label shows
the proportion of SNPs in the corresponding annotation. Data are presented as mean values +/-

standard errors of the means across 30 independent simulation replicates.
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Supplementary Figure 25 Comparison between SBayesS-strat and S-LDSC in per-SNP
heritability enrichment using 21 annotation categories from LDSC baseline model. Results are
SBayesS-strat analysis that fitted only two components (SNPs in one annotation as the first
component and the other SNPs as the second component) versus S-LDSC fitted all annotations.
We ran S-LDSC with the same annotations and GWAS summary statistics as used in the analysis
above and LD data from the 1000 Genomes Project (the default setting of S-LDSC). Each bar

indicates the standard error of the mean. The dashed line shows y=x.
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Supplementary Figure 26 Comparison of the polygenicity parameter defined in our study ()
and that in O’Connor et al (M.) in our forward simulations under negative selection. a) Both =
and M, changed with the total number of causal variants in the simulation. According to the
definition in O’Connor et al, M, = 3M /x,x = E[B*]/E[B?]?, where M is the total number of
variants (causal variants + 36k SNP markers) and £ are the true effect size for the causal
variants in per-normalized-genotype units and zero for SNP markers. Each box plot shows the
results of 25 independent simulation replicates. The band inside the box is the median, the
bottom and top of the box are the first and third quartiles, respectively (Q1 and Q3), and the
lower and upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1.
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b) M. was highly correlated with the polygenicity estimate from SBayesS using 36k common
SNP markers (correlation = 0.876, slope of regressing SBayesS estimates on M, = 3.4). The grey

bands around the line represent the standard error of the regression line.
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Supplementary Figure 27 Variational patterns of the estimated genetic architecture
parameters under both negative and positive selection in evolutionary simulations, when
selection coefficients followed a mixture distribution. a) The Simons et al. pleiotropic model
with n, = 1 was used to generate genetic effects. The x-axis shows the values of five input
parameters in evolutionary simulations. The y-axis shows the distribution of the genetic
architecture parameter estimates, where the polygenicity parameter is represented by the
number of nonnull SNPs for better benchmarking. “True, Common QTLs”: parameters computed

directly from the simulated genetic effects of all common causal variants; “SBayesS, Common
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QTLs” (or “SBayesRS, Common QTLs”): SBayesS (or SBayesRS) estimates using the genotype
data of the common causal variants and the phenotypes; “SBayesS, Common SNPs” (or
“SBayesRS, Common SNPs”): SBayesS (or SBayesRS) estimates using the genotype data of 36k
common SNPs and the simulated genetic values. b) The number of common SNP markers
decreased with the increased strength of positive selection. Each box plot shows the results of
25 independent simulation replicates. The band inside the box is the median, the bottom and
top of the box are the first and third quartiles, respectively (Q1 and Q3), and the lower and
upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively, where IQR = Q3 - Q1. An
apparent discrepancy between the true S value and the estimate from SBayesS/RS using SNP
markers was observed when the strength of positive selection increased (row 3, column 4 in
panel a). This is likely because the strong positive selection introduced a selective sweep on
SNPs in LD with the beneficial mutations of relatively large effects (known as hitchhiking),
resulting in a reduced number of common SNPs and a reduced capacity of SNPs to track all the
beneficial mutations. In contrast, we did not observe a reduction in the number of common
SNPs in the presence of strong negative selection, suggesting background selection has a
smaller impact on reducing the SNP diversity than hitchhiking so that the deleterious mutations

are better tracked by the SNPs.

46



0.1+ °

0.01 4= .
:‘ SBayesS, Simons

° E] SBayesRS, Simons

0001 %
0.0001 +

Ave. sel. coef. del. Prop. mut. tar. Mut. h2 Ave. sel. coef. ben. Prop. ben. mut.

0.1

0.01 E ﬁ# Disease
:_ E] Reproductive

E] Physical measures

- L]
0.001 £~ ? E Cognitive

0.0001

Ave. sel. coef. del. Prop. mut. tar. Mut. h2 Ave. sel. coef. ben. Prop. ben. mut.

