## Supplementary material

## Tolerance engineering in *Deinococcus geothermalis* by heterologous efflux pumps.

Erika Boulant<sup>1,2</sup>, Emmanuelle Cambon<sup>2</sup>, Julia Vergalli<sup>1</sup>, Rémi Bernard<sup>2</sup>, Fabienne Neulat-Ripoll<sup>3</sup>, Flora Nolent<sup>3</sup>, Olivier Gorgé<sup>3</sup>, Maria Girleanu<sup>4</sup>, Anne-Laure Favier<sup>4</sup>, Jean-Paul Leonetti<sup>2</sup>, and Jean-Michel Bolla<sup>1\*</sup>

|                                             | Expected size<br>Size obtained | 4581<br>4530 | 4554<br>4438 | 4212<br>4182 | 3657<br>3735 | 3672<br>3720 | 3672<br>3808 | 3654<br>3672 | 3708<br>3799 | 4200<br>4235 | 4590<br>4517 | 2297<br>2253 | Expected size<br>Size obtained |                                  |
|---------------------------------------------|--------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------------------|----------------------------------|
| 7000                                        | Ladder 1                       | P1           | P13          | P20          | P24          | P28          | P30          | P31          | P34          | P36          | P44          | WT           | Ladder 2                       | - 70                             |
| 4500<br>1900<br>1100<br>500                 |                                |              |              |              |              |              |              |              |              |              |              |              |                                | 450<br>190<br>110<br>700<br>500  |
| 300<br>100                                  |                                |              |              |              |              |              |              |              |              |              |              |              |                                | - 300<br>- 100                   |
| 0                                           |                                |              |              |              |              |              |              |              |              | -            |              |              |                                | - 0                              |
|                                             |                                |              |              |              |              |              |              |              |              |              |              |              |                                |                                  |
|                                             | Expected size                  | 4584         | 4527         | 4578         | 4572         | 3669         | 3669         | 4620         | 4749         | 4170         | 4810         | 2297         | Expected size                  |                                  |
|                                             | Size obtained                  | 4593         | 4676         | 4735         | 4746         | 3698         | 3697         | 4618         | 4758         | 4243         | 4698         | 2253         | Size obtained                  |                                  |
|                                             | Ladder 1                       | P6           | P15          | P16          | P23          | P25          | P26          | P41          | P48          | P58          | P64          | WT           | Ladder 2                       |                                  |
| 7988<br>79500<br>1900<br>1100<br>700<br>500 |                                |              |              |              |              |              |              |              |              |              |              |              |                                | - 798<br>- 798<br>- 110<br>- 588 |
| 300                                         |                                |              |              |              |              |              |              |              |              |              |              |              |                                | - 300                            |
| 100                                         |                                |              | -            |              |              |              |              |              |              |              |              |              | _                              | Ĩ                                |

**Supplementary Figure S1.** Colony PCR to verify the presence of the efflux pump insert. The primers used are oEC1059\_F and oEC332\_R (Supplementary Table S2).

