

Supplementary Information for

# Critical role of Aquaporin-1 and telocytes in infantile hemangioma response to propranolol beta-blockade

François Moisan<sup>1,\*</sup>, Sandra Oucherif<sup>1</sup>, Priscilla Kaulanjan-Checkmodine<sup>1</sup>, Sorilla Prey<sup>1,2</sup>, Benoît Rousseau<sup>3</sup>, Marc Bonneu<sup>4</sup>, Stéphane Claverol<sup>4</sup>, Etienne Gontier<sup>5</sup>, Sabrina Lacomme<sup>5</sup>, Lea Dousset<sup>1,2</sup>, Thierry Couffinhal<sup>6</sup>, Jerome Toutain<sup>7</sup>, Maya Loot<sup>8</sup>, Muriel Cario-André<sup>1,9</sup>, Marie-Laure Jullié<sup>10</sup>, Christine Léauté-Labrèze<sup>1,2,9</sup>, Alain Taieb<sup>1,2,9</sup>, Hamid Reza Rezvani<sup>1,2,9</sup>

François Moisan Email: <u>francois.moisan@u-bordeaux.fr</u>

This PDF file includes:

Supplementary text: Methods Figures S1 to S11 Tables S1 to S3 SI References

## Supplementary Information Text

#### Methods:

#### RNA isolation and real-time reverse transcription PCR

RNA was isolated from sub-confluent growing cells using the NucleoSpin® RNA kit (MACHEREY-NAGEL, Germany) and 0.5 µg RNA was used for first-strand cDNA synthesis by using PrimeScript<sup>™</sup> RT Master Mix (Takara, Japan) according to the manufacturer's protocols. 10x diluted cDNA was prepared and the final 20 µl reaction mixture included 300 nM of each primer and 1x Brilliant III Ultra-Fast SYBR® Green QPCR Master Mix (Agilent, USA). Initial denaturation for all PCR reactions was 3 min at 95 °C, followed by 40 cycles of PCR amplification (95 °C for 5 sec and 60 °C for 5 sec) using the CFX96 Real-Time PCR Detection System instrument (Bio-Rad, USA). The PCR product obtained by specific primers for glucuronidase beta (GUSB) was used as a reference gene to control for loading. Amplification efficiencies were determined by serial dilutions, and all reactions were performed in triplicate. Melt curves were performed after each run to confirm the primer pair specificity.

#### Lentivirus generation and establishment of GFP<sup>+</sup> cells

The lentiviral vectors pGIPZ (TurboGFP and shRNA are part of a bicistronic transcript allowing the visual marking of shRNA-expressing cells) targeting ADRB2 or AQP1 and the non-silencing control were acquired from Thermo Fisher, USA. AQP1 overexpression was achieved by lentiviral transduction of 217EX-A4384-Lv230 ORF expression clone for AQP1 (NM 198098.3) and 217EX-NEG-Lv230 Empty control vector for pReceiver-Lv230 respectively called pAQP1 and P0 in the paper, acquired from Genecopoeia, MD, USA. Lentiviral particles expressing GFP were prepared using 293T cells plated in 175 cm<sup>2</sup> flasks. Twenty-four hours after seeding, nearconfluent cells were co-transfected with 45 µg pHR2-GLF lentiviral vector together with pCMVΔR8.74 packaging and VSV-G-expressing vectors (3:2:1 ratio) in the presence of 25 μM chloroguine (Sigma-Aldrich, USA). The medium was changed after 8-12 h and then collected at 24-36 h, filtered through a 0.45 µm polyethersulfone filter, and ultracentrifuged for 2 h at 20,000 rpm at 4 °C. The viral pellet was resuspended in plain IMDM medium (Invitrogen, USA) and frozen at -80 °C. The viral titer was determined by infection of 293T cells with several dilutions of the virus and analysis of GFP+ cells by flow cytometry 36 h later. U87-MG cells were transduced with lentivirus. After 16-24 h incubation with virus, the medium changed. Transduced cells were selected with 1 µg/mL of puromycin for 5 days. GFP+ cells were sorted and purified by flow cytometry.