Supplementary Figure 28 Prediction of the evolutionary parameters for 44 complex traits and
diseases based on a mixture of negative and positive selection model. a) Distribution of the
predicted evolutionary parameters under different methods for estimating genetic architecture
parameters (SBayesS and SBayesRS), shown by colours. Each box plot shows the results for 44
complex traits. b) Distribution of predicted evolutionary parameters for five trait categories,
shown by colours. Each box plot shows the results for a number of traits in a category, with each
trait having two results from analyses using different estimation methods. The band inside the
box is the median, the bottom and top of the box are the first and third quartiles, respectively
(Q1 and Q3), and the lower and upper whiskers are Q1 - 1.5 IQR and Q3 + 1.5 IQR, respectively,
where IQR = Q3 - Q1.
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Supplementary Figure 29 Joint distribution of the squared effect size and heterozygosity
(2pq) for causal variants in the forward simulation in the presence of negative selection. Red
colour shows the causal variants with MAF > 0.01. The line is the regression line for all causal

variants (black) or common causal variants (red), which is an estimate of the S parameter.
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Supplementary Figure 30 Ordinary least squares (OLS) estimate of S from a regression model
fitting mixture membership-specific intercepts vs. that from a model fitting a single intercept,

when the true model is a mixture distribution.
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Supplementary Figure 31 Comparison in genetic architecture estimation in 21 functional

categories between SBayesS-strat with GWAS sample sizes of 350k and 120k using 1.1M

common HapMap3 SNPs. Data are presented as mean values +/- standard errors of the means.
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Supplementary Tables

Supplementary Table 1: Estimation of genetic architecture parameters for 35 complex traits (including diseases) in the full UKB data.
The point estimate is the posterior mean and SE is the posterior standard error estimated from the MCMC sample.
The column of "Sample size" for a disease shows the number of cases. The total number of cases and controls is 452,272 for all of the diseases.

SNP-based heritability Polygenicity S
Category Trait Acronym | Sample size
Estimate SE Estimate SE Estimate SE
Physical measures |Basal metabolic rate BMR 339237 0.3143 0.0026 0.0311 0.0009 -0.6209 0.0256
Physical measures |BMI BMI 344306 0.2619 0.0024 0.0449 0.0016 -0.5461 0.0303
Physical measures |Body fat percentage BFP 339098 0.2514 0.0024 0.0503 0.0020 -0.5533 0.0308
Physical measures |Hand grip strength left HGSL 344014 0.1315 0.0021 0.0335 0.0019 -0.5613 0.0448
Physical measures [Hand grip strength right | HGSR 344033 0.1316 0.0021 0.0287 0.0015 -0.4982 0.0451
Physical measures |HCadjBMI HC 344252 0.2307 0.0025 0.0158 0.0005 -0.5913 0.0294
Physical measures |Heel BMD T-score HBMD 196375 0.2553 0.0036 0.0058 0.0003 -0.4959 0.0441
Physical measures |Height Height 344664 0.5452 0.0028 0.0201 0.0004 -0.6529 0.0220
Physical measures |WCadjBMI wcC 344248 0.1734 0.0023 0.0143 0.0006 -0.5899 0.0347
Physical measures |Weight Weight 344434 0.2763 0.0025 0.0391 0.0013 -0.5620 0.0288
Physical measures |WHRadjBMI WHR 344228 0.1426 0.0022 0.0120 0.0005 -0.5779 0.0385
Physical measures |Diastolic blood pressure DBP 322683 0.1410 0.0023 0.0212 0.0010 -0.5417 0.0415
Physical measures \F,S;S;dei)r:pllr::gx g FEV 315184 0.2249 0.0026 0.0249 0.0009 -0.6020 0.0318
Physical measures |Forced vital capacity FVC 315012 0.2504 0.0026 0.0246 0.0009 -0.6309 0.0287
Physical measures |Peak expiratory flow PEF 315184 0.1107 0.0022 0.0166 0.0010 -0.5846 0.0475
Physical measures |Pulse rate PR 325075 0.1384 0.0023 0.0109 0.0005 -0.5578 0.0409
Physical measures |Systolic blood pressure SBP 322679 0.1471 0.0023 0.0198 0.0009 -0.5603 0.0395
Cognitive Educational attainment EA 326945 0.1820 0.0024 0.0478 0.0025 -0.5960 0.0988
Cognitive Fluid intelligence score FIS 113198 0.2540 0.0054 0.0384 0.0039 -0.4990 0.0364
Cognitive ?g::t?fjr:’n::hzrrea'y MTCIM | 342712 0.0723 0.0019 0.0332 0.0037 -0.4514 0.0738
Cognitive Neuroticism score NS 279979 0.1181 0.0023 0.0357 0.0030 -0.4236 0.0604
Reproductive Age at first live birth AFLB 125831 0.1966 0.0049 0.0353 0.0043 -0.6681 0.0684
Reproductive Age at menopause Mnps 106965 0.0961 0.0049 0.0014 0.0002 -0.6907 0.0818
Reproductive Age menarche Mnrch 181335 0.2208 0.0039 0.0143 0.0008 -0.5647 0.0439
Reproductive Birth weight BW 196388 0.1046 0.0032 0.0075 0.0006 -0.5175 0.0650
Reproductive Male pattern baldness MPB 158696 0.2895 0.0036 0.0035 0.0002 -0.5222 0.0499
Disease Allergic rhinitis AR 28041 0.0894 0.0048 0.0049 0.0006 -0.4070 0.0998
Disease Asthma Asthma 58479 0.1421 0.0037 0.0060 0.0004 -0.6000 0.0569
Disease Cancer Cancer 65534 0.0392 0.0031 0.0027 0.0005 -0.6369 0.0959
Disease Cardiovascular disease cb 73856 0.0832 0.0030 0.0110 0.0010 -0.7246 0.0702
Disease Dyslipidemia Dyslp 78921 0.1297 0.0036 0.0038 0.0003 -0.8236 0.0477
Disease Hemorrhoids Hmrr 26955 0.0738 0.0047 0.0095 0.0017 -0.5752 0.1227
Disease Hypertensive disease HD 87650 0.1757 0.0033 0.0167 0.0009 -0.6460 0.0411
Disease Type 2 diabetes T2D 27091 0.2291 0.0060 0.0091 0.0006 -0.5642 0.0507
Disease Varicose veins wW 13252 0.1722 0.0082 0.0050 0.0006 -0.6059 0.0794
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Supplementary Table 2: Estimation of genetic architecture parameters for 9 common diseases from published GWAS data.
The point estimate is the posterior mean and SE is the posterior standard error estimated from the MCMC sample.

