

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection, case severity, and likelihood of death

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044606
Article Type:	Original research
Date Submitted by the Author:	09-Sep-2020
Complete List of Authors:	Alene, Kefyalew; Curtin University, Faculty of Health Sciences; Telethon Kids Institute, Wesfarmers Centre of Vaccines and Infectious Diseases Assefa, Yalemzewod; University of Gondar; University of New South Wales, School of Women's and Children's Health Fetene, Dagnachew ; Burnet Institute Koye, Digsu ; The University of Melbourne School of Population and Global Health Melaku, Yohannes Adama; Flinders University, Public Health; The University of Adelaide Adelaide Medical School Gesesew, Hailay; Mekelle University, Epidemiology Department, School of Health Sciences; Flinders University Birhanu, Mulugeta ; St Paul's Hospital Millennium Medical College Adane, Akilew; Telethon Kids Institute Muluneh, Muluker; Western Sydney University; Amref Health Africa in Ethiopia, Monitoring Evaluation and Research Dachew, Berihun; University of Gondar, Institute of Public Health; Curtin University, School of Public Health Abrha, Solomon; University of Canberra; Mekelle University, School of Pharmacy Aregay, Atsede; Monash University; Mekelle University, School of Nursing Ayele, Asnakew ; University of Gondar, School of Pharmacy; University of New England Bezabhe, Woldesellassie; University of Tasmania Faculty of Health Tadesse, Kidane ; Queensland University of Technology; Mekelle University, School of Public Health Gebremedhin, Tesfaye; University of Canberra Tesfay, Amanuel; Telethon Kids Institute, Wesfarmers Centre of Vaccines and Infectious Diseases; Curtin University, School of Public health Gebremichael, Lemlem; Mekelle University, Pharmacology Department; University of South Australia, School of Pharmacy and Medical Sciences, Therapeutics Research Centre Geleto, Ayele; Haramaya University; The University of Newcastle Faculty of Health and Medicine Kassahun, Habtamu ; Griffith University, Australian Rivers Institute Kibret, Getiye ; Debre Markos University, Public Health; The University of Sydney Leshargie, Cheru; Debre Markos University; The University of Sydney, School of Pharmacy

	Mirkuzie, Alemnesh; Ethiopian Public Health Institute; University of Washington, Institute for Health Metrics and Evaluation Mohammed, Hassen; The University of Adelaide; Women's and Children's Health Network Tegegn, Henok; University of New England; University of Gondar Gebresilassie, A; Mekelle University, Epidemiology; University of New South Wales, The George Institute for Global Health Tesfay, Fisaha; Flinders University Faculty of Medicine Nursing and Health Sciences, South gate institute for Health, Society and Equity ; Mekelle University College of Health Sciences, School of Public Health Wubishet, Befikadu ; University of Canberra Kinfu, Yohannes; University of Canberra; Qatar University, College of Medicine
Keywords:	Epidemiology < TROPICAL MEDICINE, PUBLIC HEALTH, Public health < INFECTIOUS DISEASES

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3		
4	1	COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection,
5		· · · · · · · · · · · · · · · · · · ·
6 7	2	case severity, and likelihood of death
8		
9	2	Kafarlan Addie Alexal 23* Kalenaren d. Arrefe Calen 34+ Deemerken Malene Feter 5 Diere N
10	3	Kefyalew Addis Alene ^{1,2,3} *, Yalemzewod Assefa Gelaw ^{3,4+} , Dagnachew Muluye Fetene ⁵ , Digsu N
11	4	Koye ⁶ , Yohannes Adama Melaku ^{7,8} , Hailay Abrha Gesesew ^{9,10} , Mulugeta Molla Birhanu ¹¹ , Akilew
12	5	Awoke Adane ¹² , Muluken Dessalegn Muluneh ^{13,14} , Berihun Assefa Dachew ^{3,15} , Solomon Abrha ^{16,17} ,
13	6	Atsede Aregay ^{18,19} , Asnakew Achaw Ayele ^{20,21} , Woldesellassie M Bezabhe ²² , Kidane Tadesse
14	7	Gebremariam ^{23,24} , Tesfaye Gebremedhih ²⁵ , Amanuel Tesfay ^{15,2} , Lemlem Gebremedhin
15	8	Gebremichael ^{26,27} , Ayele Geleto ^{28,29} , Habtamu Tilahun Kassahun ³⁰ , Getiye Dejenu Kibret ^{31,32} , Cheru
16	9	Tesema Leshargie ^{33,34} , Alemayehu Mekonnen ^{35,36} , Alemnesh H. Mirkuzie ^{37,38,39} , Hassen
17	10	Mohammed ^{40,41} , Henok Getachew Tegegn ^{21,42} , Azeb Gebresilassie Tesema ^{22,43} , Fisaha Tesfay ^{9,10,44} ,
18 19	11	Befikadu L. Wubishet ⁴⁵ , Yohannes Kinfu ^{38,46,47,48+}
20	12	
21	13	¹ Faculty of Health Sciences, Curtin University, Western Australia, Australia
22	13 14	² Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western
23	14	Australia, Australia
24	16	³ Institute of Public Health, University of Gondar, Gondar, Ethiopia
25	17	⁴ Population Child Health Research Group, School of Women's and Children's Health, University of
26	18	New South Wales, Australia
27	19	⁵ Burnet Institute, Melbourne, Victoria, Australia
28	20	⁶ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,
29 30	21	University of Melbourne, Australia
31	22	⁷ Adelaide Institute for Sleep Health, College of Medicine and Public health, Flinders University,
32	23	Australia
33	24	⁸ Adelaide Medical School, University of Adelaide, Australia
34	25	⁹ College of Medicine and Public Health, Flinders University, Australia
35	26	¹⁰ Epidemiology Department, School of Health Sciences, Mekelle University, Ethiopia
36	27	¹¹ Department of nursing, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
37	28	¹² Telethon Kids Institute, The University of Western Australia, Nedlands, Western
38	29	Australia, Australia
39	30	¹³ Amref Health Africa in Ethiopian, Monitoring Evaluation and Research, Addis Ababa, Ethiopia
40 41	31	¹⁴ School of Nursing and Midwifery, Western Sydney University, Sydney Australia
42	32	¹⁵ School of Public health, Curtin University, Western Australia, Australia
43	33	¹⁶ Faculty of Health, University of Canberra, Bruce, Canberra, Australian Capital Territory, Australia.
44	34	¹⁷ Department of Pharmaceutics, School of Pharmacy, College of Health Sciences, Mekelle University,
45	35	Mekelle, Ethiopia
46	36	¹⁸ School of Nursing and Midwifery, Monash University, Melbourne, Australia
47	37	¹⁹ School of Nursing, Mekelle University, Ethiopia
48	38	²⁰ School of Health, Faculty of Medicine and Health, University of New England, Armidale 2351,
49	39	Australia
50 51	40	²¹ Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science,
52	41	University of Gondar, Gondar, Ethiopia
52 53	42	²² School of pharmacy and pharmacology, University of Tasmania
54	43	²³ School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia
55	44	²⁴ School of Public Health, Mekelle University, Ethiopia
56	45	²⁵ Faculty of Business, Government and Law, University of Canberra
57	46	²⁶ School of Pharmacy and Medical Sciences, Therapeutics Research Centre, University of South
58	47	Australia, Adelaide, Australia
59	48	²⁷ School of Pharmacy, Pharmacology Department, Mekelle University, Mekelle, Ethiopia
60	49	²⁸ School of Public Health, College of Health and Medical Sciences, Haramaya University, Ethiopia

1		
2		
3	50	²⁹ School of Medicine and Public Health, Faculty of Health and Medicine, the University of
4	51	Newcastle, Australia
5 6	52	³⁰ Australian Rivers Institute, Griffith University, Nathan, Australia
7	53	³¹ Debre Markos University, Ethiopia
8	54	³² University of Sydney, Australia
9	55	³³ School of Public Health, Faculty of Health, University of Technology Sydney, Ultimo, Australia
10	56	³⁴ College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
11	57	³⁵ Institute for Health Transformation, Deakin University, Australia,
12	58	³⁶ School of Pharmacy, University of Sydney, Sydney, Australia
13	59	³⁷ Ethiopian Public Health Institute, Addis Ababa, Ethiopia
14	60	³⁸ Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
15 16	61	⁴⁹ Center for International Health, University of Bergen, Bergen, Norway
17	62	⁴⁰ Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network,
18	63	Adelaide, South Australia, Australia
19	64	⁴¹ Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
20	65	⁴² School of Rural Medicine, University of New England, Armidale, Australia
21	66	⁴³ The George Institute for Global Health, University of New South Wales, Australia, Sydney
22	67	⁴⁴ School of Health and Social Development, Deakin University
23	68	⁴⁵ Research Centre for Generational Health and Ageing, University of Newcastle, Australia
24	69	⁴⁶ Faculty of Health, University of Canberra, Australia
25 26	70	⁴⁷ College of Medicine, Qatar University, Qatar
26 27	71	⁴⁸ Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
28	72	
29		
30	73	*Corresponding Author: Kefyalew Addis Alene, Faculty of Health Sciences, Curtin
31	73 74	University, Western Australia, Australia, Kent St, Bentley WA 6102, Australia. Tel:
32		+61404705064; E-mail: kefyalew.alene@anu.edu.au
33	75	101404703004, E-man. Keryalew.alene@anu.euu.au
34	76	
35 36	70	
30 37	77	⁺ Equal contributor
38	78	
39	70	
40	79	
41	15	
42	80	
43	00	
44	81	
45 46	01	
40	82	
48	02	
49	83	
50	05	
51	84	
52	04	
53		
54	85	Keywords: Risk map, vulnerability, infection, severity, death, COVID-19, Ethiopia, geospatial
55 56		
50 57	86	
58		
59	~ =	
60	87	

88 Abstract

Background: COVID-19 has caused a global public health crisis affecting most countries,
including Ethiopia, in various ways. This study maps the vulnerability to infection, case
severity, and likelihood of death from COVID-19 in Ethiopia.

Methods: Thirty-eight potential indicators of vulnerability to COVID-19 infection, case 93 severity and likelihood of death, identified based on a literature review and the availability of 94 nationally representative data at a low geographic scale, were assembled from multiple sources 95 for geospatial analysis. Geospatial analysis techniques were applied to produce maps showing 96 the vulnerability to infection, case severity, and likelihood of death in Ethiopia at a high level 97 of resolution (1 km X 1 km).

Results: This study showed that vulnerability to COVID-19 infection is likely to be high across most parts of Ethiopia, particularly in the Somali, Afar, Amhara, Oromia, and Tigray regions. The number of severe cases of COVID-19 infection requiring hospitalisation and intensive care unit admission is likely to be high across Amhara, most parts of Oromia and some parts of the Southern Nations, Nationalities, and Peoples' Region. The risk of COVID-19-related death is high in the country's border regions, where public health preparedness for responding to COVID-19 is limited.

Conclusion: This study revealed geographical differences in vulnerability to infection, case
 severity, and likelihood of death from COVID-19 in Ethiopia. The study offers high-resolution
 maps that can guide the targeted interventions necessary to contain the spread of COVID-19 in
 Ethiopia.

2		
3		Strengths and limitations of this study
4 5		This is the first study that maps vulnerability to COVID-19 infection, severe cases,
6		and associated death in Ethiopia at a high level of resolution across the entire territory
7		
8		of Ethiopia.
9 10		> This is also the first study that has attempted to present the degree of service
11		preparedness for COVID-19 across the country.
12		
13 14		The study incorporated a wide range of indicators from multiple sources and applied
15		rigorous geospatial techniques to provide the best possible prediction maps.
16		However, some important indicators such as psychosocial and clinical factors were
17		
18 19		not captured in our modelling due to the lack of geocoded data.
20		
21	115	
22 23		
24	116	
25		
26 27		
28	117	
29		
30 31	118	
32		
33	119	
34 35		
36	120	
37	120	
38 39		
40	121	
41		
42 43	122	
43 44		
45	123	
46	120	
47 48		
49	124	
50		
51 52	125	
53		
54	126	
55 56		
57	127	
58	127	
59 60		
00		

128 Introduction

Coronavirus disease (COVID-19) has become one of the most serious global public health crises in modern times ¹. The disease was declared a pandemic on 11 March 2020 and has currently affected more than 216 countries and territories ². As of 3 August 2020, there were more than 17.6 million confirmed COVID-19 cases and over 680,000 associated deaths around the globe ³. The highest numbers of cases and deaths have been reported from the USA, Brazil, India, and some European countries, such as Russia, the United Kingdom, Italy, and Spain³. African countries, including Ethiopia, have reported a low number of COVID-19, although the number of cases and deaths are currently on the rise⁴. In Ethiopia, the first case of COVID-19 was reported on 13 March 2020, and the disease recently spread rapidly from the capital city, Addis Ababa, to other parts of the country, affecting almost all regions at various levels ⁵.

COVID-19 has had severe health and economic consequences ⁶. Multiple factors, such as socio-demographic, connectivity, behavioural, climatic, and comorbidity factors, are strong predictors of the differences in transmission, hospitalisation, and mortality rates among and within countries ^{7,8}. Studies conducted in Africa have provided limited information on the vulnerability of different areas to COVID-19 infection ^{4,9}. These studies have been conducted at the country level using a limited number of indicators ^{4,9}. Mapping the risks of COVID-19 (infection, case severity, service preparedness and death) at a higher resolution (using the lowest administrative unit, such as the district) is important in many ways. First, the generated evidence can help the government and community better prepare and respond to the health-and non-health-related impacts of COVID-19 according to their contextual circumstances. Second, it can help the relevant bodies determine effective and efficient resource-mobilisation efforts, such as providing training for health care workers, supplying hospitals with necessary equipment, prioritising testing practices, and distributing hand sanitizer and protective facemasks. Third, the information can be utilised as a guide for designing targeted travel restrictions or applying full or partial lockdowns as needed. Fourth, the evidence can stimulate further study on COVID-19 in the country.

Given Ethiopia's large population size, variation in resources and vast geographic size, the risk of COVID-19 infection, case severity and likelihood of death are likely to differ across regions, zones, and districts, suggesting that local and context-specific interventions be implemented. Therefore, this study aimed to map the vulnerability to infection, case severity, and likelihood of death from COVID-19 in Ethiopia at a higher geographic resolution (1 km X 1 km) over the
whole territory of Ethiopia using rigorous state-of-the-art geospatial techniques.