|                                    |        |      |               |               | ≥MIC           | $2/8 \geq M$ | IC/4     | $\geq$ MIC*4 | $\geq N$ | AIC*8   | ≥ MIC*48 |
|------------------------------------|--------|------|---------------|---------------|----------------|--------------|----------|--------------|----------|---------|----------|
|                                    |        |      | MFS           |               |                |              | SMI      | R            |          |         | MATE     |
| Antibiotics (µg.mL <sup>-1</sup> ) | WT     | P1   | P13           | P20           | P24            | P28          | P30      | P31          | P34      | P36     | P44      |
|                                    |        |      |               | PHEN          | NICOLS         |              |          |              |          |         |          |
| Chloramphenicol                    | 1      | 1    | 2             | 1             | 1              | 1            | 2        | 1            | 2        | 1       | 2        |
| Thiamphenicol                      | 2<br>4 | 2    | 4             | 2             | 0.5            | 2            | 2        | 2            | 2        | 2       | 2        |
| Tintamphemeor                      |        | 1    | ,             | TETRAC        |                | ,            | 7        | ,            | 7        | ,       | 1        |
| Doxycycline                        | 0.08   | 0.05 | 0.1           | 0.1           | 0.1            | 0.1          | 0.1      | 0.1          | 0.1      | 0.1     | 0.1      |
| Mynocycline                        | 0.05   | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Tetracycline                       | 0.1    | 0.05 | 0.2           | 0.1           | 0.1            | 0.2          | 0.2      | 0.2          | 0.2      | 0.2     | 0.2      |
|                                    |        |      |               | MACR          | OLIDES         |              |          |              |          |         |          |
| Azithromycin                       | 2      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Clarithromycin                     | 0.1    | 0.05 | 0.2           | 0.05          | 0.05           | 0.15*        | 0.2      | 0.1          | 0.2      | 0.1*    | 0.2      |
| Dirithromycin                      | 0.5    | /    | /             | /             | /              | /            | /        | /            | 1        | /       | ,        |
| Erythromycin                       | 8      | 6    | 8             | 8             | 4              | 8            | 8        | 8            | 8        | 8       | 8        |
| Josamycin                          | 2      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Roxithromycin                      | 0.4    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Spiramycin                         | 12     | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Tylosin                            | 2      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Virginiamycin                      | 0.8    | /    | /             | /<br>DETA I   | /              | /            | /        | /            | /        | /       | /        |
| Amoviaillin                        | 0.5    | 1    | 1             | BETA-L        |                | 0.5          | 1        | 1            | 1        | 0.5     | 0.5      |
| Amoxicillin                        | 0.3    | 1    | 2             | 0.5           | 0.5            | 0.3          | 0.8      | 0.8          | 0.8      | 0.3     | 0.5      |
| Aztreonam                          | 64     | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Biapenem                           | 0.8    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Cefepime                           | 1      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Cefotaxime                         | 0.05   | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Cefoxitin                          | 1      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Ceftazidime                        | 4      | 8    | 16            | 8             | 4              | 8            | 8        | 8            | 8        | 4       | 4        |
| Cephaloridine                      | 0.2    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Ertanenem                          | 0.5    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Iminenem                           | 0.5    | 0 1  | 01            | 0 1           | 0 1            | 0 1          | 0 1      | 0 1          | 01       | 01      | 0 1      |
| Meropenem                          | 0.05   | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Methicillin                        | 4      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Oxacillin                          | 1.5    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Penicillin G                       | 0.4    | 1    | 1             | 0.1           | 0.4            | 0.4          | 0.4      | 0.8          | 0.4      | 0.2     | 0.4      |
| Penicillin V                       | 0.1    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Piperacillin                       | 0.8    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| Ticarcillin                        | 0.5    | /    |               | /<br>PEPTIDES |                | /<br>FPTIDES | /        | /            | /        | /       | /        |
| Bacitracin A                       | 8      | /    |               | /             |                | /            | /        | /            | /        | /       | /        |
| Colistin                           | 8      | 16   | 8             | 16            | 8              | 16           | 8        | 8            | 8        | 8       | 8        |
| Polymyxin B                        | 4      | 4    | 2             | 4             | 4              | 4            | 4        | 4            | 2        | 4       | 4        |
| Vancomycin                         | 0.4    | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
|                                    |        |      |               | AMINO-G       | LYCOSID        | ES           |          |              |          |         |          |
| Amikacin                           | 1      | 1    | 0.5           | 1             | 1              | 2            | 1        | 1            | 1        | 1       | 1        |
| Apramycin                          | 8      | 8    | 4             | 8             | 8              | 8            | 4        | 8            | 8        | 4       | 8        |
| Gentamicin                         | 2      | 2    | 1             | 2             | 2              | 2            | 2        | 4            | 2        | 2       | 2        |
| Kanamycin                          | 4      | 4    | $\frac{2}{2}$ | 4             | 4              | 4            | 4        | 4            | 4        | 4       | 4        |
| Spectinomycin                      | 128    | 32   | 384*          | 64            | 64             | 64           | 128      | 256          | 128      | 256     | 128*     |
| Streptomycin                       | 2      | 2    | 1             | 1             | 2              | 2            | 2        | 1            | 2        | 1       | 2        |
| Tobramycin                         | 4      | 4    | 2             | 2             | 4              | 4            | 4        | 4            | 4        | 2       | 2        |
|                                    |        |      |               | QUIN          | DLONES         |              |          |              |          |         |          |
| Ciprofloxacin                      | 2      | 2    | 2             | 2             | 2              | 2            | 2        | 2            | 2        | 2       | 2        |
| Enrotloxacin                       | 1      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
| r leroxacin<br>Levoflovacin        | 4      | 1    | 2             | / 1           | 2              | 2            | 2        | 2            | 2        | 2       | 2        |
| Nalidixic Acid                     | 64     | 64   | $128^{2}$     | 64            | $\frac{2}{32}$ | 64           | 64       | 64           | 64       | ∠<br>64 | 2<br>64  |
| Norfloxacin                        | 8      | 8    | 8             | 8             | 8              | 8            | 8        | 8            | 8        | 8       | 8        |
| Ofloxacin                          | 2      | ,    | /             | -<br>/        | ,              | /            | <i>,</i> | /            | /        | /       | Ĩ,       |
| Sparfloxacin                       | 1      | /    | /             | /             | /              | /            | /        | /            | /        | /       | /        |
|                                    |        |      |               | OTHERS/       | INHIBITO       | R            |          |              |          |         |          |
| СССР                               | 2      | 2    | 4             | 4             | 4              | 4            | 4        | 4            | 4        | 4       | 2        |
| Novobiocin                         | 0.8    | 0.4  | 0.3           | 0.4           | 0.2            | 0.3          | 0.2      | 0.2          | 0.2      | 0.4     | 0.2      |
| Rifampicin                         | 8      | 4    | 8             | 8             | 4              | 8            | 8        | 8            | 8        | 8       | 4        |