Disease Acronym| GWAS summary data set Cases |Controls Sample | Population SNPbased heritabiity Polygenicity
prevalence | prevalence Estimate SE Estimate SE Estimate SE
Allergic Disease AD  |Ferreira et al (2017 NG) 180129 | 180709 0.499 0.2 0.0803 0.0026 0.0037 0.0003 | -0.5786 | 0.0772
Bipolar Disorder BIP |PGC (2018 Cell) 20129 | 54065 0.271 0.03 0.3439 0.0088 0.0290 0.0050 | -0.4198 | 0.1079
Breast Cancer BC Michailidou et al (2017 Nature) 122977 | 105974 0.537 0.07 0.1338 0.0023 0.0060 0.0003 -0.5553 0.0487
Coronary Artery Disease CAD ([vander Harst et al (2018 Circ Res) | 122733 | 424528 0.224 0.07 0.0713 0.0013 0.0071 0.0004 -0.7452 0.0543
Prostate Cancer PC  |Schumacher et al (2018 NG) 79194 | 61112 0.564 0.0012 0.0284 0.0010 0.0012 0.0001 | -0.3946 | 0.1053
Schizophrenia SCZ |PGC (2014 Nature) 36989 | 113075 0.246 0.01 0.2100 0.0026 0.0462 0.0030 | -0.6130 | 0.0445
Stroke Stroke |Malik et al (2018 NG) 40585 | 406111 0.091 0.05 0.0470 0.0026 0.0097 0.0016 | -0.6664 | 0.1355
Ulcerative Colitis uc Liu et al (2015 NG) 6968 20464 0.254 0.005 0.1983 0.0104 0.0031 0.0004 -0.6619 0.0904
Vitiligo Vtlg |linet al (2016 NG) 4680 39586 0.106 0.002 0.3818 0.0113 0.0079 0.0006 -0.6960 0.0678
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Supplementary Table 3: Classification of 35 UKB traits (including diseases) based on the information provided by the UKB.