161 Methods

10 162 Study area

This study focused on Ethiopia, the second-most populous country in Africa, with an estimated population size of more than 115 million ¹⁰. Ethiopia has a total area of approximately 1.1 million square kilometres, making it the 10th largest country in Africa and the 27th largest in the world. The country has a tiered administrative system consisting of regional states (first level), zones (second level), woredas or districts (third level), and kebeles or neighbourhoods (fourth level)¹¹. There are nine administrative regional states in Ethiopia, including Tigray, Afar, Amhara, Oromia, Somali, Benishangul-Gumuz, Harari, Gambella, and the Southern Nations, Nationalities, and Peoples' Region (SNNPR), and two administrative cities (Addis Ababa and Diredawa). The four regional states (Afar, Somali, Benishangul-Gumuz, and Gambella) are categorised as developing regional states. The administrative units of Ethiopia (shapefiles) were obtained from the Database for Global Administrative Areas ¹².

31 174 Data sources and variable selection

The analysis data were assembled from multiple sources (Table 1). Potential indicators were selected based on evidence of association with COVID-19 infection, case severity, and death based on a literature review and the availability of country-wide representative data at a district geographic scale or lower (Figure 1). Table 2 presents the evidence for the association between indicators and COVID-19, as well as the rationale for selecting these indicators for the study.

The following area-level demographic and socio-economic indicators were used as indicators of COVID-19 infection and case severity: the average number of persons per household, the proportion of the population aged ≥ 65 years, the proportion of males, and the number of households in the lowest wealth quintile. All of these socio-economic and demographic indicators were obtained from the latest Ethiopia Demographic and Health Survey (EDHS)¹³. Population density, estimated as the number of people per grid, was obtained from WorldPop

Connectivity indicators, which measure the population-level vulnerability to infection, were
 also captured using distance and time-bounded markers. Specifically, average travel time
 (measured in minutes) to the nearest city with at least 50,000 people and proximity to

Page 9 of 30

BMJ Open

international borders (measured in kilometres) were included to measure each area's level of susceptibility to infection. Data on travel time to the nearest city, obtained from the University of Oxford's Malaria Atlas Project (MAP), were used to quantify the accessibility of an area to high-density urban centres at a resolution of 1 km×1 km.¹⁵. Data on proximity to international borders were obtained from the EDHS spatial data repository and were used to measure ¹⁶ the geodesic distance to the nearest international border in kilometres, indicating the risk of cross-border transmission and the spread of COVID-19. Infection rates and the spread of COVID-19 were also positively correlated with the per capita public transportation use rate ¹⁷. Thus, to determine the nearest cross-country road to each location on the map, we obtained and applied data for major roads from the World Bank¹⁸.

It is evident that inadequate knowledge about COVID-19 and a lack of awareness of prevention measures exacerbate the community transmission of the disease ¹⁹. Therefore, we extracted data on the adult literacy rate, access to media (such as radio, television, and mobile phone messages) and knowledge about other infectious diseases (e.g., HIV) from the EDHS as proxies for knowledge of COVID-19 prevention measures in each area of the country ¹³. According to the WHO, maintaining good hand hygiene through regular washing with soap and water is one of the most effective preventative measures for reducing the transmission of COVID-19^{20,21}. Using the same data as above, we also assessed hand hygiene practices, access to water, and the availability of handwashing stations in a household.

Previous studies have shown that underlying chronic comorbidities and behavioural factors such as cigarette, alcohol and khat consumption were associated with more severe COVID-19 infections ^{22,23}. Data on khat chewing and the alcohol consumption rate were obtained from the EDHS 2016¹³, and data on cigarette smoking were obtained from the Ethiopia Public Health Institute STEP wise approach to Surveillance (STEPS) study ²⁴. The STEP survey was also used to measure the prevalence of select non-communicable diseases (NCDs) such as hypertension, heart disease, and diabetes mellitus (DM).

The level of preparedness and readiness of health facilities to detect, manage, and control the COVID-19 pandemic at a given location was measured using data from the Service Availability and Readiness Assessment (SARA) survey ²⁵. For each geo-location, the obtained measures include the availability and readiness of facilities in terms of basic amenities and equipment, standard precautions, diagnostic capacities, and essential medicines. In addition, data on service readiness for specific diseases such as DM, chronic respiratory disease (CRD), and

tuberculosis (TB), as well as the availability of intensive care units (ICUs) and laboratory
facilities, were obtained from this same survey. To augment the health facility data, we
extracted population-level indicators on health care access and barriers to care from EDHS
2016¹³.

Finally, climatic data (temperature, precipitation, humidity, and sunlight exposure) were obtained from the WorldClim v2.0 Global Climate Database ²⁶. These data were extracted at a spatial resolution of 30 seconds or ~1 km² and were considered indicators of COVID-19 infection in this study.

18
 19
 231 Geospatial data processing

All data were georeferenced using a geographical information system, ArcGIS 10.6.1 software (ESRI Inc., Redlands CA, USA). A very small rectangular polygon (fishnet) with its centroid (fishnet centroid) covering the whole territory of Ethiopia was created using tools in ArcGIS (Figure 2). The fishnet centroid contained a unique identification number and was used as a common georeferenced system to process, join, and extract the raster and vector data collected from various sources. All vector data (point, polygon, and line) were converted to raster data using geostatistical methods ²⁷. Raster grids were then resampled to the common georeferenced system at a spatial resolution of 1 km x 1 km. Finally, a raster mask covering the entire country was created by clipping smaller spatial units from a large global raster data source.

35 36 241 Statistical analyses

Geostatistical techniques such as spatial autocorrelation, kriging and semivariograms were applied to create a prediction grid surface from a scattered set of points ²⁸. Kriging assumes that the distance or direction between sample points reflects a spatial correlation that can be used to explain variation in the surface ²⁹. Since the variables had different units of measurement, the datasets were normalised using a min-max approach to a standard scale ranging from 0 (the lowest risk) to 100 (the highest risk)³⁰. After normalisation, the indicators were averaged to create a vulnerability index, measuring the risk of COVID-19 for each geo-location ³¹. The vulnerability indices were calculated separately for each domain, namely, the vulnerability to infection, case severity, and likelihood death from COVID-19. The three domains were then averaged to produce the overall COVID-19 vulnerability index. Given that COVID-19 is a new virus, there is a lack of evidence for assigning weights for each indicator. Hence, equal weight was given to all indicators when calculating the arithmetic mean for the aggregate vulnerability indices. We also used principal component analysis (PCA) and geometric means as alternative aggregation methods, producing broadly similar results

(Supplemental Figure 1 and Supplemental Figure 2). The risk maps were then created
separately for infection, case severity, service preparedness, and death from the composite
index using geostatistical tools in ArcGIS. All data transformations and aggregations were
performed in R ³².

260 Ethics aspects: Ethical approval was not required for this study as it was based on publicly261 available data.

262 Patient and public involvement: This research was done without patient and public

263 involvement.

Funding: There was no funding source for this study.

Results

266 Vulnerability to COVID-19 infection

Figure 3 shows the vulnerability map of COVID-19 infection in Ethiopia. The map highlights that most parts of the country are likely to have a relatively high vulnerability and be at substantial risk for COVID-19 infection. Most parts of the country are identified as vulnerable to COVID-19 infection, with the exception of Addis Ababa and the north-western Somali region. The peripheral areas of the country bordering Djibouti, Somalia, Eritrea, and South Sudan appeared to be vulnerable to COVID-19 infection. These outlying areas are characterised by a low level of geographical connectivity and low scores for disease knowledge, hand hygiene and socio-economic indices (Supplemental Figure 3). They also have certain climatic factors that were found to be important indicators of COVID-19 transmission.

276 Vulnerability to severe cases of COVID-19 infection

Areas across the Amhara region and most parts of the Oromia region are likely to experience severe forms of COVID-19 that require hospitalisation and ICU admission. Some parts of the SNNPR are also expected to be at high risk of severe COVID-19 infections. The combination of demographic (high proportion of older adults), comorbidity (high prevalence of hypertension, DM, obesity, HIV, and TB), and behavioural and economic indicators (high proportion of smokers and high level of alcohol and khat consumption, interior cooking, and solid fuel use) renders these parts of the country at a higher risk of severe forms of COVID-19.

- Figure 4 shows the levels of vulnerability to severe forms of COVID-19. $\frac{1}{2}$
- 58 285 Vulnerability to death from COVID-19

People living around border areas in Ethiopia are at a high risk for COVID-19-related death, as illustrated in Figure 5. Districts and zones in the Benishangul-Gumuz, Gambela, Afar, SNNPR, Dire Dawa, Southwest Somali, Northwest Amhara, Western Tigray, and Western and Eastern Oromia regions are at high risk for COVID-19-related death. The level of service preparedness and readiness to mitigate the health effects of COVID-19 appear to be very low in these regions (Figure 6). Ethiopia's border regions have inadequate ICU availability and laboratory capacity as well as limited health care access. They also have low general and service-specific readiness, as shown in Figure 6.

Discussion

 This is the first study that maps vulnerability to COVID-19 infection, severe infection cases, and associated death in Ethiopia at a high resolution. This is also the first study that has attempted to present the degree of service preparedness for COVID-19 across the country.

We found that most parts of the country are vulnerable to COVID-19 infections, and the greatest burden might be outside of Addis Ababa. It is likely that compared to other regions, a higher proportion of people from the Amhara and Oromia regions, the two most populous regions of the country, will develop severe forms of COVID-19 leading to hospitalisation and ICU admission. Border areas of the country are also expected to face a higher risk of death than areas located in the central regions. The findings of this study are of paramount importance in preventing and controlling COVID-19 transmission and in designing targeted interventions, such as enacting travel restrictions, distributing preventative masks and determining which areas to prioritise if a COVID-19 vaccine becomes available. As some of these areas also have lower preparedness scores and low general and service-specific readiness scores, the findings have wider implications for allocating resources and strengthening the health care system after the COVID-19 pandemic.

Despite the proportionally high infection rate in Addis Ababa at present, we found that the risk of COVID-19 infection is likely to become rather high in other regions. The high infection rate in Addis Ababa at this initial stage is expected, given that Addis Ababa is a major travel hub and Bole International Airport, located in the city, is one of the largest international airports in Africa. This exposes the city to a higher risk of imported cases and, subsequently, to an early surge of infections, leaving the areas outside the city at a higher risk of later infection. Second, we considered multifaceted risk factors (indicators) for COVID-19 infection in our geospatial

model. This means that although the city has a high degree of connectivity, it is also characterised by higher scores for information penetration, knowledge of disease prevention and hand hygiene practices that could help slow the rate of infection in the city ¹³. Third, Addis Ababa has relatively better and more consistent test-and-contact tracing practices than in other parts of the country, which means that the chance of new infections being detected in the city are much greater than in other parts of the country ⁵. Future efforts to expand testing and tracing practices in other areas of the county are likely to increase the extent of confirmed infections in those other areas. Recent studies have demonstrated that effective social distancing and contact tracing can significantly reduce the rate of infection ^{33,34}. These interventions should be strengthened and expanded to areas identified as high risk in this study.

Our study also showed that the risk for severe cases of COVID-19 infection is high in most parts of the Amhara and Oromia regions. This may be due to the high prevalence of NCDs, which are associated with severe cases of COVID-19. Previous studies have revealed that the burden of NCDs, such as DM and hypertension, is high in these two regions ^{24,35,36}. With the COVID-19 epidemic evolving rapidly in Ethiopia, fast-tracked public health education and interventions to control and limit the spread of infection should be strengthened. In addition, to address severe cases and potential mortality risks, strengthening and expanding tailored health care services, including ICUs in high-risk areas, are crucial to prevent the exacerbation of the COVID-19-induced public health crisis.

Our study also revealed that peripheral areas sharing international borders are likely to see a greater number of COVID-19-related deaths. The high risk of death along the border areas might be attributed to low preparedness in case management and weak health care systems. In contrast, although the Amhara and Oromia regions may have more severe cases, the preparedness indicators show that the regions are better equipped to cope with these anticipated severe cases. However, our study suggests that additional preparation and capacity strengthening are needed mainly in the following areas: emergency response systems, case detection and capacity to care for patients. It is also equally important that hospitals have adequate supplies, health care personnel and life-saving medical intervention resources. Despite encouraging efforts by the Ethiopian government and stakeholders to prepare the health care system for the pandemic, the existing health care services in the country may face unprecedented challenges and crises due to the surge of patients that will require hospitalisation and ICU services at the same time. This can, however, be eased by implementing public health and social measures at the individual, community, and public authority levels to prevent

infections and subsequent health, economic, and social consequences ³⁷. Studies have shown
 that implementing non-pharmaceutical interventions, especially during the early stages of
 infection, can reduce transmission and subsequent potential public health and economic crises
 ³⁸.

Further, we found notable regional disparities in health system preparedness and readiness levels in the country. This is important because if the health care system is well equipped to prevent and mitigate the spread of the pandemic, then the mortality rate from the disease can be markedly reduced ³⁹. However, we observed that Ethiopia's border regions (i.e., Benishangul-Gumuz, Gambella, Afar, and Somali) have low preparedness levels. Nevertheless, comparisons need to be treated with care because Ethiopia in general has very low doctor-to-resident (1 doctor per 10,000 people) and hospital bed-to-population (3 hospital beds per 10,000 people) ratios ⁴⁰. Several long-, medium- and short-term strategies, can be implemented to mitigate these problems: (i) providing short-term training for potential actors such as community leaders, students, and traditional and modern medical practitioners, (ii) recruiting additional staff to work in COVID-19-related heath care, (iii) establishing COVID-19 clinics and changing outpatient rooms to emergency clinics, (iv) collaborating with private hospitals ahead of surges so that they can be used in the case such surges occur, and (v) establishing mobile clinics and temporary admission rooms in highly vulnerable areas.

Policy implications

The findings of this study provide vital evidence that can inform policymakers in allocating resources and guide health professionals in responding to and preventing COVID 19 infections. With the limited resources that Ethiopia has, the measures implemented to limit the spread of COVID-19 infection should be sustainable, should be tailored and should consider the national and local contexts, such as varying socio-economic conditions. Strengthening the health care system and improving the capacity of health extension workers (HEWs) needs to be top priority. The national measures implemented in Ethiopia seem to be skewed towards procurement-heavy interventions, such as establishing isolation facilities and obtaining personal protective equipment and ventilators. While these interventions are critical, community response should never be a secondary intervention. In this regard, the delayed engagement of communities and HEWs hinders an effective outbreak response. Overall, it is crucial that the Ethiopian government and all stakeholders strengthen their ongoing efforts to prevent and slow the infection rate.

382 Strength and Limitations

This study has several strengths. First, the current study was conducted at a high level of resolution (1 km x 1 km) across the entire territory of Ethiopia. Second, it incorporated a wide range of indicators from multiple sources. Third, it applied rigorous geospatial techniques, including spatial autocorrelation, kriging and semivariograms, to provide the best possible prediction maps. Finally, we produced vulnerability mapping for infection or transmission, case severity, and associated death separately to assist with policy interventions related to each risk.