#### Protein extraction and western blotting

Cell pellets were resuspended in a lysis buffer RIPA [Tris-HCI, pH 8, 50 mM; NaCl 150 mM; sodium dodecyl sulfate 0.1%; NP40 1%; sodium deoxycholate 0.5%; protease inhibitors cocktail (Sigma)]. After 30 min on ice, the samples were centrifuged for 15 min at 15 000g. The supernatants containing soluble proteins were analyzed by western blotting: 30 micrograms of proteins were separated by 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and transferred onto polyvinylidene difluoride membranes (Millipore), using a mini-blot wet transfer (Bior-Rad). Membranes were then blocked for 1 h in 5% skim milk in Tris-buffered saline-T (Tris–HCI, pH 7.5, 100 mM, NaCl 0.9%, Tween-20 0.05%) and incubated overnight at 4°C with primary antibody (Table S3) diluted at the appropriate concentration in blocking solution. Blots were washed three times in Tris-buffered saline-T, and then incubated for 1 h with peroxidase-conjugated secondary antibody (Table S3). After washes, signals were detected using chemiluminescence reagent (Bio-Rad).

#### **Proteomic analysis**

Proteomic analysis was performed as previously explained (1, 2).

#### Sample preparation and protein digestion

Samples were solubilized in Laemmli buffer and were deposited in triplicate onto SDS-PAGE. Separation was stopped once proteins had entered the resolving gel. After colloidal blue staining, bands were cut out from the SDS-PAGE gel and subsequently cut into 1 mm x 1 mm gel pieces. Gel pieces were destained in 25 mM ammonium bicarbonate 50% ACN, rinsed twice in ultrapure water and shrunk in ACN for 10 min. After removal of ACN, gel pieces were dried at room temperature, covered with the trypsin solution (10 ng/µl in 50 mM NH4HCO3), rehydrated at 4 °C for 10 min, and finally incubated overnight at 37 °C. Spots were then incubated for 15 min in 50 mM NH4HCO3 at room temperature with rotary shaking. The supernatant was collected, and an H2O/ACN/HCOOH (47.5:47.5:5) extraction solution was added onto gel slices for 15 min. The extraction step was repeated twice. Supernatants were pooled, dried in a vacuum centrifuge, and resuspended in 25 µl of formic acid (5%, v/v) so as to inject about 500 ng.

#### nLC-MS/MS analysis

Peptide mixture was analysed on a Ultimate 3000 nanoLC system (Dionex, Amsterdam, The Netherlands) coupled to an Electrospray Q-Exactive guadrupole Orbitrap benchtop mass spectrometer (Thermo Fisher Scientific, San Jose, CA). Ten microliters of peptide digests were loaded onto a 300-um-inner diameter x 5-mm C18 PepMapTM trap column (LC Packings) at a flow rate of 30 µL/min. The peptides were eluted from the trap column onto an analytical 75-mm id x 25-cm C18 Pep-Map column (LC Packings) with a 4-40% linear gradient of solvent B in 108 min (solvent A was 0.1% formic acid in 5% ACN, and solvent B was 0.1% formic acid in 80% ACN). The separation flow rate was set at 300 nL/min. The mass spectrometer operated in positive ion mode at a 1.8-kV needle voltage. Data were acquired using Xcalibur 2.2 software in a data-dependent mode. MS scans (m/z 300-2000) were recorded at a resolution of R = 70 000 (@ m/z 200) and an AGC target of 1 x 106 ions was collected within 100 ms. Dynamic exclusion was set to 30 s and the top 15 ions were selected from fragmentation in HCD mode. MS/MS scans with a target value of 1 x 105 ions were collected with a maximum fill time of 120 ms and a resolution of R = 35000. Additionally, only +2 and +3 charged ions were selected for fragmentation. Other settings were as follows; neither sheath nor auxiliary gas flow heated capillary temperature. 260 °C; normalized HCD collision energy of 25% and an isolation width of 3 m/z.

#### Database search and results processing

Data were searched by SEQUEST through Proteome Discoverer 1.4 (Thermo Fisher Scientific Inc.) against a subset of the 2018.01 version of the UniProt database restricted to the Homo Sapiens Reference Proteome Set (71,536 entries). Spectra from peptides higher than 5000 Da or lower than 350 Da were rejected. The search parameters were as follows: mass accuracy of the monoisotopic peptide precursor and peptide fragments were set to 10 ppm and 0.02 Da respectively. Only b- and y-ions were considered for mass calculation. Oxidation of methionines (+16 Da) and carbamidomethylation of cysteines (+57 Da) were considered as variable and fixed modifications, respectively. Two missed trypsin cleavages were allowed. Peptide validation was performed using the Percolator algorithm (3) and only "high confidence" peptides were retained corresponding to a 1% false positive rate at peptide level.