Category Trait UKB Data-Field code UKB Category description UKB Category ID Remark
Physical measures |Basal metabolic rate 23105 Impedance measures - Anthropometry - Physical measures 100009
Physical measures |BMI 21001 Body size measures - Anthropometry - Physical measures 100010
Physical measures |Body fat percentage 23099 Impedance measures - Anthropometry - Physical measures 100009
Physical measures |Hand grip strength left 46 Hand grip strength - Physical measures 100019
Physical measures |Hand grip strength right 47 Hand grip strength - Physical measures 100019
Physical measures |HCadjBMI 49 Body size measures - Anthropometry - Physical measures 100010 Adjusted the phenotype for
Physical measures |Heel BMD T-score 78 Bone-densitometry of heel - Physical measures 100018
Physical measures |Height 50 Body size measures - Anthropometry - Physical measures 100010
Physical measures |WCadjBMI 48 Body size measures - Anthropometry - Physical measures 100010 Adjusted the phenotype for
Physical measures |Weight 21002 Body size measures - Anthropometry - Physical measures 100010
Physical measures |WHRadjBMI - - - Derived from WCand HCand
adjusted for BMI
Physical measures |Diastolic blood pressure 4079 Blood pressure - Physical measures 100011
Physical measures _Forced expiratory volume 3063 Spirometry - Physical measures 100020
in 1 second
Physical measures |Forced vital capacity 3062 Spirometry - Physical measures 100020
Physical measures |Peak expiratory flow 3064 Spirometry - Physical measures 100020
Physical measures |Pulse rate 102 Blood pressure - Physical measures 100011
Physical measures |Systolic blood pressure 4080 Blood pressure - Physical measures 100011
Cognitive Educational attainment 6138 Education - Sociodemographics - Touchscreen 100063
Cognitive Fluid intelligence score 20016 Fluid intelligence / reasoning - Cognitive function 100027
Cognitive ‘lVIear_1 time to correctly 20023 Reaction time - Cognitive function 100032
identify matches
Cognitive Neuroticism score 20127 Mental health - Psychosocial factors - Touchscreen 100060
Reproductive Age at first live birth 2754 Female-specific factors - Sex-specific factors - Touchscreen 708
Reproductive Age at menopause 3581 Female-specific factors - Sex-specific factors - Touchscreen 708
Reproductive Age at menarche 2714 Female-specific factors - Sex-specific factors - Touchscreen 708
Reproductive Birth weight 20022 Early life factors - Verbal interview 708
Reproductive Male pattern baldness 2395 Male-specific factors - Sex-specific factors - Touchscreen 708
Disease Allergic rhinitis J30 + 1387 Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
Disease Asthma J45+1111 Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
C01, C03, Co4,
€05, C06, C07,
€08, C09, C10,
C11,C12,C13,
C14, C15, C16,
€18, 22, C23,
C24,(C25,C33,
C43, C44, C45,
C46, C47, C48,
Disease Cancer Egi' Ezg' E?Z: Diagnoses - main ICD10 + secondary ICD10 41202+41204
C57,C58, C59,
€60, C61, C64,
C67,C71,C72,
C76,C77,C78,
C79, C80, C81,
(82, (83, C84,
(85, C91, €92,
cg4’KCf§’7D48’ Phenotype are acquired from
self-reported, ICD 10 main
101,109, 111, 113, diagnosis and ICD 10
120,121,122, 123, secondary diagnosis
124,125, 142,143,
144,145, 146, 147,
148, 149, 150, 160,
161,162, 163, 164,
165, 166, 167, 168,
Disease Cardiovascular disease 169, 171 + 1074, 1075, Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
1066, 1485, 1076,
1471, 1483, 1484,
1486, 1487, 1588,
1426, 1479, 1086,
1491, 1083,1082,
1425, 1592, 1068,
1094, 1079, 1492,
1591, 1583, 1077
Disease Dyslipidemia E78 + 1473 Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
Disease Hemorrhoids 184 + 1505 Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
Disease Hypertensive disease Il(i_(l):;i;;?;s' Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
Disease Type 2 diabetes E11+1223 Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
Disease Varicose veins I26,1Igé);ll821;;§67, Diagnoses - main ICD10 + secondary ICD10 + self-reported | 41202+41204+20002
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Supplementary Table 4: Estimation of genetic architecture parameters for 110 quantitative traits from Neale Lab GWAS summary data.