However, it is important to note some potential limitations of the study when interpreting the findings. First, the results need constant updating, as some of the time-varying variables used in the study can change when new interventions are introduced. Second, ongoing political turmoil in the country means that the dynamics of transmission may change depending on the location and severity of these incidents. Third, the calculation of the composite risk factor index was based on an unweighted average under the assumption that all indicators have equal importance, which may or may not be the case. Last, some important indicators, such as psychosocial and clinical factors, were not captured in our modelling due to the lack of geocoded data.

399 Conclusions

Although nearly three-quarters of the current COVID-19 cases reported in Ethiopia are concentrated in and around Addis Ababa, this study predicts that over time, the risk of COVID-19 infection will be higher across most other parts of the country. A higher proportion of people from the Amhara region, most of the Oromia region, and some parts of the SNNPR will develop severe cases of infection. Additionally, the risk of death will be higher in the regions of the country with low preparedness scores for COVID response. Hence, the preventative and control measures that are currently in place in the capital city should be strengthened and extended to regional areas, especially to high-risk areas, to prevent and mitigate the risk of COVID-19 infection, lower the number of severe cases, and limit the number of associated deaths in Ethiopia.

Declaration

Authors' contributions

KAA, YAG, YK, DMF, DNK, YAM, HAG, MB, MDM, AAA, and BAD conceptualised the study. KAA designed and run the geospatial analysis. YAG involved in the data analysis. KAA, YAG, DMF, DNK, and YAM drafted the manuscript. HAG, MB, AAA₁, MDM, BAD, SA, AA, AAA₂, WMB, KTG, TG, ATG, LGG, AG, HTK, GDK, CTL, LBM, AAM, HM, HGT, AGT, FT, BLW, and YK Critically reviewed and revised the drafted manuscript. KAA, YK, and AHM were responsible for quality control of accuracy and integrity of data. All the authors interpreted the data. All authors contributed to the final draft and finally approved it to be published. All authors agreed to be accountable for all aspects of the work for any issue related to the accuracy or integrity of any part of the work. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: There is no funding source for this study.

Competing interests: None declared.

Patient and public involvement: This research was done without patient and public

involvement.

Data availability statement: Extra data is available by emailing the corresponding author

(KAA): kefyalew.alene@curtin.edu.au

References

- Yang P, Wang X. COVID-19: a new challenge for human beings. Cellular & molecular 1. *immunology* 2020; **17**(5): 555-7.
- Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio-medica: 2. Atenei Parmensis 2020; 91(1): 157-60.
- WHO. Coronavirus disease (COVID-19): situation report, 195. 2020. 3.
- Gilbert M, Pullano G, Pinotti F, et al. Preparedness and vulnerability of African 4. countries against importations of COVID-19: a modelling study. *The Lancet* 2020; **395**(10227): 871-7.
- Baye K. COVID-19 prevention measures in Ethiopia: Current realities and prospects: 5. Intl Food Policy Res Inst; 2020.
- McKibbin WJ, Fernando R. The global macroeconomic impacts of COVID-19: Seven 6. scenarios. Canberra: Australian National University, 2020.
- Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19 7. mortality and health-care resource availability. The Lancet Global Health 2020; 8(4): e480.
- Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug 8. therapy, and mortality in COVID-19. New England Journal of Medicine 2020.

2		
3	448	9. ACSS. Mapping Risk Factors for the Spread of COVID-19 in Africa: Africa Center for
4 5	449	Strategic Studies, 2020.
5 6	450	10. UN. Department of Economic and Social Affairs. Population Division, 2019.
7	451	11. Workie NW, Ramana GN. The health extension program in Ethiopia. 2013.
8	452	12. Areas GA. GADM database of global administrative areas. Global Administrative
9	453	<i>Areas</i> 2012.
10	454	13. CSA. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and
11	455	Rockville, Maryland, USA, 2016.
12	456	14. Tatem AJ. WorldPop, open data for spatial demography. Scientific data 2017; 4(1): 1-
13 14	457	4.
15	458	15. Weiss DJ, Nelson A, Gibson H, et al. A global map of travel time to cities to assess
16	459	inequalities in accessibility in 2015. <i>Nature</i> 2018; 553 (7688): 333-6.
17	460	16. ICF. The DHS Program Spatial Data Repository. 2018.
18	461	17. Ballesteros P, Salazar E, Sánchez D, Bolanos C. Spatial and spatiotemporal clustering
19	462	of the COVID-19 pandemic in Ecuador. <i>Revista de la Facultad de Medicina</i> 2020; 69 (1).
20	463	18. Bank W. Ethiopia Roads. 2014.
21 22	464	19. Zhong B-L, Luo W, Li H-M, et al. Knowledge, attitudes, and practices towards
22	465	COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak:
24	466	a quick online cross-sectional survey. International journal of biological sciences 2020;
25	467	16 (10): 1745.
26	468	20. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-
27	469	based mitigation measures influence the course of the COVID-19 epidemic? The Lancet 2020;
28 29	470	395 (10228): 931-4.
29 30	471	21. Xiao Y, Torok ME. Taking the right measures to control COVID-19. The Lancet
31	472	Infectious Diseases 2020; 20 (5): 523-4.
32	473	22. Testino G. Are patients with alcohol use disorders at increased risk for Covid-19
33	474	infection? Alcohol and Alcoholism (Oxford, Oxfordshire) 2020.
34	475	23. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A
35	476	systematic literature review and meta-analysis. <i>Journal of Infection</i> 2020.
36 37	477	24. EPHI. Ethiopia STEPS report on risk factors for chronic non-communicable diseases
37 38	478	and prevalence of selected NCDS. Addis Ababa, 2016.
39	479	25. EPHI. Ethiopia Service Availability and Readiness Assessment (SARA) Final Report.
40	480	. Addis Ababa, 2018.
41	481	26. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for
42	482	global land areas. International journal of climatology 2017; 37 (12): 4302-15.
43	483	27. Burrough P. GIS and geostatistics: Essential partners for spatial analysis.
44 45	484	Environmental and ecological statistics 2001; 8(4): 361-77.
45 46	485	28. Childs C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September
47	486	2004; 3235 (569): 32-5.
48	487	29. Negreiros J, Painho M, Aguilar F, Aguilar M. Geographical information systems
49	488	principles of ordinary kriging interpolator. <i>Journal of Applied Sciences</i> 2010; 10 (11): 852-67.
50	489	30. Patro S, Sahu KK. Normalization: A preprocessing stage. <i>arXiv preprint</i>
51	490	arXiv:150306462 2015.
52 53	491	31. Moore M, Gelfeld B, Okunogbe A, Christopher P. Identifying future disease hot spots:
55 54	492	infectious disease vulnerability index: Rand Corporation; 2016.
55	493	32. Team RC. R: A language and environment for statistical computing [Internet]. Vienna
56	494	(Austria): R Foundation for Statistical Computing [cited 2019 Aug 8]. 2020.
57	495	33. Siraj DS, Siraj AS, Mapes A. Early estimates of COVID-19 infections in small, medium
58	496	and large population clusters. <i>medRxiv</i> 2020.
59		
60		

1

2 3 34. Getaneh Y, Yizengaw A, Adane S, et al. Global lessons and Potential strategies in 497 4 combating COVID-19 pandemic in Ethiopia: Systematic Review. medRxiv 2020. 498 5 Tesfaye TD, Temesgen WA, Kasa AS, Yismaw YS. Prevalence and associated factors 35. 499 6 of hypertension in Amhara regional state city and its' surrounding rural districts: a community-500 7 based cross-sectional study. African Health Sciences 2019; 19(3): 2580-90. 501 8 Kibret KT, Mesfin YM. Prevalence of hypertension in Ethiopia: a systematic meta-9 36. 502 10 analysis. Public Health Reviews 2015; 36(1): 1-12. 503 11 Hartley DM, Perencevich EN. Public health interventions for COVID-19: emerging 504 37. 12 evidence and implications for an evolving public health crisis. Jama 2020; 323(19): 1908-9. 505 13 Pan A, Liu L, Wang C, et al. Association of public health interventions with the 506 38. 14 epidemiology of the COVID-19 outbreak in Wuhan, China. Jama 2020; 323(19): 1915-23. 507 15 39. Stafford N. Covid-19: Why Germany's case fatality rate seems so low. Bmj 2020; 369. 508 16 17 509 40. Organization WH. Density of physicians (total number per 1000 population, latest 18 available year). Global Health Observatory (GHO) data 2017. 510 19 Williamson E, Walker AJ, Bhaskaran KJ, et al. OpenSAFELY: factors associated with 41. 511 20 COVID-19-related hospital death in the linked electronic health records of 17 million adult 512 21 NHS patients. medRxiv 2020. 513 22 Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. Investigation of effective 23 514 42. climatology parameters on COVID-19 outbreak in Iran. Science of The Total Environment 24 515 25 2020: 138705. 516 26 Ahmad K, Erqou S, Shah N, et al. Association of Poor Housing Conditions with 43. 517 27 COVID-19 Incidence and Mortality Across US Counties. medRxiv 2020. 518 28 Ho FK, Celis-Morales CA, Gray SR, et al. Modifiable and non-modifiable risk factors 44. 519 29 for COVID-19: results from UK Biobank. medRxiv 2020. 520 30 Zheng R, Xu Y, Wang W, Ning G, Bi Y. Spatial transmission of COVID-19 via public 521 45. 31 32 and private transportation in China. Travel Medicine and Infectious Disease 2020. 522 33 Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of 523 46. 34 the 2019 novel coronavirus (COVID-19) outbreak. Science 2020; 368(6489): 395-400. 524 35 Tian H, Liu Y, Li Y, et al. An investigation of transmission control measures during 525 47. 36 the first 50 days of the COVID-19 epidemic in China. Science 2020; 368(6491): 638-42. 526 37 Holtmann M, Jones M, Shah A, Holtmann G. Low ambient temperatures are associated 527 48. 38 with more rapid spread of COVID-19 in the early phase of the endemic. Environmental 528 39 40 529 Research 2020. 41 Sobral MFF, Duarte GB, da Penha Sobral AIG, Marinho MLM, de Souza Melo A. 530 49. 42 Association between climate variables and global transmission oF SARS-CoV-2. Science of 531 43 532 The Total Environment 2020; 729: 138997. 44 Wang J, Tang K, Feng K, Lv W. High temperature and high humidity reduce the 533 50. 45 transmission of COVID-19. Available at SSRN 3551767 2020. 534 46 Li J, Zhang L, Ren Z, Xing C, Qiao P, Chang B. Meteorological factors correlate with 47 535 51. 48 transmission of 2019-nCoV: Proof of incidence of novel coronavirus pneumonia in Hubei 536 49 Province, China. medRxiv 2020. 537 50 52. Basker GV. A review on hazards of khat chewing. Int J Pharm Pharm Sci 2013; 5(3): 538 51 74-7. 539 52 Lopes H, McKay V, de Cima P. ADULT LEARNING EDUCATION AS A TOOL TO 540 53. 53 CONTAIN PANDEMICS: THE COVID-19 EXPERIENCE. 541 54 55 Ayedee N, Manocha D. Role of Media (Television) in Creating a Positive Atmosphere 542 54. 56 in COVID-19 during Lockdown in India. Role of Media (Television) in Creating a Positive 543 57 544 Atmosphere in COVID-19 during Lockdown in India (May 19, 2020) 2020. 58 Wood CS, Thomas MR, Budd J, et al. Taking connected mobile-health diagnostics of 545 55. 59 infectious diseases to the field. Nature 2019; 566(7745): 467-74. 546 60

1 ว		
2 3	F 4 7	56 Portozzi & Padian NS, Waghrait L at al HIV/AIDS provention and treatment Diagana
4	547 548	56. Bertozzi S, Padian NS, Wegbreit J, et al. HIV/AIDS prevention and treatment. <i>Disease control priorities in developing countries</i> 2006; 2 : 331-70.
5	548 549	57. WHO. Water, sanitation, hygiene, and waste management for the COVID-19 virus:
6 7	550	interim guidance, 23 April 2020: World Health Organization, 2020.
8	551	58. WHO. Infection prevention and control guidance for long-term care facilities in the
9	552	context of COVID-19: interim guidance, 21 March 2020: World Health Organization, 2020.
10	553	59. WHO. WHO Releases Guidelines to Help Countries Maintain Essential Health Services
11	554	During the COVID-19 Pandemic. Geneva, Switzerland: World Health Organization; 2020.
12 13	555	60. Murthy S, Gomersall CD, Fowler RA. Care for critically ill patients with COVID-19.
14	556	<i>Jama</i> 2020; 323 (15): 1499-500.
15	557	61. Tadolini M, Codecasa LR, García-García J-M, et al. Active tuberculosis, sequelae and
16	558	COVID-19 co-infection: first cohort of 49 cases. European Respiratory Journal 2020.
17	559	
18 19	555	
20	560	
21	FC1	
22	561	
23 24	562	
25	562	
26	563	
27	564	
28 29		
30	565	
31	566	
32		
33 34	567	
35	568	
36		
37	569	
38 39	570	
40		
41	571	
42	572	
43 44	572	
44	573	
46	574	
47	574	
48 40	575	
49 50	576	
51	576	
52	577	
53	F 70	
54 55	578	
56	579	
57		
58	580	
59 60	581	
00		

Tables

Table 1: Data sources and definitions of indicators for the vulnerability of COVID-19 in Ethiopia.