#### Label-Free Quantitative Data Analysis

Raw LC-MS/MS data were imported in Progenesis QI for Proteomics 2.0 (Nonlinear Dynamics Ltd, Newcastle, U.K). Data processing included the following steps: (i) Features

detection, (ii) Features alignment across all samples, (iii) Volume integration for 2-6 charge-state ions, (iv) Normalization on feature median ratio, (v) Import of sequence information, (vi) Calculation of protein abundance (sum of the volume of corresponding peptides), (vii) A statistical test was performed and proteins were filtered based on p-value<0.05. Only non-conflicting features and unique peptides were considered for calculation at protein level. Quantitative data were considered for proteins quantified by a minimum of 2 peptides.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (4) partner repository with the dataset identifier PXD021457

#### Transmission electron microscopy (TEM)

Human biopsies were fixed with 2.5 % (v/v) glutaraldehyde in 0.1M phosphate buffer (pH 7.4) for 1h at room temperature (RT). Then samples were washed in 0.1M phosphate buffer and post-fixed in 1% (v/v) osmium tetroxide in phosphate buffer 0.1 M for 2h in the dark at RT, then were washed in water and dehydrated through a series of graded ethanol and embedded in a mixture of pure ethanol and epoxy resin (Epon 812; Delta Microscopy, Toulouse, France) 50/50 (v/v) for 2 hours and then in 100% resin overnight at RT. Polymerization of the resin was carried out between 24-48 hours at 60 ° C.

Samples were then sectioned using a diamond knife (Diatome, Biel-Bienne, Switzerland) on an ultramicrotome (EM UC7, Leica Microsystems, Vienna, Austria). Ultrathin sections (65 nm) were picked up on copper grids and then stained with uranyl acetate and lead citrate. Grids were examined with a transmission electron microscope (H7650, Hitachi, Tokyo, Japan) at 80kV.

SI Figures:



**Fig. S1. Propranolol antitumor effect study** *in vivo.* A. U87 tumor weight of Bev and non-Bevtreated mice co-treated with 2, 10 or 50 mg/kg of propranolol or placebo. \* Bev-treated mice combined with 2 mg/kg of propranolol had significantly smaller tumors compared t (p=0,0464) Bev-treated mice with placebo. B. VEGF-A expression in U87 tumors measured by human specific qPCR. Bev-treated mice (Avastin) had higher tumor VEGF expression. Inhibitory doseresponse was observed but did not correlate with tumor response. C. ADRB2 (red) and AQP1 (green) IHF staining of tumor xenograft from U87, A375, A431, CAPAN-2 human tumor cell lines. D. ADRB1, ADRB2 and ADRB3 expression in U87 cell line measured by qPCR. ADRB2 was the only ADRB gene significantly expressed. \* P<0.05 \*\* P<0.005



**Fig. S2. Betaadrenergic pathway and AQP1 as a target of propranolol in U87 tumors. A.** ADRB2 shRNAs efficiency measured by qPCR in U87 shRNA-lentivirus transduced cells. Among 5 different shADRB2, shADRB2b had a satisfactory 75% inhibition effect on ADRB2 mRNA level. **B.** U87shCT and shADRB2 tumors Specific Growth Rate (SGR) in non-Bev and Bev-treated mice was estimated according to the following equation: SGR=Ln2/DT, in which DT= doubling time. The higher the SGR is, the faster the tumors grow. Propranolol significantly inhibit tumor growth speed. \* P<0.05 \*\* P<0.005 \*\*\* P<0.0005. **C.** U87 shCT tumor growth with (pAQP1) or without (p0) AQP1 overexpression, in bev-treated mice co-treated with propranolol or placebo. **D.** U87 shADRB2 (shB2) tumor growth with (pAQP1) or without (p0) AQP1 overexpression, in bevtreated mice co-treated with propranolol or placebo. **E.** AQP1 protein RLU quantification normalized by beta-actin show efficient downregulation of AQP1 using shRNA lentiviral vector. AQP1 knockdown is measured by Western-blot on 3 on different extracted U87 tumors from each group (shCT and shAQP1). **F.** AQP1 overexpression in U87 cells using pAQP1 lentiviral construct or pCT as a control, evidenced by western-blot.