Phenotype Code Phenotype Description Sample size Slth-based SE Polyge SE SE
102_irnt Pulse rate, d reading 340162 0.1505 0.0023 0.0112 0.0005 -0.5682 0.0375
1438 _irnt Bread intake 353030 0.0503 0.0017 0.0373 0.0075 -0.5239 0.0886
1488_irnt Tea intake 349376 0.0570 0.0018 0.0170 0.0015 -0.3777 0.0877
20015_irnt Sitting height 360066 0.3711 0.0026 0.0188 0.0005 -0.6428 0.0244
20150_irnt Forced expiratory volume in 1-second (FEV1), Best measure 272338 0.2252 0.0028 0.0239 0.0009 -0.5923 0.0348
20151 _irnt Forced vital capacity (FVC), Best measure 272338 0.2571 0.0029 0.0232 0.0008 -0.6254 0.0306
20153_irnt Forced expiratory volume in 1-second (FEV1), predicted 117241 0.4595 0.0064 0.0104 0.0004 -0.6217 0.0363
20154 _irnt Forced expiratory volume in 1-second (FEV1), predicted percentage 117241 0.2109 0.0053 0.0186 0.0014 -0.4829 0.0726
2139_irnt Age first had sexual intercourse 317694 0.1636 0.0023 0.0408 0.0023 -0.5570 0.0399
2217_irnt Age started wearing glasses or contact lenses 310992 0.0755 0.0021 0.0148 0.0011 -0.5360 0.0650
23098_irnt Weight 354838 0.2821 0.0025 0.0392 0.0013 -0.5620 0.0275
23100_irnt Whole body fat mass 354244 0.2530 0.0024 0.0463 0.0018 -0.5138 0.0300
23101_irnt Whole body fat-free mass 354808 0.3260 0.0026 0.0278 0.0008 -0.6397 0.0240
23102_irnt Whole body water mass 354834 0.3254 0.0026 0.0280 0.0008 -0.6382 0.0240
23104_irnt Body mass index (BMI) 354831 0.2648 0.0024 0.0477 0.0017 -0.5347 0.0297
23106_irnt Impedance of whole body 354795 0.2790 0.0025 0.0337 0.0011 -0.6082 0.0265
23107_irnt Impedance of leg (right) 354817 0.2602 0.0025 0.0310 0.0010 -0.5915 0.0280
23108_irnt Impedance of leg (left) 354811 0.2592 0.0025 0.0310 0.0010 -0.5878 0.0273
23109_irnt Impedance of arm (right) 354792 0.2540 0.0024 0.0323 0.0011 -0.5761 0.0284
23110_irnt Impedance of arm (left) 354807 0.2546 0.0024 0.0330 0.0011 -0.5908 0.0283
23111 _irnt Leg fat percentage (right) 354811 0.2382 0.0023 0.0528 0.0022 -0.5211 0.0313
23112_irnt Leg fat mass (right) 354807 0.2465 0.0024 0.0469 0.0019 -0.5126 0.0302
23113_irnt Leg fat-free mass (right) 354798 0.3037 0.0026 0.0302 0.0009 -0.6275 0.0252
23114_irnt Leg predicted mass (right) 354798 0.3033 0.0026 0.0302 0.0009 -0.6305 0.0254
23115_irnt Leg fat percentage (left) 354791 0.2391 0.0023 0.0514 0.0022 -0.5326 0.0307
23116_irnt Leg fat mass (left) 354788 0.2477 0.0024 0.0460 0.0018 -0.5172 0.0314
23117_irnt Leg fat-free mass (left) 354771 0.3016 0.0025 0.0309 0.0009 -0.6239 0.0251
23118 _irnt Leg predicted mass (left) 354766 0.3011 0.0025 0.0309 0.0009 -0.6227 0.0253
23119 _irnt Arm fat percentage (right) 354760 0.2368 0.0023 0.0478 0.0020 -0.5235 0.0311
23120_irnt Arm fat mass (right) 354736 0.2451 0.0024 0.0443 0.0017 -0.5172 0.0309
23121 _irnt Arm fat-free mass (right) 354732 0.2931 0.0025 0.0287 0.0009 -0.6329 0.0255
23122_irnt Arm predicted mass (right) 354726 0.2923 0.0025 0.0287 0.0009 -0.6330 0.0253
23123_irnt Arm fat percentage (left) 354707 0.2379 0.0023 0.0481 0.0020 -0.5159 0.0321
23124_irnt Arm fat mass (left) 354673 0.2451 0.0024 0.0451 0.0017 -0.5263 0.0301
23125_irnt Arm fat-free mass (left) 354668 0.2909 0.0025 0.0295 0.0009 -0.6293 0.0255
23126_irnt Arm predicted mass (left) 354653 0.2905 0.0025 0.0296 0.0009 -0.6295 0.0255
23127_irnt Trunk fat percentage 354619 0.2330 0.0023 0.0460 0.0018 -0.5410 0.0306
23128 _irnt Trunk fat mass 354597 0.2520 0.0024 0.0453 0.0017 -0.5219 0.0297