**Supplementary Table S1.** Median values of MICs (µg.mL<sup>-1</sup>) of *D. geothermalis* recombinant strains that were not selected for the remainder of the study. *D. geothermalis* recombinants are named P1, P13, P20, P24, P28, P30, P31, P34, P36 and P44. MFS, Major Facilitator Superfamily; SMR, Small Multidrug Resistance Family; MATE, Multidrug and Toxic Compounds Extrusion; ABC, ATP-Binding Cassette Transporter; RND, Resistance-Nodulation Cell Division; Trp, Transporter. "P", recombinants. "/", not determined. (\*) Tests were performed in duplicate, all other tests were performed in at least three biological replicates, and medians were presented. MIC values with differences between recombinants and WT strain are indicated by colours according to the colour scale displayed above the table.

WT

P23



**Supplementary Figure S2.** Electron micrography imagery of *D. geothermalis*. Both individual cells and cells during division of (a-j) the wild type strain DSM11300 (WT) and (a'-j') the P23 recombinant strain.

Supplementary Table S2. Primers used for the cloning of heterologous efflux pumps.

| Primers                | Sequences (5' to 3')                               | Used for    |
|------------------------|----------------------------------------------------|-------------|
|                        | Upstream amplicon                                  |             |
| oEG1344_F              | GAGCTCGGTACCCGGGGATCCGTTCACGCACCACATAGCCCAGAC      |             |
| oEC043_R               | GTGGGGTCCTCCTGTGAGG                                |             |
|                        | Heterologous amplicon (efflux pump)                |             |
| oEC050_F               |                                                    | P1          |
| 0EC051_K               |                                                    | P1<br>P6    |
| 0EC0085_F              | GCATACATTATACGAACGGTATTATCGAGCTACAGCCCCTTCC        | Р0<br>Р6    |
| oEC0087 F              |                                                    | P8          |
| oEC0160 R              | GCATACATTATACGAACGGTATCAGACTGTTTGCAAATTCCCCG       | P8          |
| oEC0090 F              | CTCACAGGAGGACCCCACATGACGCATCGCCGGACCTC             | P11         |
| oEC0163_R              | GCATACATTATACGAACGGTATCAGCGACGAGCCACTAACG          | P11         |
| oEC0092_F              | CTCACAGGAGGACCCCACATGTCACCCTCTGATGTCCCC            | P13         |
| oEC0165_R              | GCATACATTATACGAACGGTATCATTCTATTGCCAGTCTGCGCC       | P13         |
| oEC0094_F              | CTCACAGGAGGACCCCACATGAACCGCCCCGCTGGTTC             | P15         |
| oEC0167_R              |                                                    | P15         |
| 0EC0095_F              |                                                    | P16         |
| 0EC0108_K              |                                                    | P10<br>P10  |
| oEC0132_F              | GCATACATTATACGAACGGTATCACTGAGCCGATCCTACGG          | P19         |
| oEC0099 F              | CTCACAGGAGGACCCCACATGCCCAACTTCACCACGCC             | P20         |
| oEC0172 R              | GCATACATTATACGAACGGTATTACTCCGGTTTTGACGGTGC         | P20         |
| oEC0101 F              | CTCACAGGAGGACCCCACATGGGAGCGCGCGCCCATATTC           | P22         |
| oEC0174_R              | GCATACATTATACGAACGGTATCACCGGGGTGCAGCCCAC           | P22         |
| oEC0087_F              | CTCACAGGAGGACCCCACATGCAGAATCGTTTACAATCAGGCG        | P23         |
| oEC0160_R              | GCATACATTATACGAACGGTATCAGACTGTTTGCAAATTCCCCG       | P23         |
| oEC0103_F              | CTCACAGGAGGACCCCACATGTCCTGGATCATCCTGTTTTTCG        | P24         |