**Fig. S3. AQP1/CD34 co-staining by IHF of NICH from 3 patients and RICH from 3 patients** (NICH: Non-Involuting Hemangioma; RICH: Rapidly Involuting Hemangioma). Merged image of CD34 (red), AQP1 (green) and DAPI. Lesional ECs are AQP1-postive. Magnification 40X, entire field.

### PICH: 6 patients CD34 AQP1



**Fig. S4. AQP1/CD34 co-staining by IHF of PICH from 6 patients** (PICH: Partially Involutive Congenital Hemangioma) Merged image of CD34 (red), AQP1 (green) and DAPI. Lesional ECs are AQP1-postive. Magnification 40X, entire field.

## IH: 9 patients

## CD34 AQP1



**Fig. S5. AQP1/CD34 co-staining by IHF of IH from 9 patients.** Merged image of CD34 (red), AQP1 (green) and DAPI. Lesional vessels of IH show a unique AQP1 profile. Magnification 40X.

## A IHC staining



**CD34 Histogreen** 



**Fig. S6. CD34 positive cells in IH. A.** CD34 Histogreen IHC staining. **B.** IHF staining with sideby-side, single label for each marker and the merged image of CD34 (red), AQP1 (green) and DAPI, a CD34<sup>+</sup> railway staining is observed with the inner layer being endothelial cells AQP1<sup>-</sup> and the outer layer being telocytes AQP1<sup>+</sup>.



**Fig. S7. DAB IHC of AQP1 and blue counterstained nuclei with hematoxylin.** 1 to 5 are AQP1 staining of IH patients 1 to 5 respectively, magnification 20X. 5b is IH patient 5 with GLUT1 in DAB (brown) and AQP1 in Histogreen 6 and 7 are NICH patients 1 and 2. (Magnification 40X, entire fields)



С



**Fig. 8. IHF of IH with AQP1, GLUT1 or ADRB2 stainings A.** AQP1 mouse monoclonal antibody (red) and GLUT1 rabbit polyclonal (green) compared to **B.** staining with AQP1 rabbit polyclonal antibody (green) and GLUT1 mouse monoclonal (red) rabbit (green). Staining and specificity of antibodies were validated. C. ADRB2 (red) AQP1 (green) co-staining. Magnification 40X.



**Fig. S9. Mast cells are in close contact with telocytes.** Tryptase-positive mast cells (in red) are in direct contact with AQP1-positive telocytes (green). (Magnification 40X, entire fields)



### B CD34 immunodetection C CD146 immunodetection



**Fig. S10. IH fresh tissue cell sorting for in vitro culture, labelling and assays. A.** Sequential cell sorting with magnetic bead coupled antibodies directed to CD31, CD34, CD146. **B.** Cytometry quality control for CD34+ cells, example of a single CD34 cell sorting from IH tissue. Here, CD34 sorting was done before CD31, so two CD34+ populations were identified. Then CD31 sorting was always done before CD34 sorting, in order to separate EC before TC sorting. **C.** Cytometry quality control for CD146+ cells (pericytes fraction).



**Fig. S11. Separated cell-type tubulogenesis assay and shAQP1 efficiency in IH-TC. A.** Propranolol has no major effect on tubulogenic properties of IH-EC, IH-PER and IH-TC in vitro. IH cells were labeled with three different fluorescent dyes, EC in red, TC in green, PER in blue. When IH-EC, IH-PER and IH-TC cells were used separately in tubulogenesis assay, no major effect of propranolol on tubulogenic properties of each of the 3 IH-cells or control foreskin-TC were found. **B.** shAQP1 efficiency in IH-TC by western-blot on protein extracted from transduced IH-TC using shCT and shAQP1. AQP1 protein RLU quantification normalized by beta-actin show efficient knockdown of AQP1 using shAQP1 lentiviral vector compared to shCT.