23129 _irnt Trunk fat-free mass 354530 0.3212 0.0026 0.0250 0.0007 -0.6382 0.0247
23130_irnt Trunk predicted mass 354494 0.3194 0.0026 0.0250 0.0007 -0.6394 0.0249
2764_irnt Age at last live birth 131806 0.1010 0.0043 0.0319 0.0101 -0.6399 0.0987
30000_irnt White blood cell (leukocyte) count 350470 0.1998 0.0024 0.0121 0.0005 -0.6241 0.0321
30010_irnt Red blood cell (erythrocyte) count 350475 0.2357 0.0024 0.0089 0.0003 -0.5954 0.0340
30020_irnt Haemoglobin concentration 350474 0.1813 0.0022 0.0082 0.0003 -0.6303 0.0375
30030_irnt Haematocrit percentage 350475 0.1710 0.0022 0.0087 0.0003 -0.6006 0.0372
30040_irnt Mean corpuscular volume 350473 0.2582 0.0020 0.0032 0.0001 -0.6632 0.0515
30060_irnt Mean corpuscular haemoglobin concentration 350468 0.0468 0.0013 0.0008 0.0001 -0.7779 0.1022
30070_irnt Red blood cell (erythrocyte) distribution width 350473 0.1939 0.0019 0.0026 0.0001 -0.5763 0.0595
30080_irnt Platelet count 350474 0.2820 0.0022 0.0049 0.0002 -0.5876 0.0389
30090_irnt Platelet crit 350471 0.2441 0.0023 0.0059 0.0002 -0.6417 0.0392
30120_irnt Lymphocyte count 349856 0.1989 0.0023 0.0100 0.0004 -0.5674 0.0351
30130_irnt Monocyte count 349856 0.2138 0.0021 0.0042 0.0002 -0.4001 0.0464
30140_irnt Neutrophill count 349856 0.1704 0.0023 0.0087 0.0004 -0.6591 0.0338
30180_irnt Lymphocyte percentage 349861 0.1603 0.0021 0.0073 0.0003 -0.5850 0.0379
30190_irnt Monocyte percentage 349861 0.1917 0.0018 0.0026 0.0001 -0.3677 0.0549
30200_irnt Neutrophill percentage 349861 0.1472 0.0021 0.0068 0.0003 -0.6293 0.0381
30210_irnt inophill percentage 349861 0.1945 0.0021 0.0049 0.0002 -0.6009 0.0407
30220_irnt Basophill percentage 349861 0.0427 0.0013 0.0011 0.0001 -0.6336 0.0819
30240_irnt Reticulocyte percentage 344728 0.1922 0.0024 0.0050 0.0002 -0.6802 0.0417
30250_irnt Reticulocyte count 344729 0.2009 0.0024 0.0065 0.0003 -0.6711 0.0386
30280_irnt Immature reticulocyte fraction 344728 0.1290 0.0020 0.0027 0.0002 -0.6708 0.0513
30290_irnt High light scatter reticulocyte percentage 344729 0.2077 0.0024 0.0058 0.0003 -0.7186 0.0376
30300_irnt High light scatter reticulocyte count 344729 0.2111 0.0024 0.0068 0.0003 -0.6987 0.0361
30510_irnt Creatinine (enzymatic) in urine 350812 0.0671 0.0018 0.0304 0.0032 -0.4226 0.0734
30520_irnt Potassium in urine 350053 0.0425 0.0017 0.0297 0.0063 -0.4672 0.1001
30530_irnt Sodium in urine 350061 0.0744 0.0018 0.0318 0.0032 -0.4729 0.0669
3143_irnt Ankle spacing width 206589 0.3142 0.0038 0.0167 0.0006 -0.6304 0.0319
3144 _irnt Heel Broadband ultrasound attenuation, direct entry 206576 0.2585 0.0035 0.0060 0.0003 -0.5104 0.0430
3147_irnt Heel quantitative ultrasound index (QUI), direct entry 206589 0.2886 0.0036 0.0062 0.0003 -0.5102 0.0423
3148_irnt Heel bone mineral density (BMD) 206496 0.2902 0.0036 0.0062 0.0003 -0.5027 0.0426
3761_irnt Age hay fever, rhinitis or eczema diagnosed 72232 0.0967 0.0073 0.0026 0.0004 -0.8569 0.0859
3786_irnt Age asthma diagnosed 36955 0.1065 0.0124 0.0012 0.0003 -0.4404 0.1889
399_irnt Number of incorrect matches in round 360686 0.0536 0.0017 0.0274 0.0036 -0.4154 0.0847
400_irnt Time to complete round 354739 0.0910 0.0019 0.0347 0.0029 -0.5390 0.0542
404_irnt Duration to first press of snap-button in each round 358500 0.0889 0.0019 0.0331 0.0026 -0.4543 0.0605
4100_irnt Ankle spacing width (left) 114630 0.3123 0.0061 0.0123 0.0007 -0.6002 0.0444