7 Indicators	Data	Definitions
8	sources	
Demographic indic		
Male sex	EDHS 2016	Total number of male populations divided by the total number of people
12		participated in the survey
Older age	EDHS 2016	Total number of people with age $\geq =65$ years divided by the total number of
14		people participated in the survey
Socio-economic ind	licators	
Population density	WorldPop	Number of people per square kilometre (grid)
Number of	EDHS 2016	Average number of people living in a house
8household		
9 members		
² Cow wealth index	EDHS 2016	Number of people with low wealth index (poorer and poorest) divided by
21		the total number of people participated in the survey
²² Connectivity indica	ators	
Travel times to	MAP	Travel time in minutes to the nearest city with a population of more than
24 Lities		50,000
Proximity to	DHS Spatial	The geodesic distance to the nearest international borders
J-national borders	Repository	
Distance to major	World Bank	Distance in km to cross-country round
groads		
30Climatic indicators	5 5	
3 Mean temperature	WorldClime	Annual mean environmental air temperature (°C)
32Mean	WorldClime	Annual mean rainfall (mm)
³ precipitation		
³⁴ Wind speed	WorldClime	Annual mean wind speed (m s ⁻¹)
³ Solar radiation	WorldClime	Annual mean solar radiation (kJ m ⁻² day ⁻¹)
Water vapour	WorldClime	Annual mean water vapour pressure (kPa), equivalent to absolute humidity.
37 pressure		
Behavioural indica	tors	
Khat chewing	EDHS 2016	Total number of people chewing khat in the last one month prior to the
40	2010	survey divided by the total number of people participating in the survey
47Alcohol drinking	EDHS 2016	Total number of people drinking alcohol in the month prior to the survey
42 noonor anning		divided by the total number of people participating in the survey
44Cigarette smoking	EPHI STEPS	
45		number of people participating in the survey
4Cooking inside	EDHS 2016	Total number of households where cooking takes place inside the house
47the household	LDIIG 2010	without a separate building or outdoors (i.e. exposure to smoke inside the
48		home) divided by the total number of households in the survey
⁴ Use solid fuel for	EDHS 2016	Number of households used some type of solid fuel (wood, dung, grass,
50 cooking	2010	crop) for cooking food divided by all households in the survey
Disease prevention	knowledge ind	icators
⁵² Adult illiteracy	EDHS 2016	Total number of adults (aged 15 years and above) who had not attended
54 ate		school or who cannot read and write divided by the total number of adults
		participated in the survey
55 56Access to listen to	EDHS 2016	Total number of people who had not access to listen to the radio divided by
57 the radio	2010	total survey participants
58Access to watch	EDHS 2016	Total number of people have no access to watch television divided by total
59TV		survey participants
60		

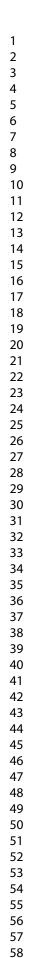
Mobile phone	EDHS 2016	Total number of people have no access to mobile phone divide by the total
ownership		number of survey participants
Knowledge	EDHS 2016	Number of people with poor knowledge towards HIV divided by the total
, toward HIV		number of people participating in the survey
Hand hygiene indi	cators	
Travel time to	EDHS 2016	Mean travel time in minutes to obtain water source (i.e. access to a water
ovater sources		source)
Place for	EDHS 2016	Number of households have no fixed or mobile place for handwashing
handwashing		divided by total number of households in the survey
Soap or detergent	EDHS 2016	Number of households have no essential handwashing agents (i.e. soap, and
4availability for		detergent) divided by total household in the survey
handwashing		
Comorbidities indi		
HTN	EPHI STEPS	Total number of people with HTN divided by the total number of survey
0 -0		participants
рМ	EPHI STEPS	Total number of people with DM divided by the total number of survey
1		participants
BMI	EPHI STEPS	Mean body mass index
<u>CVD</u>	EPHI STEPS	Total number of people with heart disease divided by total number of people
24		in the survey
Cholesterol	EPHI STEPS	Mean cholesterol level
HIV prevalence	EDHS 2016	Total number of people with HIV divided by survey participants
27TB SMR	EMOH	Standardized morbidity ratio (SMR) as measured by observed number of T
28		cases divided by the expected number of TB cases
Service availability		
Health care access	EDHS 2016	Difficulty of getting advice or treatment due to lack of money, or distance t
problem		a health facility
General service	EPHI SARA	Availability of equipment and supplies (i.e. basic amenities, equipment,
readiness and		standard precautions, diagnostic capacity, essential medicines) necessary to
availability		provide general health services
CU availability	EPHI SARA	Availability of Critical Care Services (ICU) in hospitals
CRD readiness	EPHI SARA	Availability of specific services for Chronic respiratory disease (CRD)
gindex		diagnosis, management, and follow up
9TB readiness	EPHI SARA	Availability of specific services for tuberculosis diagnosis, management,
ondex		and follow up
Diabetes readiness	EPHI SARA	Availability of specific service for diabetes diagnosis and management and
Andex		follow up
		nomic data; EDHS: Ethiopia demographic and health survey; UN OCHA:
		ion of Humanitarian Affairs; MAP: SRTM: Malaria Atlas Project; Shuttle
Radar Topography	Mission; EPHI:	Ethiopia Public Health Institute: EMOH: Ethiopia Ministry of Health;
SARA: Service Avai		

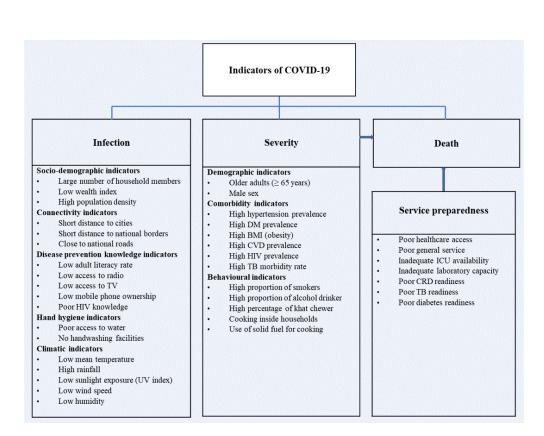
58 595

59 596

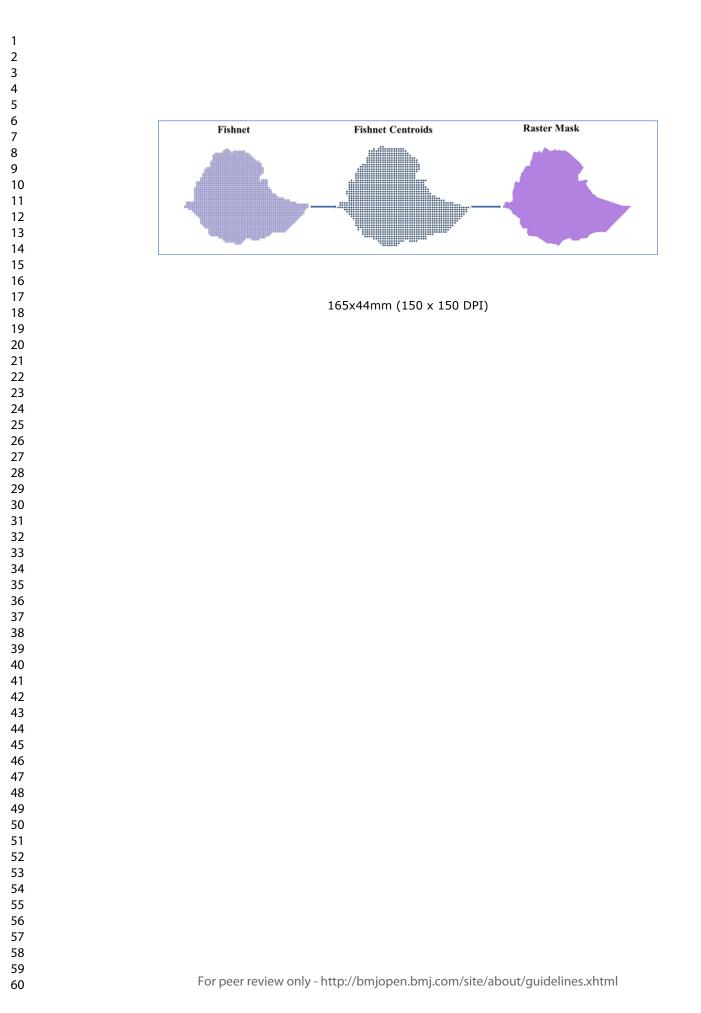
Table 2: Evidence for risk of COVID-19 infection, severity, and death

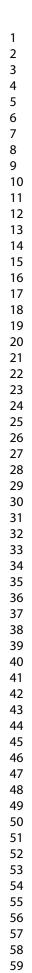
5 598 Table 2: Evidence for risk of COVID-19 infection, severity, and death				
Indicators	Risk	Evidence	References	
Demographic indicators				
Male sex	Severity	Death from and severity of COVID-19 was strongly associated with being male (HR 1.99, 95%CI: 1.88-2.10)	Williamson E ⁴¹	
10 Older age	Severity	Older than 65 years were risk factors for disease progression in patients with COVID-19 (OR =6.06, 95% CI: 3.98, 9.22)	Zheng Z ²³	
Socio-economic indic	ators			
Population density	Infection	High population density is a risk factor for COVID-19 infection	Ahmadi M ⁴²	
îsumber of Isousehold members	Infection	Areas with a higher percentage of households with more than one person per room had a higher incidence of COVID-19	Ahmad K ⁴³	
17/ow wealth index 18	Infection	Socio-economic deprivation (RR 1.26 per SD increase in Townsend Index) associated with COVID -19 infection	Ho FK ⁴⁴	
Connectivity indicato	ors			
²⁰ fravel times to cities 21	Infection	The distance between Wuhan and other cities was inversely associated with the numbers of COVID-19 cases in that city	Zheng R ⁴⁵	
Proximity to national porders Distance to major	Infection	Cross country moment is a risk factor for COVID-19 transmission and importation	Chinazz M ⁴⁶	
Distance to major	Infection	Spread of COVID-19 was correlated positively with public transportation per capita	Tian H ⁴⁷	
Glimatic indicators				
Mean temperature	Infection	Low ambient temperatures are associated with more rapid spread of COVID-19	Holtmann M ⁴⁸	
3 <i>d</i> ean precipitation 31	Infection	Countries with higher rainfall measurements showed an increase in COVID-19 transmission	Sobral MFF ⁴⁹	
Wind speed 33	Infection	Areas with low values of wind speed associated with a high rate of COVID-19 infection	Ahmadi M ⁴²	
Solar radiation	Solar radiation Infection Areas with low values of solar radiation exposure associated with a high rate of COVID-19 infection		Ahmadi M ⁴²	
Water vapour Infection pressure		High humidity reduces the transmission of COVID-19. Water vapour pressure negatively correctly with COVID-19 infection.	Wang J ⁵⁰ , Li J ⁵¹	
Behavioural indicato	rs			
Khat chewing	Severity	There is an association between khat chewing and chronic illness such as HIV infection, elevated diastolic blood pressure	Basker GV ⁵²	
Aplcohol drinking	Severity	Patients with alcohol use disorders at increased risk for COVID-19	Testino G ²²	
43 garette smoking	Severity	Current smoking was a risk factor for disease progression in patients with COVID-19 (OR =2.51, 95% CI: 1.39, 3.32)	Zheng Z ²³	
Cooking inside the Household	Severity	Areas with a higher percentage of incomplete kitchen facilities had a higher incidence of, and mortality associated with, COVID-19	Ahmad K ⁴³	
47se solid fuel for 48oking	Severity	Areas with a higher percentage of incomplete kitchen facilities had a higher incidence of, and mortality associated with, COVID-19	Ahmad K ⁴³	
Disease prevention k	nowledge in			
Adult illiteracy rate	Infection	Adult learning education is a tool to contain the COVID-19 pandemics	Lopes H 53	
Adult illiteracy rate Access to listen to radio	Infection	Access to media is a crucial factor in public health responses to an outbreak	Ayedee N ⁵⁴	
f_{4} ccess to watch TV	Infection	Media (Television) has a significant role in creating a positive atmosphere in COVID-19	Ayedee N ⁵⁴	
Solutional Solution	Infection	Mobile phone calls and text messages help for the diagnosis, management, and control of infectious diseases	Wood S 55	
Senowledge towards SP IV	Infection	Knowledge towards an infectious disease such as HIV can help to control the transmission of the diseases	Bertozzi S ⁵⁶	
Mand hygiene indicat	tors			