|                                                                    | Bev vs PBS                           |                     |           |                | (Bev+Propranolol) vs (Bev+Placebo)   |                     |           |                |
|--------------------------------------------------------------------|--------------------------------------|---------------------|-----------|----------------|--------------------------------------|---------------------|-----------|----------------|
| Protein name                                                       | Peptides<br>used for<br>quantitation | Confidence<br>score | Anova (p) | Fold<br>Change | Peptides<br>used for<br>quantitation | Confidence<br>score | Anova (p) | Fold<br>Change |
| Retinoic acid receptor responder protein 2<br>(RARRES2)            | 2                                    | 6.05                | 4.35E-02  | 34.49          | 2                                    | 6.05                | 8.60E-01  | -2.17          |
| Immunoglobulin kappa constant (IGKC)                               | 7                                    | 40.97               | 4.31E-02  | 7.83           | 7                                    | 40.97               | 1.39E-01  | 2.17           |
| Amine oxidase [flavin-containing] B (MAOB)                         | 2                                    | 5.93                | 8.10E-02  | 4.38           | 2                                    | 5.93                | 2.05E-02  | -14.29         |
| C-type lectin domain family 11 member A<br>(CLEC11A)               | 4                                    | 11.44               | 4.00E-03  | 3.69           | 4                                    | 11.44               | 8.39E-02  | -1.89          |
| Immunoglobulin heavy constant gamma 1<br>(IGHG1)                   | 6                                    | 44.61               | 8.79E-03  | 3.57           | 6                                    | 44.61               | 1.70E-01  | 1.60           |
| Adenylosuccinate synthetase isozyme 1<br>(ADSSL1)                  | 3                                    | 12.29               | 3.17E-02  | 3.17           | 3                                    | 12.29               | 6.24E-01  | -1.27          |
| Aquaporin-1 (AQP1)                                                 | 4                                    | 20.13               | 4.86E-02  | 3.04           | 4                                    | 20.13               | 9.41E-03  | -2.33          |
| Collagen alpha-1(I) chain (COL1A1)                                 | 8                                    | 31.85               | 2.73E-02  | 3.02           | 8                                    | 31.85               | 4.76E-02  | -2.04          |
| Stromelysin-2 (MMP10)                                              | 3                                    | 7.39                | 2.45E-02  | 2.45           | 3                                    | 7.39                | 4.04E-01  | -1.12          |
| Laminin subunit alpha-5 (LAMA5)                                    | 9                                    | 33.15               | 4.73E-02  | 2.37           | 9                                    | 33.15               | 9.49E-01  | 1.29           |
| 72 kDa type IV collagenase (MMP2)                                  | 7                                    | 20.39               | 1.10E-01  | 2.10           | 7                                    | 20.39               | 4.88E-02  | -2.08          |
| CDP-diacylglycerol-inositol 3-<br>phosphatidyltransferase (CDIPT)  | 4                                    | 18.69               | 2.78E-01  | 2.07           | 4                                    | 18.69               | 4.78E-02  | -3.13          |
| Acetolactate synthase-like protein                                 | 2                                    | 6.46                | 2.91E-01  | 1.84           | 2                                    | 6.46                | 1.10E-02  | -2.27          |
| Carbonic anhydrase 9 (CA9)                                         | 4                                    | 13.61               | 3.48E-02  | 1.84           | 4                                    | 13.61               | 5.92E-01  | -1.12          |
| Sulfotransferase 1A4 (SULT1A4)                                     | 3                                    | 9.96                | 9.34E-01  | 1.52           | 3                                    | 9.96                | 4.39E-02  | -10.00         |
| Inosine triphosphate pyrophosphatase (ITPA)                        | 5                                    | 15.22               | 3.35E-01  | 1.38           | 5                                    | 15.22               | 3.98E-02  | -2.17          |
| E3 ubiquitin/ISG15 ligase TRIM25 (TRIM25)                          | 2                                    | 6.13                | 7.65E-01  | 1.04           | 2                                    | 6.13                | 3.00E-02  | -2.27          |
| Discoidin, CUB and LCCL domain-containing<br>(DCBLD2)              | 2                                    | 5.29                | 7.17E-01  | -1.04          | 2                                    | 5.29                | 4.39E-02  | -2.86          |
| UDP-N-acetylhexosamine pyrophosphorylase (UAP1)                    | 2                                    | 9.77                | 9.66E-01  | -1.04          | 2                                    | 9.77                | 4.58E-02  | 2.00           |
| Protein FAM136A (FAM136A)                                          | 2                                    | 4.32                | 7.17E-01  | -1.25          | 2                                    | 4.32                | 3.10E-03  | 2.56           |
| Myosin-8 (MYH8)                                                    | 4                                    | 252.28              | 2.43E-01  | -1.39          | 4                                    | 252.28              | 3.10E-02  | 2.64           |
| Hemoglobin subunit beta (HBB)                                      | 4                                    | 25.11               | 1.62E-01  | -1.89          | 4                                    | 25.11               | 2.69E-02  | 3.47           |
| Hemoglobin subunit alpha (HBA1)                                    | 7                                    | 24.48               | 1.49E-01  | -1.89          | 7                                    | 24.48               | 3.26E-02  | 3.78           |
| Small nuclear ribonucleoprotein F (SNRPF)                          | 2                                    | 7.56                | 1.04E-02  | -2.08          | 2                                    | 7.56                | 1.67E-01  | 1.37           |
| Haptoglobin-related (HPR)                                          | 2                                    | 3.77                | 1.37E-02  | -2.17          | 2                                    | 3.77                | 1.49E-01  | -1.54          |
| Zinc finger CCCH-type antiviral protein 1<br>(ZC3HAV1)             | 4                                    | 14.60               | 1.89E-02  | -2.27          | 4                                    | 14.60               | 8.25E-01  | -1.04          |
| Sulfide:quinone oxidoreductase,<br>mitochondrial (SQOR)            | 3                                    | 16.30               | 9.28E-02  | -2.27          | 3                                    | 16.30               | 4.70E-02  | 2.40           |
| Rab3 GTPase-activating protein non-catalytic<br>subunit (RAB3GAP2) | 2                                    | 7.04                | 1.84E-03  | -2.38          | 2                                    | 7.04                | 4.12E-03  | 1.80           |
| Inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3)               | 7                                    | 26.82               | 4.00E-02  | -2.56          | 7                                    | 26.82               | 9.69E-02  | -1.64          |
| Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4)               | 7                                    | 16.98               | 2.39E-02  | -2.56          | 7                                    | 16.98               | 2.33E-01  | 1.25           |
| PDZ domain-containing protein GIPC1<br>(GIPC1)                     | 2                                    | 6.65                | 2.84E-02  | -3.03          | 2                                    | 6.65                | 4.22E-01  | -1.39          |
| Carnitine O-palmitoyltransferase 1 (CPT1A)                         | 4                                    | 9.08                | 4.22E-02  | -4.55          | 4                                    | 9.08                | 1.42E-01  | 2.18           |