4101_irnt Heel broadband ultrasound attenuation (left) 114625 0.2388 0.0055 0.0038 0.0003 -0.4869 0.0603
4104_irnt Heel quantitative ultrasound index (QUI), direct entry (left) 114630 0.2692 0.0055 0.0040 0.0003 -0.5005 0.0571
4105_irnt Heel bone mineral density (BMD) (left) 114561 0.2706 0.0056 0.0039 0.0003 -0.5044 0.0563
4106_irnt Heel bone mineral density (BMD) T-score, automated (left) 114630 0.2692 0.0056 0.0040 0.0003 -0.5008 0.0567
4119_irnt Ankle spacing width (right) 114614 0.3070 0.0060 0.0121 0.0007 -0.5788 0.0454
4120_irnt Heel broadband ultrasound attenuation (right) 114609 0.2368 0.0053 0.0035 0.0002 -0.5772 0.0571
4123_irnt Heel quantitative ultrasound index (QUI), direct entry (right) 114614 0.2694 0.0056 0.0037 0.0002 -0.5475 0.0551
4124 _irnt Heel bone mineral density (BMD) (right) 114552 0.2709 0.0055 0.0037 0.0002 -0.5519 0.0546
4125_irnt Heel bone mineral density (BMD) T-score, automated (right) 114614 0.2694 0.0056 0.0037 0.0002 -0.5439 0.0553
48_irnt Waist circumference 360564 0.2151 0.0022 0.0440 0.0018 -0.5108 0.0331
49_irnt Hip circumference 360521 0.2316 0.0023 0.0376 0.0014 -0.5381 0.0305
5084_irnt Spherical power (right) 77983 0.3132 0.0084 0.0072 0.0005 -0.5600 0.0557
5085_irnt Spherical power (left) 77739 0.3100 0.0085 0.0070 0.0005 -0.5887 0.0540
5096_irnt 3mm weak meridian (left) 75398 0.3787 0.0084 0.0057 0.0004 -0.5773 0.0503
5097_irnt 6mm weak meridian (left) 65551 0.4059 0.0097 0.0058 0.0004 -0.6037 0.0499
5098_irnt 6mm weak meridian (right) 66256 0.4103 0.0094 0.0059 0.0004 -0.6093 0.0506
5099_irnt 3mm weak meridian (right) 75410 0.3853 0.0084 0.0059 0.0004 -0.5697 0.0508
5116_irnt 3mm cylindrical power (right) 75410 0.0789 0.0063 0.0054 0.0011 0.0894 0.2621
5119_irnt 3mm cylindrical power (left) 75398 0.0786 0.0064 0.0055 0.0011 -0.2686 0.2346
5132_irnt 3mm strong meridian (right) 75410 0.3694 0.0083 0.0056 0.0003 -0.5123 0.0536
5133_irnt 6mm strong meridian (right) 66256 0.4010 0.0094 0.0056 0.0004 -0.5585 0.0542
5134_irnt 6mm strong meridian (left) 65551 0.4025 0.0097 0.0057 0.0004 -0.5535 0.0533
5135_irnt 3mm strong meridian (left) 75398 0.3628 0.0083 0.0055 0.0004 -0.5198 0.0525
5254 _irnt Intra-ocular pressure, corneal-compensated (right) 76630 0.1485 0.0072 0.0042 0.0005 -0.5365 0.0868
5255_irnt Intra-ocular pressure, Goldmann-correlated (right) 76630 0.2116 0.0077 0.0056 0.0005 -0.4560 0.0776
5256_irnt Corneal hysteresis (right) 76630 0.1939 0.0072 0.0028 0.0003 -0.6372 0.0702
5257_irnt Corneal resistance factor (right) 76630 0.2528 0.0076 0.0033 0.0003 -0.6076 0.0631
5262_irnt Intra-ocular pressure, corneal-compensated (left) 76510 0.1531 0.0076 0.0049 0.0006 -0.5963 0.0849
5263_irnt Intra-ocular pressure, Goldmann-correlated (left) 76510 0.2242 0.0076 0.0061 0.0005 -0.5166 0.0694
5264_irnt Corneal hysteresis (left) 76510 0.1792 0.0072 0.0027 0.0003 -0.5867 0.0744
5265_irnt Corneal resistance factor (left) 76510 0.2430 0.0075 0.0033 0.0003 -0.5730 0.0680
5983_irnt ECG, heart rate 53777 0.0997 0.0096 0.0034 0.0007 -0.8084 0.1199
699_irnt Length of time at current address 352690 0.0278 0.0016 0.0167 0.0036 -0.3322 0.1929
874_irnt Duration of walks 308989 0.0463 0.0018 0.0332 0.0081 -0.3579 0.1174
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Supplementary Table 5: Estimation of genetic architecture parameters for 21 functional genomic categories from the LDSC baseline model meta-
analysed over 44 UKB complex traits and diseases.