| oEC0176_R              | GCATACATTATACGAACGGTATTAGCTGGCGCTGACTTTCAGG        | P24         |
| oEC0104_F              |                                                    | P25         |
| 0EC0177_R              |                                                    | P25<br>P26  |
| oEC0100_1              | GCATACATTATACGAACGGTATCAGGCCAGCTTGAGCAGGC          | P26         |
| oEC0108 F              | CTCACAGGAGGACCCCACATGAACGCGCTACGCGGCTG             | P27         |
| oEC0181 R              | GCATACATTATACGAACGGTATCATGGTGCTTTCCTCGACGG         | P27         |
| oEC0109_F              | CTCACAGGAGGACCCCACATGACCAACTATCTCTACCTCGCC         | P28         |
| oEC0182_R              | GCATACATTATACGAACGGTATCAGTGCCCCGAAGCGCGG           | P28         |
| oEC0114_F              | CTCACAGGAGGACCCCACATGAATGCCTATACCTACCTCGC          | P30         |
| oEC0187_R              | GCATACATTATACGAACGGTATCAATGCCCAGCGGTCTTCG          | P30         |
| oEC0103_F              | CTCACAGGAGGACCCCACATGTCCTGGATCATCCTGTTTTTCG        | P31         |
| oEC0188_R              |                                                    | P31         |
| 0EC0118_F              |                                                    | P34<br>P34  |
| oEC0191_K              | CTCACAGGAGGACCCCACATGACACCCTCAACGACGCC             | P36         |
| oEC0124_1              | GCATACATTATACGAACGGTATCATGACAGACGGAGTAAAATCGC      | P36         |
| oEC0133 F              | CTCACAGGAGGACCCCACATGCTCAAATCAGTTTTATATAAAAACTTC   | P41         |
| oEC0206_R              | GCATACATTATACGAACGGTACTAAATAGGAAAGGGGCTTACC        | P41         |
| oEC0135_F              | CTCACAGGAGGACCCCACATGCCGCTTTTTACCTCCTCTG           | P43         |
| oEC0208_R              | GCATACATTATACGAACGGTATCACGATCTGGCAAACCATGTAC       | P43         |
| oEC0136_F              | CTCACAGGAGGACCCCACATGTCGCTTGCTAAAGCCTCCC           | P44         |
| oEC0209_R              | GCATACATTATACGAACGGTATCATGCTCGCCTACGCCAGAG         | P44         |
| oEC0140_F              | CTCACAGGAGGACCCCACATGCTCGGCTCCGCCTTCTG             | P48         |
| oEC0213_R              | GUATACATTATAUGAAUGGTATCAATCGGTGCGCCAGGGC           | P48         |
| 0EC0148_F              | UIUAUAGGAGGAUUUUAUAIGCATAAUGATAAAGATUTUTUTACG      | P30<br>D56  |
| 0EC0222_K<br>0EC0150_F | CTCACAGGAGGACCCCCACATGGCGTGTGAACGGCTCGG            | F 30<br>P58 |
| oEC0224 R              | GCATACATTATACGAACGGTATCAATTTCCGCGCTTGGCGTC         | P58         |
| oECB0009 R             | CTCACAGGAGGACCCCACGTGAGCTTCCTTGTAGAAAATCAATTACTCG  | P64         |
| oECB0008 F             | GCATACATTATACGAACGGTACTAGATAAGTAGGAACAACAACGTTTGGG | P64         |
|                        | Downstream amplicon                                |             |
| oTV34_F                | TACCGTTCGTATAATGTATGC                              |             |
| oEG1364_R              | CTTGCATGCCTGCAGGTCGACGGCGTGTGGGGATCGATGCTCAGG      |             |
|                        | PCR on assembly product                            |             |
| oEG1345_F              | GAAGACCAGCCTGCTCCCAGCAG                            |             |
| 0EG1365_R              | G-L BCD                                            |             |
| 0EC1050 E              |                                                    |             |
| 0EC1039_F              | CTCGATCATCGCCACAGCTTC                              |             |
| <u></u> K              | GATC sequencing                                    |             |
| EH120                  | CAACATGATGACACCGAGC                                |             |
| EH366                  | CGACCACTTGATCACCACG                                |             |