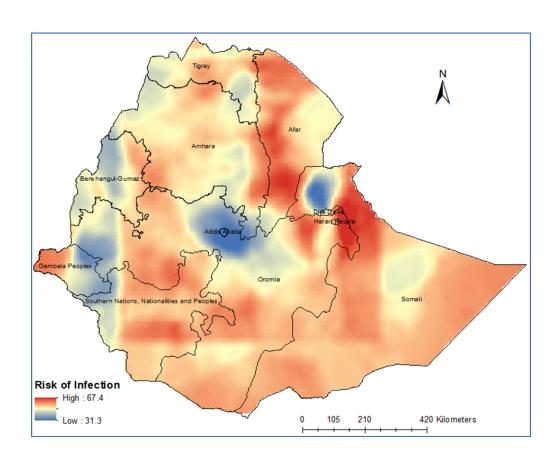

1 2 3


1	
2	

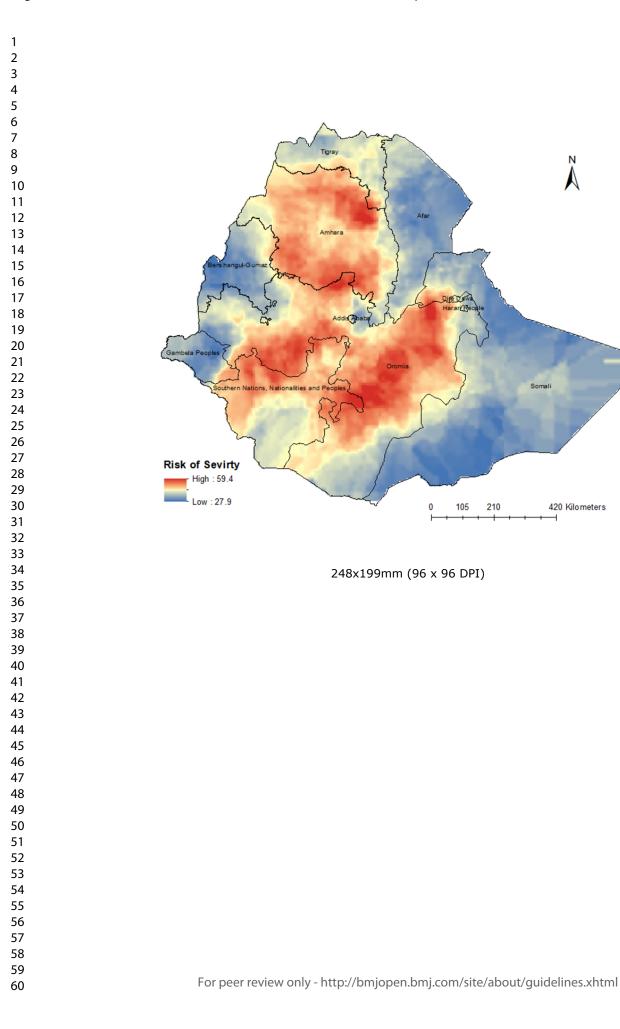
Z				
³ Travel time to water Infection Adequate water supply is essential for the control of COVID-19 infection sources				
Place for Infection Hand washing is recommended by WHO for the control of COVID-19		WHO ⁵⁸		
handwashing		infection		
Soap or detergent	Infection	Availability of soap or detergent is essential to keep hand hygiene for the	WHO 58	
availability for		prevention of COVID-19 infection		
handwashing				
Gomorbidities indica	itors			
H TN	Severity	Hypertension was statistically significant with a higher rate of servery and	Zheng Z ²³	
13		death (OR = $2.72, 95\%$ CI: $1.60, 4.64$)	e	
B M	Severity	Death from COVID-19 was associated with DM (HR 1.50, 95%CI: 1.40-	Williamson E ⁴¹	
15		1.60) 1.50		
ISMI 17	Severity	Death from COVID-19 was associated with higher BMI (HR 1.27,	Williamson E ⁴¹	
	95%CI: 1.8-1.36)			
ÇVD	Severity	Cardiovascular disease was significantly associated with higher COVID-	Zheng Z ²³	
	10 servility and death (OR = 5.10, 05% (I: 3.25, 8.20)		Ũ	
20 HIV prevalence	Severity	Mortality from COVID-19 was associated with immunosuppression (HR	Williamson E ⁴¹	
21- · F- · · · · · · · · · · · · · · · · ·		1.69, 95%CI: 1.21-1.34)		
22 26 BSMR	Severity	respiratory diseases were significantly associated with COVID-19 death	Zheng Z ²³	
<u>2</u> 4	Sevency	and severity ($OR = 5.15, 95\%$ CI: 2.51, 10.57)	Ziteng Z	
Service availability a	nd readines			
oci vice availability a	ind readines	is mucators		
Health care access	Death	Healthcare resource availability is associated with COVID-19 mortality	Ji Y ⁷	
problem				
General service	Death	General health service preparedness is essential for combating the	WHO ⁵⁹	
H adiness	adiness COVID-19 pandemic			
ICU availability	Death	Lack of critical care unite increase the risk of death from COVID-19	Murthy S ⁶⁰	
CRD readiness	Death	Cardiorespiratory disease (CRD) is a risk factor for COVID-19 related	Zheng Z ²³	
Balliess	Death	death		
	Deeth		Tadalini M 61	
TB readiness	Death	TB determinants outcomes of patients with COVID-19	Tadolini M ⁶¹	
Diabetes readiness	Death	Diabetes affects the prognosis of patients with COVID-19	Zheng Z ²³	
G-Econ: Geographica	illv hased Ea	conomic data: EDHS: Ethiopia demographic and health survey: UN OCHA:	United Nation	

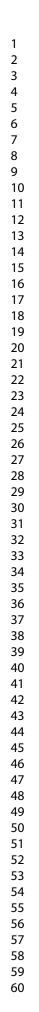

G-Econ: Geographically based Economic data; EDHS: Ethiopia demographic and health survey; UN OCHA: United Nation Office for Coordination of Humanitarian Affairs; MAP: SRTM: Malaria Atlas Project; Shuttle Radar Topography Mission; GPHI: Ethiopia Public Health Institute: EMOH: Ethiopia Ministry of Health; SARA: Service Availability and Readiness Assessment

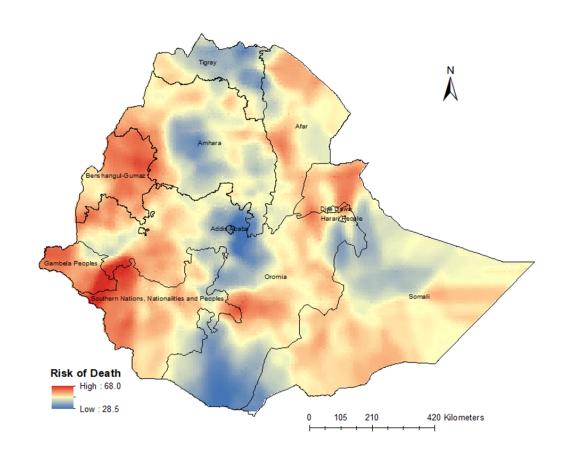

41 599



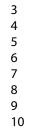
381x292mm (72 x 72 DPI)



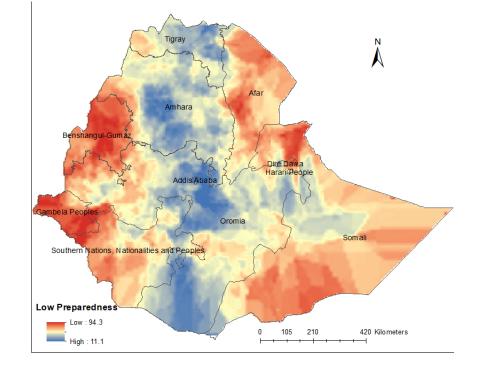



249x201mm (96 x 96 DPI)

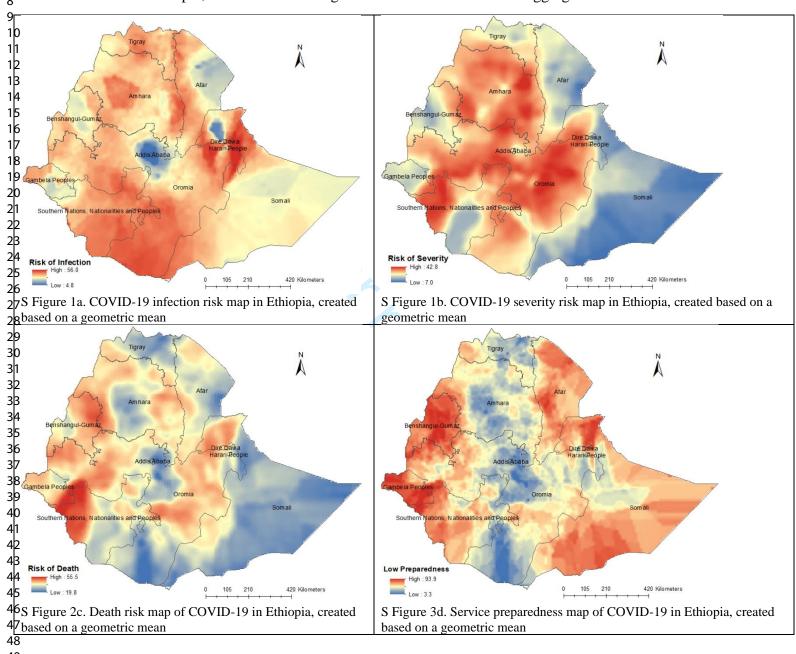
N

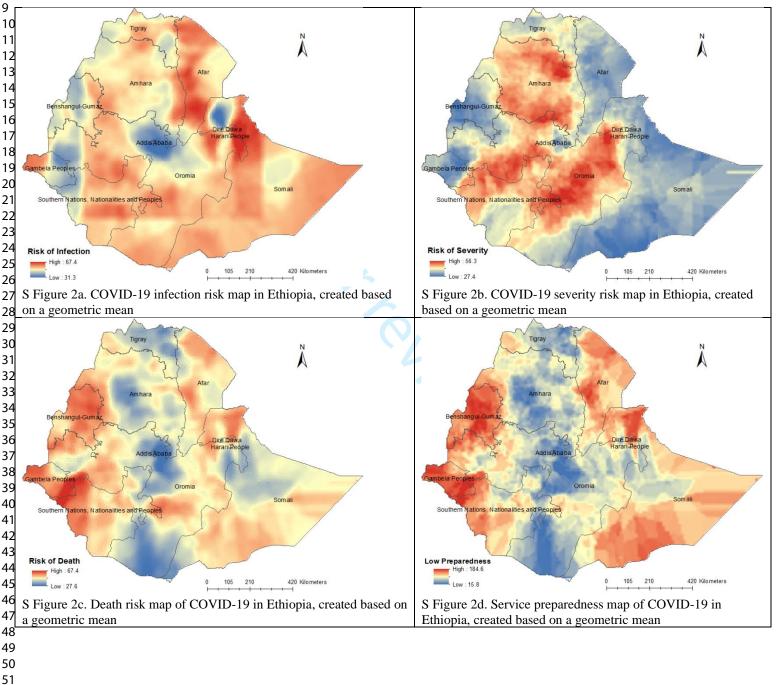


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



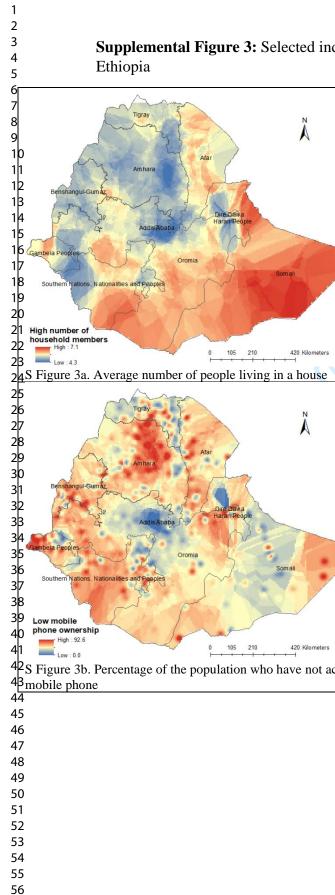
248x200mm (96 x 96 DPI)


For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


210x296mm (96 x 96 DPI)

Supplemental Information

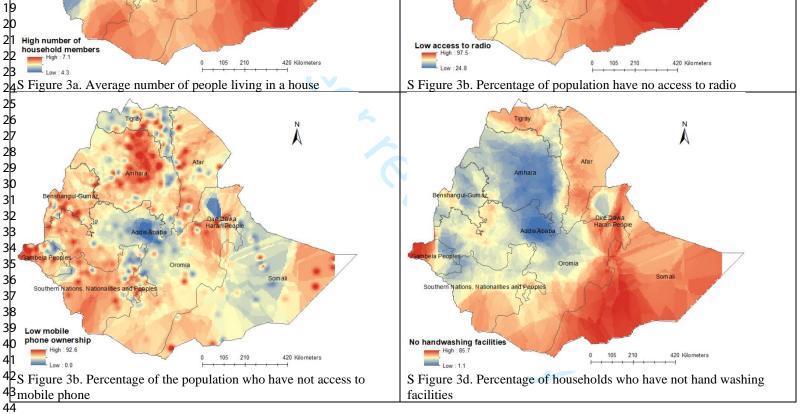
Supplemental Figure 1: Vulnerability maps of COVID-19 infection, severity, preparedness, and death in Ethiopia, created based on a geometric mean as alternative aggregation method.


Supplemental Figure 2: Vulnerability maps of COVID-19 infection, severity, preparedness, and death in Ethiopia, created based on a principal component analysis (PCA) as alternative aggregation method.

N

Tigra

Oromia



57

58 59

60

Supplemental Figure 3: Selected indicators showing the risk of COVID-19 infection in Ethiopia

Southern

BMJ Open

COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection, case severity, and death

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044606.R1
Article Type:	Original research
Date Submitted by the Author:	22-Dec-2020
Complete List of Authors:	Alene, Kefyalew; Curtin University, Faculty of Health Sciences; Telethon Kids Institute, Wesfarmers Centre of Vaccines and Infectious Diseases Assefa, Yalemzewod; University of Gondar; University of New South Wales, School of Women's and Children's Health Fetene, Dagnachew ; Burnet Institute Koye, Digsu ; The University of Melbourne School of Population and Global Health Melaku, Yohannes Adama; Flinders University, Public Health; The University of Adelaide Adelaide Medical School Gesesew, Hailay; Mekelle University, Epidemiology Department, School of Health Sciences; Flinders University Birhanu, Mulugeta ; St Paul's Hospital Millennium Medical College Adane, Akilew; Telethon Kids Institute Muluneh, Muluken; Western Sydney University; Amref Health Africa in Ethiopia, Monitoring Evaluation and Research Dachew, Berihun; University of Gondar, Institute of Public Health; Curtin University, School of Public Health Abrha, Solomon; University of Canberra; Mekelle University, School of Pharmacy Aregay, Atsede; Monash University; Mekelle University, School of Nursing Ayele, Asnakew ; University of Gondar, School of Pharmacy; University of New England Bezabhe, Woldesellassie; University of Tasmania Faculty of Health Tadesse, Kidane ; Queensland University of Tasmania Faculty of Health Tadesse, Kidane ; Queensland University, School of Public Health Gebremedhin, Tesfaye; University of Canberra Tesfay, Amanuel; Telethon Kids Institute, Wesfarmers Centre of Vaccines and Infectious Diseases; Curtin University, School of Public health Gebremichael, Lemlem; Mekelle University, Pharmacology Department; University of South Australia, School of Pharmacy and Medical Sciences, Therapeutics Research Centre Geleto, Ayele; Haramaya University; The University of Newcastle Faculty of Health and Medicine Kassahun, Habtamu ; Griffith University, Australian Rivers Institute Kibret, Getiye ; Debre Markos University, College of Health Science; University of Technology Sydney Mekonnen, Alemayehu; Deakin University; The University of Sydney, Sc

	Mirkuzie, Alemnesh; Ethiopian Public Health Institute; University of Washington, Institute for Health Metrics and Evaluation Mohammed, Hassen; The University of Adelaide; Women's and Children' Health Network Tegegn, Henok; University of New England; University of Gondar Gebresilassie, A; Mekelle University, Epidemiology; University of New South Wales, The George Institute for Global Health Tesfay, Fisaha; Flinders University Faculty of Medicine Nursing and Health Sciences, South gate institute for Health, Society and Equity; Mekelle University College of Health Sciences, School of Public Health Wubishet, Befikadu ; University of Canberra Kinfu, Yohannes; University of Canberra; Qatar University, College of Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Infectious diseases
Keywords:	Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review on