**Table S1.** Proteins differentially expressed between xenografts treated with Bev vs PBS as wellas the combination of Bev and propranolol vs Bev alone.

|             |             | Lesic                       |      |      |             |
|-------------|-------------|-----------------------------|------|------|-------------|
|             |             | Endothelial Cells Telocytes |      |      |             |
|             | Age (years) | GLUT1                       | AQP1 | AQP1 | treated     |
|             | <1          | -                           | +    | -    | -           |
|             | 5           | -                           | +    | -    | -           |
|             | 8           | -                           | +    | +/-  | -           |
|             | <1          | -                           | +    | -    | -           |
|             | <1          | -                           | +    | -    | -           |
| Congonital  | 1           | -                           | +    | +/-  | -           |
| Lomangiamas | 6           | -                           | +    | -    | -           |
|             | 12          | -                           | +    | +/-  | -           |
| Merrientien | <1          | -                           | +    | -    | -           |
|             | 3           | -                           | +    | -    | -           |
|             | 3           | -                           | +    | -    | -           |
|             | 1           | -                           | +    | -    | -           |
|             | 1           | -                           | +    | -    | -           |
|             | 9           | -                           | +    | +    | -           |
|             | 3           | +                           | -    | +    | -           |
|             | 7           | +                           | -    | +    | -           |
|             | <1          | +                           | -    | +    | -           |
|             | 2           | +                           | -    | +    | -           |
|             | 3           | +                           | -    | +    | -           |
|             | 6           | +                           | -    | +    | -           |
|             | 1           | +                           | -    | +    | -           |
|             | 1           | +                           | -    | +    | -           |
|             | 5           | +                           | -    | +    | -           |
|             | 10          | +                           | -    | +    | -           |
|             | 3           | +                           | -    | +    | -           |
|             | 5           | +                           | -    | +    | -           |
|             | 8           | +                           | -    | +    | -           |
|             | <1          | +                           | -    | +    | -           |
|             | 4           | +                           | -    | +    | -           |
|             | 6           | +                           | -    | +    | -           |
|             | <1          | +                           | -    | +    | -           |
| Infantile   | 9           | +                           | -    | +    | -           |
| Hemangiomas | <1          | +                           | -    | +    | -           |
|             | 5           | +                           | -    | +    | -           |
|             | <1          | +                           | -    | +    | timolol     |
|             | <1          | +                           | -    | +    | timolol     |
|             | <1          | +                           | -    | +    | timolol     |
|             | 1           | +                           | -    | +    | timolol     |
|             | 1           | +                           | -    | +    | timolol     |
|             | 3           | +                           | -    | +    | Propranolol |
|             | <1          | +                           | -    | +    | Propranolol |
|             | <1          | +                           | -    | +    | Propranolol |
|             | 2           | +                           | -    | +    | Propranolol |
|             | 3           | +                           | -    | +    | Propranolol |
|             | 3           | +                           | -    | +    | Propranolol |
|             | 9           | +                           | -    | +    | Propranolol |
|             | 5           | +                           | -    | +    | Propranolol |
|             | 2           | +                           | -    | +    | Propranolol |
|             | <1          | +                           | -    | +    | Propranolol |
|             | 2           | +                           | -    | +    | Propranolol |
| Dermis      |             | -                           | +    | -    | I           |