**Supplementary Figure S3.** Measurements of Hoechst 33342 fluorescence accumulation over time in the WT strain and P23 and P25 recombinant strains. The curves represent the mean values (with standard deviation) of the accumulation of Hoechst 33342 fluorescence over time in bacteria incubated with 2.5  $\mu$ M Hoechst 33342 alone (blue curves), 2.5 mM Hoechst 33342 with 10  $\mu$ M CCCP (red curves), or 50 mM glucose (Glc) and 1 mM ATP (green curves). For each value of the curve, the standard deviations are represented by vertical bars on the curves. The comparison of the curves is not significant in Student's t-test (data not shown). Abbreviations: rfu: relative fluorescence units, ns: not significant. All the results were obtained from biological triplicate.

![](_page_4_Figure_2.jpeg)

**Supplementary Figure S4.** Calibration curve of the thiamphenicol fluorescence signal. Measurements were obtained from control experiments performed without bacterial suspension in the same conditions as those used during the assay. The average values of the emission signals measured with increasing concentrations of thiamphenicol were reported in rfu (relative fluorescent unit). The linear correlation between the fluorescence emission signal and the concentration of thiamphenicol was validated by a corresponding Pearson's correlation coefficient of 0.9867. Four independent experiments were performed (with technical triplicates) and the means ( $\pm$  standard deviation) were presented.

![](_page_5_Figure_0.jpeg)

**Supplementary Figure S5.** Fitted curves of fluorescence intensities percentages of thiamphenicol (zoomed to 80-100 percent) measured over time in the extracellular environment during the incubation of WT (grey) and P23 (blue) strains. The inset presents the slopes of the curves obtained at the early incubation time (6 minutes) illustrating the ratio of 1.6 between the concentration measured in the extracellular medium of the P23 and WT strains.