1 2		
3		
4 5	1	COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection,
6 7	2	case severity, and death
8		
9	3	Kefyalew Addis Alene ^{1,2,3} *, Yalemzewod Assefa Gelaw ^{3,4+} , Dagnachew Muluye Fetene ⁵ , Digsu N
10 11	4	Koye ⁶ , Yohannes Adama Melaku ^{7,8} , Hailay Abrha Gesesew ^{9,10} , Mulugeta Molla Birhanu ¹¹ , Akilew
12	5	Awoke Adane ¹² , Muluken Dessalegn Muluneh ^{13,14} , Berihun Assefa Dachew ^{3,15} , Solomon Abrha ^{16,17} ,
13	6	Atsede Aregay ^{18,19} , Asnakew Achaw Ayele ^{20,21} , Woldesellassie M Bezabhe ²² , Kidane Tadesse
14	7	Gebremariam ^{23,24} , Tesfaye Gebremedhin ²⁵ , Amanuel Tesfay ^{15,2} , Lemlem Gebremedhin
15	8	Gebremichael ^{26,27} , Ayele Geleto ^{28,29} , Habtamu Tilahun Kassahun ³⁰ , Getiye Dejenu Kibret ^{31,32} , Cheru
16	9	Tesema Leshargie ^{33,34} , Alemayehu Mekonnen ^{35,36} , Alemnesh H. Mirkuzie ^{37,38,39} , Hassen
17 18	10	Mohammed ^{40,41} , Henok Getachew Tegegn ^{21,42} , Azeb Gebresilassie Tesema ^{22,43} , Fisaha Tesfay ^{9,10,44} ,
10	11	Befikadu L. Wubishet ⁴⁵ , Yohannes Kinfu ^{38,46,47,48+}
20	12	
21	13	¹ Faculty of Health Sciences, Curtin University, Western Australia, Australia
22	14	² Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western
23	15	Australia, Australia
24 25	16	³ Institute of Public Health, University of Gondar, Gondar, Ethiopia
25 26	17	⁴ Population Child Health Research Group, School of Women's and Children's Health, University of
27	18	New South Wales, Australia
28	19	⁵ Burnet Institute, Melbourne, Victoria, Australia
29	20	⁶ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,
30	21	University of Melbourne, Australia
31	22	⁷ Adelaide Institute for Sleep Health, College of Medicine and Public health, Flinders University, Australia
32	23 24	⁸ Adelaide Medical School, University of Adelaide, Australia
33 34	25	⁹ College of Medicine and Public Health, Flinders University, Australia
35	26	¹⁰ Epidemiology Department, School of Health Sciences, Mekelle University, Ethiopia
36	27	¹¹ Department of nursing, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
37	28	¹² Telethon Kids Institute, The University of Western Australia, Nedlands, Western
38	29	Australia, Australia
39	30	¹³ Amref Health Africa in Ethiopian, Monitoring Evaluation and Research, Addis Ababa, Ethiopia
40	31	¹⁴ School of Nursing and Midwifery, Western Sydney University, Sydney Australia
41 42	32	¹⁵ School of Public health, Curtin University, Western Australia, Australia
43	33	¹⁶ Faculty of Health, University of Canberra, Bruce, Canberra, Australian Capital Territory, Australia.
44	34 35	¹⁷ Department of Pharmaceutics, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
45	35 36	¹⁸ School of Nursing and Midwifery, Monash University, Melbourne, Australia
46	37	¹⁹ School of Nursing, Mekelle University, Ethiopia
47	38	²⁰ School of Health, Faculty of Medicine and Health, University of New England, Armidale 2351,
48 49	39	Australia
50	40	²¹ Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science,
51	41	University of Gondar, Gondar, Ethiopia
52	42	²² School of pharmacy and pharmacology, University of Tasmania
53	43	²³ School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia
54	44	²⁴ School of Public Health, Mekelle University, Ethiopia
55 56	45	²⁵ Faculty of Business, Government and Law, University of Canberra
50 57	46	²⁶ School of Pharmacy and Medical Sciences, Therapeutics Research Centre, University of South
58	47	Australia, Adelaide, Australia
59	48	²⁷ School of Pharmacy, Pharmacology Department, Mekelle University, Mekelle, Ethiopia
60	49	²⁸ School of Public Health, College of Health and Medical Sciences, Haramaya University, Ethiopia

1		
2		
3	50	²⁹ School of Medicine and Public Health, Faculty of Health and Medicine, the University of
4	51	Newcastle, Australia
5 6	52	³⁰ Australian Rivers Institute, Griffith University, Nathan, Australia
7	53	³¹ Debre Markos University, Ethiopia
8	54	³² University of Sydney, Australia
9	55	³³ School of Public Health, Faculty of Health, University of Technology Sydney, Ultimo, Australia
10	56	³⁴ College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
11	57	³⁵ Institute for Health Transformation, Deakin University, Australia,
12	58	³⁶ School of Pharmacy, University of Sydney, Sydney, Australia
13	59	³⁷ Ethiopian Public Health Institute, Addis Ababa, Ethiopia
14	60	³⁸ Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
15 16	61	⁴⁹ Center for International Health, University of Bergen, Bergen, Norway
17	62	⁴⁰ Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network,
18	63	Adelaide, South Australia, Australia
19	64	⁴¹ Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
20	65	⁴² School of Rural Medicine, University of New England, Armidale, Australia
21	66	⁴³ The George Institute for Global Health, University of New South Wales, Australia, Sydney
22	67	⁴⁴ School of Health and Social Development, Deakin University
23	68	⁴⁵ Research Centre for Generational Health and Ageing, University of Newcastle, Australia
24	69	⁴⁶ Faculty of Health, University of Canberra, Australia
25 26	70	⁴⁷ College of Medicine, Qatar University, Qatar
26 27	71	⁴⁸ Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
28	72	
29		
30	73	*Corresponding Author: Kefyalew Addis Alene, Faculty of Health Sciences, Curtin
31	73 74	University, Western Australia, Australia, Kent St, Bentley WA 6102, Australia. Tel:
32		+61404705064; E-mail: kefyalew.alene@anu.edu.au
33	75	101404703004, E-man. Keryalew.alene@anu.euu.au
34	76	
35 36	70	
30 37	77	⁺ Equal contributor
38	78	
39	70	
40	79	
41	15	
42	80	
43	00	
44	81	
45 46	01	
40	82	
48	02	
49	83	
50	05	
51	84	
52	04	
53		
54	85	Keywords: Risk map, vulnerability, infection, severity, death, COVID-19, Ethiopia, geospatial
55 56		
50 57	86	
58		
59	~ =	
60	87	

Abstract

Background: COVID-19 has caused a global public health crisis affecting most countries, including Ethiopia, in various ways. This study maps the vulnerability to infection, case severity, and likelihood of death from COVID-19 in Ethiopia.

Methods: Thirty-eight potential indicators of vulnerability to COVID-19 infection, case severity and likelihood of death, identified based on a literature review and the availability of nationally representative data at a low geographic scale, were assembled from multiple sources for geospatial analysis. Geospatial analysis techniques were applied to produce maps showing the vulnerability to infection, case severity, and likelihood of death in Ethiopia at a spatial resolution of 1 km X 1 km.

Results: This study showed that vulnerability to COVID-19 infection is likely to be high across most parts of Ethiopia, particularly in the Somali, Afar, Amhara, Oromia, and Tigray regions. The number of severe cases of COVID-19 infection requiring hospitalisation and intensive care unit admission is likely to be high across Amhara, most parts of Oromia and some parts of the Southern Nations, Nationalities, and Peoples' Region. The risk of COVID-19-related death is high in the country's border regions, where public health preparedness for responding to COVID-19 is limited.

Conclusion: This study revealed geographical differences in vulnerability to infection, case severity, and likelihood of death from COVID-19 in Ethiopia. The study offers maps that can guide the targeted interventions necessary to contain the spread of COVID-19 in Ethiopia.

108				
109				
110				
111				
112				
113				
			2	

1		
2 3	114	
4 5		Strengths and limitations of this study
6 7		 This is the first study that maps vulnerability to COVID-19 infection, severe cases,
8		and associated death in Ethiopia at a high level of resolution across the entire territory
9 10		of Ethiopia.
11 12		> This is also the first study that has attempted to present the degree of service
13		preparedness for COVID-19 across the country.
14 15		> The study incorporated a wide range of indicators from multiple sources and applied
16 17		rigorous geospatial techniques to provide the best possible prediction maps.
18		 However, some important indicators such as psychosocial and clinical factors were
19 20		not captured in our modelling due to the lack of geocoded data.
21 22		
23	115	
24 25		
26 27	116	
28		
29 30	117	
31 32	440	
33	118	
34 35	119	
36	110	
37 38	120	
39 40		
41	121	
42 43		
44 45	122	
46		
47 48	123	
49 50	124	
51	124	
52 53	125	
54 55		
56	126	
57 58		
59 60	127	
50		

128 Introduction

Coronavirus disease (COVID-19) has become one of the most serious global public health crises in modern times ¹. The disease was declared a pandemic on 11 March 2020 and has currently affected more than 216 countries and territories ². As of 3 August 2020, there were more than 17.6 million confirmed COVID-19 cases and over 680,000 associated deaths around the globe ³. The highest numbers of cases and deaths have been reported from the USA, Brazil, India, and some European countries, such as Russia, the United Kingdom, Italy, and Spain³. African countries, including Ethiopia, have reported a low number of COVID-19, although the number of cases and deaths are currently on the rise⁴. In Ethiopia, the first case of COVID-19 was reported on 13 March 2020 in Addis Ababa, but at the time of this study almost all regions of the country were affected at varying levels ⁵. However, number of cases in the country are still very low due to limited testing capacity and delays in reporting confirmed cases.

Multiple factors, such as socio-demographic, connectivity, behavioural, climatic, and comorbidity factors, are strong predictors of the differences in transmission, hospitalisation, and mortality rates among and within countries ^{6,7}. Studies conducted in Africa have provided limited information on the vulnerability of different areas to COVID-19 infection ^{4,8}. These studies have been conducted at the country level using a limited number of indicators ^{4,8}. Mapping the risks of COVID-19 (infection, case severity, service preparedness and death) at the lowest administrative unit, such as the district is important in many ways. First, the generated evidence can help the government and community better prepare and respond to the health- and non-health-related impacts of COVID-19 according to their contextual circumstances. Second, it can help the relevant bodies determine effective and efficient resource-mobilisation efforts, such as providing training for health care workers, supplying hospitals with necessary equipment, prioritising testing practices, and distributing hand sanitizer and protective facemasks. Third, the information can be utilised as a guide for designing targeted travel restrictions or applying full or partial lockdowns as needed. Fourth, the evidence can stimulate further study on COVID-19 in the country.

Given Ethiopia's large population size, variation in resources and vast geographic size, the risk
 of COVID-19 infection, case severity and likelihood of death are likely to differ across regions,
 zones, and districts, suggesting that local and context-specific interventions be implemented.
 Therefore, this study aimed to map the vulnerability to infection, case severity, and likelihood
 of death from COVID-19 in Ethiopia using rigorous state-of-the-art geospatial techniques.

Methods

Study area

This study focused on Ethiopia, the second-most populous country in Africa, with an estimated population size of more than 115 million ⁹. Ethiopia has a total area of approximately 1.1 million square kilometres, making it the 10th largest country in Africa and the 27th largest in the world. The country has a tiered administrative system consisting of regional states (first level), zones (second level), woredas or districts (third level), and kebeles or neighbourhoods (fourth level) ¹⁰. There are nine administrative regional states in Ethiopia, including Tigray, Afar, Amhara, Oromia, Somali, Benishangul-Gumuz, Harari, Gambella, and the Southern Nations, Nationalities, and Peoples' Region (SNNPR), and two administrative cities (Addis Ababa and Diredawa). Four of these regional states (namely, Afar, Somali, Benishangul-Gumuz, and Gambella) are relatively less developed, and categorised as developing regional states. They lag behind the rest of the country in all indicators related to human development and disease prevention and control programs. The administrative units of Ethiopia (shapefiles) were obtained from the Database for Global Administrative Areas ¹¹.

Data sources and variable selection

The data for this study were assembled from multiple sources (Table 1). Potential indicators were selected based on evidence of association with COVID-19 infection, case severity, and death based on a literature review and the availability of country-wide representative data at a district geographic scale or lower (Figure 1). Table 2 presents the evidence for the association between indicators and COVID-19, as well as the rationale for selecting these indicators for the study.

The following area-level demographic and socio-economic indicators were used as indicators of COVID-19 infection and case severity: the average number of persons per household, the proportion of the population aged ≥ 65 years, the proportion of males, and the number of households in the lowest wealth quintile. All of these socio-economic and demographic indicators were obtained from the latest Ethiopia Demographic and Health Survey (EDHS)¹². A map showing the distribution of EDHS datapoints are available as supplementary information (Supplemental Figure 1). Population density, estimated as the number of people per grid, was obtained from WorldPop¹³.

Connectivity indicators, which measure the population-level vulnerability to infection, were also captured using distance and time-bounded markers. Specifically, average travel time

Page 9 of 34

BMJ Open

(measured in minutes) to the nearest city and proximity to international borders (measured in kilometres) were included to measure each area's level of susceptibility to infection. Data on travel time to the nearest city, obtained from the University of Oxford's Malaria Atlas Project (MAP), were used to quantify the accessibility of an area to high-density urban centres at a resolution of 1 km×1 km¹⁴. Data on proximity to international borders were obtained from the EDHS spatial data repository and were used to measure ¹⁵ the geodesic distance to the nearest international border in kilometres, indicating the risk of cross-border transmission and the spread of COVID-19. Infection rates and the spread of COVID-19 were also positively correlated with the per capita public transportation use rate¹⁶. Thus, to determine the nearest cross-country road to each location on the map, we obtained and applied data for major roads from the World Bank ¹⁷.

It is evident that inadequate knowledge about COVID-19 and a lack of awareness of prevention measures exacerbate community transmission of the disease ¹⁸. Therefore, we extracted data on adult literacy rate, access to media (such as radio, television, and mobile phone messages) and knowledge about other infectious diseases (e.g., HIV) from the EDHS as proxies for knowledge of COVID-19 prevention measures in each area of the country ¹². According to the WHO, maintaining good hand hygiene through regular washing with soap and water is one of the most effective preventative measures for reducing the transmission of COVID-19^{19,20}. Using the same data as above, we also assessed hand hygiene practices, access to water, and the availability of handwashing stations in a household.

Previous studies have shown that underlying chronic comorbidities and behavioural factors such as cigarette, alcohol and khat consumption were associated with more severe COVID-19 infections ^{21,22}. Data on khat chewing and the alcohol consumption rate were obtained from the EDHS 2016¹², and data on cigarette smoking were obtained from the Ethiopia Public Health Institute STEP wise approach to Surveillance (STEPS) study ²³. The STEP survey was also used to measure the prevalence of selected non-communicable diseases (NCDs) such as hypertension, heart disease, and diabetes mellitus (DM).

The level of preparedness and readiness of health facilities to detect, manage, and control the COVID-19 pandemic at a given location was measured using data from the Service Availability and Readiness Assessment (SARA) survey ²⁴. For each geo-location, the obtained measures include the availability and readiness of facilities in terms of basic amenities and equipment, standard precautions, diagnostic capacities, and essential medicines. In addition, data on

service readiness for specific diseases such as DM, chronic respiratory disease (CRD), and tuberculosis (TB), as well as the availability of intensive care units (ICUs) and laboratory facilities, were obtained from this same survey. To augment the health facility data, we extracted population-level indicators on health care access and barriers to care from EDHS 2016 ¹².