Results are from the two-component model where the SNPs in one annotation are fitted as one group and the other SNPs are fitted as the other group.
The point estimate is the posterior median and SE is the posterior standard error estimated from the MCMC sample.

Polygenicity is the proportion of SNPs with nonzero effects among all SNPs in the annotation.

Annotation Number of SNPs | Fraction of SNPs SNP-based heritability Polygenicity 5

median s.e.m. median s.e.m. median s.e.m.
Coding_UCSC 33338 0.033 0.1158 0.0034 0.0513 0.0031 -0.7392 0.0411
Conserved_LindbladToh 53319 0.053 0.1993 0.0045 0.0686 0.0044 -0.5741 0.0390
CTCF_Hoffman 27260 0.027 0.0464 0.0024 0.0923 0.0075 -0.4981 0.0950
DGF_ENCODE 188706 0.188 0.4463 0.0074 0.0720 0.0024 -0.4983 0.0272
DHS_Trynka 254685 0.254 0.5195 0.0066 0.0669 0.0021 -0.5100 0.0254
Enhancer_Hoffman 54119 0.054 0.1700 0.0039 0.0803 0.0044 -0.4677 0.0391
FetalDHS_Trynka 132853 0.132 0.3408 0.0058 0.0973 0.0034 -0.4594 0.0336
H3K27ac_Hnisz 456432 0.455 0.6923 0.0052 0.0293 0.0005 -0.5646 0.0176
H3K4mel_Trynka 548165 0.546 0.8418 0.0061 0.0333 0.0006 -0.5929 0.0155
H3K4me3_Trynka 165655 0.165 0.4328 0.0057 0.0609 0.0016 -0.5805 0.0222
H3K9ac_Trynka 162379 0.162 0.4398 0.0055 0.0563 0.0017 -0.5862 0.0235
Intron_UCSC 436629 0.435 0.5139 0.0047 0.0237 0.0006 -0.5304 0.0193
Promoter_UCSC 56916 0.057 0.1440 0.0039 0.0477 0.0027 -0.5188 0.0409
Repressed_Hoffman 438171 0.437 0.1767 0.0052 0.0097 0.0011 -0.5735 0.0575
SuperEnhancer_Hnisz 195544 0.195 0.3693 0.0040 0.0298 0.0008 -0.5239 0.0262
TFBS_ENCODE 170829 0.170 0.4142 0.0062 0.0662 0.0021 -0.5399 0.0296
Transcr_Hoffman 367588 0.366 0.5136 0.0054 0.0339 0.0010 -0.6069 0.0202
TSS_Hoffman 20812 0.021 0.1036 0.0035 0.1184 0.0059 -0.3609 0.0657
UTR_3_UCSC 22031 0.022 0.0750 0.0026 0.0636 0.0060 -0.5122 0.0549
UTR_5_UCSC 9223 0.009 0.0287 0.0020 0.0977 0.0088 -0.5521 0.1102
WeakEnhancer_Hoffman 28247 0.028 0.0856 0.0030 0.1350 0.0069 -0.5917 0.0540
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