#### Table S2. GLUT1 and AQP1 Lesional vascular profiles

#### Table S3. Antibodies

| Antibody               | Provider                 | Reference | IHF<br>dilution | WB<br>dilution |
|------------------------|--------------------------|-----------|-----------------|----------------|
| AQP1                   | Merck                    | AB2219    | 1/1000          | 1/500          |
| AQP1                   | Santa Cruz Biotechnology | sc-25287  | 1/50            |                |
| CD34                   | Thermofisher             | MA1-10202 | 1/500           |                |
| PDGFRa                 | Abcam                    | Ab61219   | 1/500           |                |
| c-kit                  | Santa Cruz Biotechnology | sc-393910 | 1/50            |                |
| vimentin               | Dako                     | M0725     | 1/200           |                |
| αSMA                   | Abcam                    | ab7817    | 1/500           |                |
| GLUT-1                 | Merck                    | MABS132   | 1/500           |                |
| GLUT-1                 | Thermofisher             | pa1-21041 | 1/100           |                |
| ADRB2                  | Abcam                    | ab61778   | 1/100           |                |
| ADRB2                  | Santa Cruz Biotechnology | sc-271322 | 1/50            |                |
| CAV-1                  | Santa Cruz Biotechnology | sc-53564  | 1/50            |                |
| Tryprase               | Abcam                    | ab81703   | 1/2000          |                |
| CD68                   | Dako                     | M0876     | 1/100           |                |
| CD133                  | Merck                    | MAB4399-I | 1/50            |                |
| CD168                  | Abcam                    | ab224768  | 1/100           |                |
| Ki-67                  | Vectorlabs               | VP-K452   | 1/200           |                |
| VEGF-A                 | Abcam                    | ab1316    | 1/100           |                |
| β-Actin                | Sigma-Aldrich            | A2228     |                 | 1/4000         |
| Horse Anti-Mouse HRP   | Vectorlabs               | PI-2000   |                 | 1/5000         |
| Goat Anti-Rabbit HRP   | Vectorlabs               | PI-1000   |                 | 1/2000         |
| Goat Anti-Rabbit 488   | Abcam                    | ab150077  | 1/500           |                |
| Goat Anti-Rabbit 555   | Abcam                    | ab 150078 | 1/500           |                |
| Goat Anti-Mouse 488    | Abcam                    | ab150113  | 1/500           |                |
| Goat Anti-Mouse 555    | Abcam                    | ab150114  | 1/500           |                |
| Donkey Anti-Rabbit 568 | Abcam                    | ab175470  | 1/500           |                |
| Donkey Anti-Mouse 568  | Abcam                    | ab175472  | 1/500           |                |

#### SI References

- 1. M. Hosseini, *et al.*, Premature Skin Aging Features Rescued by Inhibition of NADPH Oxidase Activity in XPC-Deficient Mice. *J. Invest. Dermatol.* **135**, 1108–1118 (2015).
- 2. M. Hosseini, *et al.*, Energy Metabolism Rewiring Precedes UVB-Induced Primary Skin Tumor Formation. *Cell Rep.* **23**, 3621–3634 (2018).
- L. Käll, J. D. Canterbury, J. Weston, W. S. Noble, M. J. MacCoss, Semi-supervised learning for peptide identification from shotgun proteomics datasets. *Nat. Methods* 4, 923– 925 (2007).
- 4. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res **47**(D1):D442-D450 (2019).