Finally, climatic data (temperature, precipitation, humidity, and sunlight exposure) were obtained from the WorldClim v2.0 Global Climate Database ²⁵. These data were extracted at a spatial resolution of 30 seconds or ~1 km² and were considered indicators of COVID-19 infection in this study.

20 233 Geospatial data processing

All data were georeferenced using a geographical information system, ArcGIS 10.6.1 software (ESRI Inc., Redlands CA, USA). The ideal resolution for spatial analysis was a latitude and longitude point that represented the location of the data cluster (point-level data), but when these were not available, we geolocated the available data to the smallest geographical areal unit, typically representing an administrative unit such as village or districts. In instances when the latitude and longitude coordinates of the village or district were not available in the dataset, centroids of the village or districts were also identified using Google Maps. A very small rectangular polygon (fishnet) with its centroid (fishnet centroid) covering the whole territory of Ethiopia was created using a sampling tool under the data management tools in the ArcToolbox (Figure 2). The fishnet centroid contained a unique identification number and was used as a common georeferenced system to process, join, and extract the raster and vector data collected from various sources. All vector data (point, polygon, and line) were converted to raster data using geostatistical methods ²⁶. Raster grids were then resampled to the common georeferenced system at a spatial resolution of 1 km x 1 km. Finally, a raster mask covering the entire country was created by clipping smaller spatial units from a large global raster data source.

49
50250Statistical analyses

Geostatistical techniques such as spatial autocorrelation, kriging and semivariograms were applied to create a prediction grid surface from a scattered set of points ²⁷. Kriging assumes that the distance or direction between sample points reflects a spatial correlation that can be used to explain variation in the surface ²⁸. Since the variables had different units of measurement, the datasets were normalised using a min-max approach to a standard scale ranging from 0 (the lowest risk) to 100 (the highest risk)²⁹. After normalisation, the indicators

Page 11 of 34

BMJ Open

were averaged to create a vulnerability index, measuring the risk of COVID-19 for each geo-location ³⁰. The vulnerability indices were calculated separately for each domain, namely, the vulnerability to infection, case severity, and likelihood of death from COVID-19. The three domains were then averaged to produce the overall COVID-19 vulnerability index. Given that COVID-19 is a new virus, there is a lack of evidence for assigning weights for each indicator. Hence, equal weight was given to all indicators when calculating the arithmetic mean for the vulnerability indices. However, we also used principal component analysis (PCA) and geometric mean methods, which produced broadly similar results (Supplemental Figure 2 and Supplemental Figure 3). The risk maps were then created separately for infection, case severity, service preparedness, and death from the composite index using geostatistical tools in ArcGIS. All data transformations were performed in R³¹. All items included in this study are available in the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) Statement checklist (Supplemental Table 1).

26
 270 Ethics aspects: Ethical approval was not required for this study as it was based on publicly
 28
 271 available data.

Patient and public involvement: This research was done without patient and public involvement.
 involvement.

Funding: There was no funding source for this study.

Results

41 276 **Vulnerability to COVID-19 infection**

Figure 3 shows the vulnerability map of COVID-19 infection in Ethiopia. The map highlights that most parts of the country are likely to have a relatively high vulnerability and be at substantial risk for COVID-19 infection. Most parts of the country are identified as vulnerable to COVID-19 infection, with the exception of Addis Ababa and the north-western Somali region. The peripheral areas of the country bordering Djibouti, Somalia, Eritrea, and South Sudan appeared to be vulnerable to COVID-19 infection. These outlying areas are characterised by a low level of geographical connectivity and low scores for disease knowledge, hand hygiene and socio-economic indices (Supplemental Figure 4). They also have certain climatic factors that were found to be important indicators of COVID-19 transmission. Vulnerability to severe cases of COVID-19 infection

Areas across the Amhara region and most parts of the Oromia region are likely to experience severe forms of COVID-19 that require hospitalisation and ICU admission. Some parts of the SNNPR are also expected to be at high risk of severe COVID-19 infections. The combination of demographic (high proportion of older adults), comorbidity (high prevalence of hypertension, DM, obesity, HIV, and TB), and behavioural and economic indicators (high proportion of smokers and high level of alcohol and khat consumption, interior cooking, and solid fuel use) renders these parts of the country at a higher risk of severe forms of COVID-19. Figure 4 shows the levels of vulnerability to severe forms of COVID-19.

Vulnerability to death from COVID-19

People living around border areas in Ethiopia are at a high risk for COVID-19-related death, as illustrated in Figure 5. Districts and zones in the Benishangul-Gumuz, Gambela, Afar, SNNPR, Dire Dawa, Southwest Somali, Northwest Amhara, Western Tigray, and Western and Eastern Oromia regions are at high risk for COVID-19-related death. The level of service preparedness and readiness to mitigate the health effects of COVID-19 appear to be very low in these regions (Figure 6). Ethiopia's border regions have inadequate ICU availability and laboratory capacity as well as limited health care access. They also have low general and service-specific readiness, as shown in Figure 6.

Discussion

This is the first study that maps vulnerability to COVID-19 infection, severe cases, and associated death in Ethiopia at a high resolution. This is also the first study that has attempted to present the degree of service preparedness for COVID-19 across the country.

We found that most parts of the country are vulnerable to COVID-19 infections, and the greatest burden might be outside of Addis Ababa. It is likely that compared to other regions, a higher proportion of people from the Amhara and Oromia regions, the two most populous regions of the country, will develop severe forms of COVID-19 leading to hospitalisation and ICU admission. Border areas of the country are also expected to face a higher risk of death than areas located in the central regions. The findings of this study are of paramount importance in preventing and controlling COVID-19 transmission and in designing targeted interventions, such as enacting travel restrictions, distributing preventative masks and determining which areas to prioritise if a COVID-19 vaccine becomes available. As some of these areas also have lower preparedness scores and low general and service-specific readiness scores, the findings

Page 13 of 34

BMJ Open

have wider implications for allocating resources and strengthening the health care system after the COVID-19 pandemic.

Despite the disproportionately high infection rate in Addis Ababa at present (Supplemental Figure 5), we found that the risk of COVID-19 infection is likely to become rather high in other regions. The high infection rate in Addis Ababa at this initial stage is expected, given that Addis Ababa is a major travel hub and Bole International Airport, located in the city, is one of the largest international airports in Africa. This exposes the city to a higher risk of imported cases and, subsequently, to an early surge of infections, leaving the areas outside the city at a higher risk of later infection. Second, we considered multifaceted risk factors (indicators) for COVID-19 infection in our geospatial model. This means that although the city has a high degree of connectivity, it is also characterised by higher scores for information penetration, knowledge of disease prevention and hand hygiene practices that could help slow the rate of infection in the city¹². Third, Addis Ababa has relatively better and more consistent test-and-contact tracing practices than in other parts of the country, which means that the chance of new infections being detected in the city are much greater than in other parts of the country ⁵. Future efforts to expand testing and tracing practices in other areas of the county are likely to increase the extent of confirmed infections in those other areas. Recent studies have demonstrated that effective social distancing and contact tracing can significantly reduce the rate of infection ^{32,33}. These interventions should be strengthened and expanded to areas identified as high risk in this study.

Our study also showed that the risk for severe cases of COVID-19 infection is high in most parts of the Amhara and Oromia regions. This may be due to the high prevalence of NCDs, which are associated with severe cases of COVID-19. Previous studies have revealed that the burden of NCDs, such as DM and hypertension, is high in these two regions ^{23,34,35}.

Our study also revealed that peripheral areas sharing international borders are likely to see a greater number of COVID-19-related deaths. The high risk of death along the border areas might be attributed to low preparedness in case management and weak health care systems. In contrast, although the Amhara and Oromia regions may have more severe cases, the preparedness indicators show that the regions are better equipped to cope with these anticipated severe cases. However, our study suggests that additional preparation and capacity strengthening are needed mainly in the following areas: emergency response systems, case detection and capacity to care for patients. It is also equally important that hospitals have adequate supplies, health care personnel and life-saving medical intervention resources.

Despite encouraging efforts by the Ethiopian government and stakeholders to prepare the health care system for the pandemic, the existing health care services in the country may face unprecedented challenges and crises due to the surge of patients that will require hospitalisation and ICU services at the same time. This can, however, be eased by implementing public health and social measures at the individual, community, and public authority levels to prevent infections and subsequent health, economic, and social consequences ³⁶. Studies have shown that implementing non-pharmaceutical interventions such as physical distancing, mask use, and closure of schools, especially during the early stages of infection, can reduce transmission and subsequent potential public health and economic crises ³⁷.

Further, we found notable regional disparities in health system preparedness and readiness levels in the country. This is important because if the health care system is well equipped to prevent and mitigate the spread of the pandemic, then the mortality rate from the disease can be markedly reduced ³⁸. However, we observed that Ethiopia's border regions (i.e., Benishangul-Gumuz, Gambella, Afar, and Somali) have low preparedness levels. Nevertheless, comparisons between the border regions and other regions of the country need to be treated with care because Ethiopia in general has very low doctor-to-resident (1 doctor per 10,000 people) and hospital bed-to-population (3 hospital beds per 10,000 people) ratios ³⁹. Several long-, medium- and short-term strategies, can be implemented to mitigate these problems: (i) providing short-term training for potential actors such as community leaders, students, and traditional and modern medical practitioners, (ii) recruiting additional staff to work in COVID-19-related health care, (iii) establishing COVID-19 clinics and changing outpatient rooms to emergency clinics, (iv) collaborating with private hospitals ahead of surges so that they can be used in the case such surges occur, and (v) establishing mobile clinics and temporary admission rooms in highly vulnerable areas.

Strength and Limitations

This study has several strengths. First, the current study was conducted at a spatial resolution of 1 km x 1 km across the entire territory of Ethiopia. Second, it incorporated a wide range of indicators from multiple sources. Third, it applied rigorous geospatial techniques, including spatial autocorrelation, kriging and semivariograms, to provide the best possible prediction maps. Finally, we produced vulnerability mapping for infection or transmission, case severity, and associated death separately to assist with policy interventions related to each risk.

Page 15 of 34

BMJ Open

However, it is important to note some potential limitations of the study when interpreting the findings. First, the results need constant updating, as some of the variables used in the study may change overtime. Second, the data used in this study were not collected in the same year and the results might be changed if recently available data used in the analysis. However, many of the variables used in this study were static and may not change over time. Moreover, we used the most recently available data for non-static variables such as EDHS data. Third, ongoing political turmoil in the country means that the dynamics of transmission may change depending on the location and severity of these incidents. For example, in areas of low security resulting from active conflict, the local health systems might be ill-prepared to prevent and control COVID-19. Insecurity also may generate unpredictable population movements, and this in turn could exacerbate infection dynamics in the country. Fourth, the calculation of the composite risk factor index was based on an unweighted average under the assumption that all indicators have equal importance, which may or may not be the case. Some of the variables included in our score may have greater effects on vulnerability to infection, case severity, and likelihood of death than others. Giving equal weight for all these variables may influence the findings of our study, but the exact effect is hard to tell. However, we have calculated a weighted index using PCA as an alternative method, which produced broadly similar results (Supplemental Figure 2 and Supplemental Figure 3). Last, some important indicators, such as psychosocial and clinical factors (e.g., mental illness, quality of life, and social support), were not captured in our modelling due to the lack of geocoded data.

401 Conclusions

Although nearly three-quarters of the current COVID-19 cases reported in Ethiopia are concentrated in and around Addis Ababa, this study predicts that over time, the risk of COVID-19 infection will be higher across most other parts of the country. A higher proportion of people from the Amhara region, most of the Oromia region, and some parts of the SNNPR will develop severe cases of infection. Additionally, the risk of death will be higher in the regions of the country with low preparedness scores for COVID response. Hence, the preventative and control measures that are currently in place in the capital city should be strengthened and extended to regional areas, especially to high-risk areas, to prevent and mitigate the risk of COVID-19 infection, lower the number of severe cases, and limit the number of associated deaths in Ethiopia.

Declaration

Authors' contributions

KAA, YAG, YK, DMF, DNK, YAM, HAG, MB, MDM, AAA, and BAD conceptualised the study. KAA designed and run the geospatial analysis. YAG involved in the data analysis. KAA, YAG, DMF, DNK, and YAM drafted the manuscript. HAG, MB, AAA₁, MDM, BAD, SA, AA, AAA₂, WMB, KTG, TG, ATG, LGG, AG, HTK, GDK, CTL, LBM, AAM, HM, HGT, AGT, FT, BLW, and YK Critically reviewed and revised the drafted manuscript. KAA, YK, and AHM were responsible for quality control of accuracy and integrity of data. All the authors interpreted the data. All authors contributed to the final draft and finally approved it to be published. All authors agreed to be accountable for all aspects of the work for any issue related to the accuracy or integrity of any part of the work. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: There is no funding source for this study.

Competing interests: None declared.

- Patient and public involvement: This research was done without patient and public
- involvement.
- **Data availability statement:** Extra data is available by emailing the corresponding author
- (KAA): kefyalew.alene@curtin.edu.au

References

Yang P, Wang X. COVID-19: a new challenge for human beings. Cellular & 1. molecular immunology 2020; **17**(5): 555-7. Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio-medica: 2. Atenei Parmensis 2020; 91(1): 157-60. 3. WHO. Coronavirus disease (COVID-19): situation report, 195. 2020. Gilbert M, Pullano G, Pinotti F, et al. Preparedness and vulnerability of African 4. countries against importations of COVID-19: a modelling study. The Lancet 2020; (10227): 871-7. Baye K. COVID-19 prevention measures in Ethiopia: Current realities and prospects: 5. Intl Food Policy Res Inst; 2020. Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19 6. mortality and health-care resource availability. The Lancet Global Health 2020; 8(4): e480. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug 7. therapy, and mortality in COVID-19. New England Journal of Medicine 2020. ACSS. Mapping Risk Factors for the Spread of COVID-19 in Africa: Africa Center 8. for Strategic Studies, 2020. UN. Department of Economic and Social Affairs. Population Division, 2019. 9. Workie NW, Ramana GN. The health extension program in Ethiopia. 2013. 10.

1		
2 3		
4	449	11. Areas GA. GADM database of global administrative areas. <i>Global Administrative</i>
5	450	Areas 2012.
6	451	12. CSA. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and
7	452	Rockville, Maryland, USA, 2016.
8	453	13. Tatem AJ. WorldPop, open data for spatial demography. <i>Scientific data</i> 2017; 4 (1): 1-
9	454	4.
10 11	455	14. Weiss DJ, Nelson A, Gibson H, et al. A global map of travel time to cities to assess
12	456	inequalities in accessibility in 2015. <i>Nature</i> 2018; 553 (7688): 333-6.
13	457	15. ICF. The DHS Program Spatial Data Repository. 2018.
14	458	16. Ayenew B, Yitayew M, Pandey D. Challenges and opportunities to tackle COVID-19
15	459	spread in Ethiopia. Journal of Peer Science 2020; 2(2).
16	460	17. Bank W. Ethiopia Roads. 2014.
17	461	18. Zhong B-L, Luo W, Li H-M, et al. Knowledge, attitudes, and practices towards
18 19	462	COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak:
20	463	a quick online cross-sectional survey. International journal of biological sciences 2020;
21	464	16 (10): 1745.
22	465	19. Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-
23	466	based mitigation measures influence the course of the COVID-19 epidemic? The Lancet
24	467	2020; 395 (10228): 931-4.
25	468	20. Xiao Y, Torok ME. Taking the right measures to control COVID-19. <i>The Lancet</i>
26 27	469	<i>Infectious Diseases</i> 2020; 20 (5): 523-4.
27	470	21. Testino G. Are patients with alcohol use disorders at increased risk for Covid-19
29	471	infection? Alcohol and Alcoholism (Oxford, Oxfordshire) 2020.
30	472	22. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A
31	473	systematic literature review and meta-analysis. Journal of Infection 2020.
32	474	23. EPHI. Ethiopia STEPS report on risk factors for chronic non-communicable diseases
33	475	and prevalence of selected NCDS. Addis Ababa, 2016.
34 35	476	24. EPHI. Ethiopia Service Availability and Readiness Assessment (SARA) Final Report.
35 36	477	. Addis Ababa, 2018.
37	478	25. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for
38	479	global land areas. International journal of climatology 2017; 37(12): 4302-15.
39	480	26. Burrough P. GIS and geostatistics: Essential partners for spatial analysis.
40	481	<i>Environmental and ecological statistics</i> 2001; 8 (4): 361-77.
41	482	27. Childs C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September
42 43	483	2004; 3235 (569): 32-5.
43 44	484	28. Negreiros J, Painho M, Aguilar F, Aguilar M. Geographical information systems
45	485	principles of ordinary kriging interpolator. <i>Journal of Applied Sciences</i> 2010; 10 (11): 852-67.
46	486	29. Patro S, Sahu KK. Normalization: A preprocessing stage. <i>arXiv preprint</i>
47	487	<i>arXiv:150306462</i> 2015.
48	488	30. Moore M, Gelfeld B, Okunogbe A, Christopher P. Identifying future disease hot
49	489	spots: infectious disease vulnerability index: Rand Corporation; 2016.
50	490	31. Team RC. R: A language and environment for statistical computing [Internet]. Vienna
51 52	491	(Austria): R Foundation for Statistical Computing [cited 2019 Aug 8]. 2020.
53	492	32. Siraj DS, Siraj AS, Mapes A. Early estimates of COVID-19 infections in small,
54	493	medium and large population clusters. <i>medRxiv</i> 2020.
55	494	33. Getaneh Y, Yizengaw A, Adane S, et al. Global lessons and Potential strategies in
56	495	combating COVID-19 pandemic in Ethiopia: Systematic Review. <i>medRxiv</i> 2020.
57	496	34. Tesfaye TD, Temesgen WA, Kasa AS, Yismaw YS. Prevalence and associated factors
58	497	of hypertension in Amhara regional state city and its' surrounding rural districts: a
59 60	498	community-based cross-sectional study. <i>African Health Sciences</i> 2019; 19 (3): 2580-90.
60		

1

2 3 35. Kibret KT, Mesfin YM. Prevalence of hypertension in Ethiopia: a systematic meta-499 4 analysis. Public Health Reviews 2015; 36(1): 1-12. 500 5 Hartley DM, Perencevich EN, Public health interventions for COVID-19: emerging 36. 501 6 evidence and implications for an evolving public health crisis. Jama 2020; 323(19): 1908-9. 502 7 37. Pan A, Liu L, Wang C, et al. Association of public health interventions with the 503 8 epidemiology of the COVID-19 outbreak in Wuhan, China. Jama 2020; 323(19): 1915-23. 9 504 10 Stafford N. Covid-19: Why Germany's case fatality rate seems so low. Bmj 2020; 38. 505 11 506 369. 12 39. Organization WH. Density of physicians (total number per 1000 population, latest 507 13 available year). Global Health Observatory (GHO) data 2017. 508 14 Williamson E, Walker AJ, Bhaskaran KJ, et al. OpenSAFELY: factors associated 509 40. 15 with COVID-19-related hospital death in the linked electronic health records of 17 million 510 16 17 511 adult NHS patients. medRxiv 2020. 18 Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. Investigation of 512 41. 19 effective climatology parameters on COVID-19 outbreak in Iran. Science of The Total 513 20 Environment 2020: 138705. 514 21 515 42. Ahmad K, Erqou S, Shah N, et al. Association of Poor Housing Conditions with 22 COVID-19 Incidence and Mortality Across US Counties. medRxiv 2020. 23 516 Ho FK, Celis-Morales CA, Grav SR, et al. Modifiable and non-modifiable risk factors 43. 24 517 25 for COVID-19: results from UK Biobank. medRxiv 2020. 518 26 44. Zheng R, Xu Y, Wang W, Ning G, Bi Y. Spatial transmission of COVID-19 via 519 27 public and private transportation in China. Travel Medicine and Infectious Disease 2020. 520 28 45. Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of 521 29 the 2019 novel coronavirus (COVID-19) outbreak. Science 2020; 368(6489): 395-400. 522 30 Holtmann M, Jones M, Shah A, Holtmann G. Low ambient temperatures are 523 46. 31 32 associated with more rapid spread of COVID-19 in the early phase of the endemic. 524 33 Environmental Research 2020. 525 34 Sobral MFF, Duarte GB, da Penha Sobral AIG, Marinho MLM, de Souza Melo A. 526 47. 35 Association between climate variables and global transmission oF SARS-CoV-2. Science of 527 36 The Total Environment 2020; 729: 138997. 528 37 Wang J, Tang K, Feng K, Lv W. High temperature and high humidity reduce the 529 48. 38 transmission of COVID-19. Available at SSRN 3551767 2020. 530 39 40 Li J, Zhang L, Ren Z, Xing C, Qiao P, Chang B. Meteorological factors correlate with 531 49. 41 transmission of 2019-nCoV: Proof of incidence of novel coronavirus pneumonia in Hubei 532 42 Province, China. medRxiv 2020. 533 43 534 50. Basker GV. A review on hazards of khat chewing. Int J Pharm Pharm Sci 2013; 5(3): 44 74-7. 535 45 51. Lopes H, McKay V, de Cima P. ADULT LEARNING EDUCATION AS A TOOL 536 46 TO CONTAIN PANDEMICS: THE COVID-19 EXPERIENCE. 47 537 48 Ayedee N, Manocha D. Role of Media (Television) in Creating a Positive 538 52. 49 Atmosphere in COVID-19 during Lockdown in India. Role of Media (Television) in Creating 539 50 a Positive Atmosphere in COVID-19 during Lockdown in India (May 19, 2020) 2020. 540 51 Wood CS, Thomas MR, Budd J, et al. Taking connected mobile-health diagnostics of 541 53. 52 infectious diseases to the field. Nature 2019; 566(7745): 467-74. 542 53 54. Bertozzi S, Padian NS, Wegbreit J, et al. HIV/AIDS prevention and treatment. 543 54 55 Disease control priorities in developing countries 2006; 2: 331-70. 544 56 WHO. Water, sanitation, hygiene, and waste management for the COVID-19 virus: 55. 545 57 546 interim guidance, 23 April 2020: World Health Organization, 2020. 58 WHO. Infection prevention and control guidance for long-term care facilities in the 547 56. 59 context of COVID-19: interim guidance, 21 March 2020: World Health Organization, 2020. 548 60

2		
3 4 5	549	57. WHO. WHO Releases Guidelines to Help Countries Maintain Essential Health
4	550	Servics During the COVID-19 Pandemic. Geneva, Switzerland: World Health Organization;
5	551	2020.
6		
7	552	58. Murthy S, Gomersall CD, Fowler RA. Care for critically ill patients with COVID-19.
8	553	<i>Jama</i> 2020; 323 (15): 1499-500.
9	554	59. Tadolini M, Codecasa LR, García-García J-M, et al. Active tuberculosis, sequelae and
10	555	COVID-19 co-infection: first cohort of 49 cases. European Respiratory Journal 2020.
11		
12	556	
13		
14	557	
15	558	
16	550	
17	559	
18 19	555	
20	560	
20		
22	561	
23		
24	562	
25		
26	563	
27	FC4	
28	564	
29	565	
30	505	
31	566	
32		
33	567	
34		
35	568	
36	569	
37	309	
38 39	570	
39 40	570	
40 41	571	
42		
43	572	
44		
45	573	
46	574	
47	574	
48	575	
49	0.0	
50	576	
51		
52	577	
53		
54	578	
55	F7 0	
56	579	
57	580	
58 59	300	
59 60	581	
00		

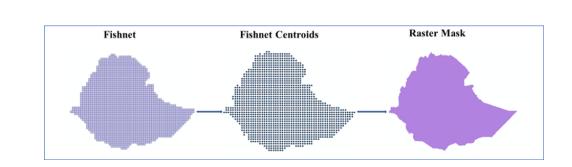
1			
2 3 582			
4 5 583			
6			
7 8 584 Tables			
•		nd definitions of	f indicators for the vulnerability of COVID-19 in
10 586 Ethiopia.			
Indicators	Data sources	Spatial resolution	Definitions
13 Demographic indicator		resolution	
Male sex	EDHS 2016	Latitude and	Total number of male populations divided by the total
16		longitude	number of people participated in the survey
17		point	
8Older age	EDHS 2016	Latitude and	Total number of people with age >=65 years divided by
19		longitude point	the total number of people participated in the survey
20 2 Socio-economic indica	tors		
22 Population density	WorldPop	1 km X 1 km	Number of people per square kilometre (grid)
²³ Number of household	EDHS 2016	Latitude and	Average number of people living in a house
²⁴ members		longitude	
25		point 🚫	
Low wealth index	EDHS 2016	Latitude and	Number of people with low wealth index (poorer and
28		longitude	poorest) divided by the total number of people
29		point	participated in the survey
Connectivity indicator		1 1 200 × 1 1200	Traval time in minutes to the nearest site with a
311 ravel times to cities	MAP	1 km×1 km	Travel time in minutes to the nearest city with a population of more than 50,000
32 33Proximity to national	DHS Spatial	Latitude and	The geodesic distance to the nearest international
34borders	Repository	longitude	borders
35		point	
³ Distance to major	World Bank	District	Distance in km to cross-country round
³ 7oads			9
³ Climatic indicators			
⁸ Mean temperature	WorldClime	1 km×1 km	Annual mean environmental air temperature (°C)
Mean precipitation	WorldClime	1 km×1 km	Annual mean rainfall (mm)
42Wind speed	WorldClime	1 km×1 km	Annual mean wind speed (m s ⁻¹)
4Solar radiation	WorldClime	1 km×1 km	Annual mean solar radiation (kJ m ⁻² day ⁻¹)
44Water vapour pressure 45	WorldClime	1 km×1 km	Annual mean water vapour pressure (kPa), equivalent to absolute humidity.
⁴ Behavioural indicators	<u> </u>		
⁴ Khat chewing 48	EDHS 2016	Latitude and	Total number of people chewing khat in the last one
		longitude	month prior to the survey divided by the total number
49 5 0 		point	of people participating in the survey
Alcohol drinking	EDHS 2016	Latitude and	Total number of people drinking alcohol in the month
52		longitude	prior to the survey divided by the total number of
53		point	people participating in the survey
Cigarette smoking	EPHI STEPS	Latitude and longitude	Total number of people currently smoke cigarettes divided by the total number of people participating in the
55 56		point	survey
5Cooking inside the	EDHS 2016	Latitude and	Total number of households where cooking takes place
58household		longitude	inside the house without a separate building or
59		point	outdoors (i.e. exposure to smoke inside the home)
60			divided by the total number of households in the survey

Use solid fuel for	EDHS 2016	Latitude and	Number of households used some type of solid fuel
cooking		longitude	(wood, dung, grass, crop) for cooking food divided by
_		point	all households in the survey
Disease prevention kno			
Adult illiteracy rate	EDHS 2016	Latitude and	Total number of adults (aged 15 years and above) who
		longitude	had not attended school or who cannot read and write
)		point	divided by the total number of adults participated in th
1		T (', 1 1	survey
Access to listen to the	EDHS 2016	Latitude and	Total number of people who had not access to listen to
radio 4		longitude point	the radio divided by total survey participants
Access to watch TV	EDHS 2016	Latitude and	Total number of people have no access to watch
5	2010	longitude	television divided by total survey participants
7		point	toto islon alviada og total balvog participanto
Mobile phone	EDHS 2016	Latitude and	Total number of people have no access to mobile phon
ownership		longitude	divide by the total number of survey participants
) ^		point	
Knowledge toward	EDHS 2016	Latitude and	Number of people with poor knowledge towards HIV
ĮΗV		longitude	divided by the total number of people participating in
1		point	the survey
Hand hygiene indicato			
Travel time to water	EDHS 2016	Latitude and	Mean travel time in minutes to obtain water source (i.e
sources		longitude	access to a water source)
<u>B</u> Dlaga far har dwaching	EDHS 2016	point	Number of households have no fixed or mobile place
Place for handwashing	EDHS 2016	Latitude and longitude	Number of households have no fixed or mobile place for handwashing divided by total number of household
1		point	in the survey
Soap or detergent	EDHS 2016	Latitude and	Number of households have no essential handwashing
availability for		longitude	agents (i.e. soap, and detergent) divided by total
handwashing		point	household in the survey
Comorbidities indicato	ors		
HTN	EPHI	Latitude and	Total number of people with HTN divided by the total
3	STEPS	longitude	number of survey participants
- 		point	
р ДМ	EPHI	Latitude and	Total number of people with DM divided by the total
1	STEPS	longitude	number of survey participants
<u>2</u>	EDIH	point	Maan hada maasindaa
₿MI	EPHI STEPS	Latitude and longitude	Mean body mass index
5	SIEFS	point	
CVD	EPHI	Latitude and	Total number of people with heart disease divided by
7	STEPS	longitude	total number of people in the survey
3		point	······································
Cholesterol	EPHI	Latitude and	Mean cholesterol level
)	STEPS	longitude	
1		point	
HIV prevalence	EDHS 2016	Latitude and	Total number of people with HIV divided by survey
4		longitude	participants
		point	
5 JTB SMR	ЕМОН	District	Standardized morbidity ratio (SMR) as measured by
7			observed number of TB cases divided by the expected

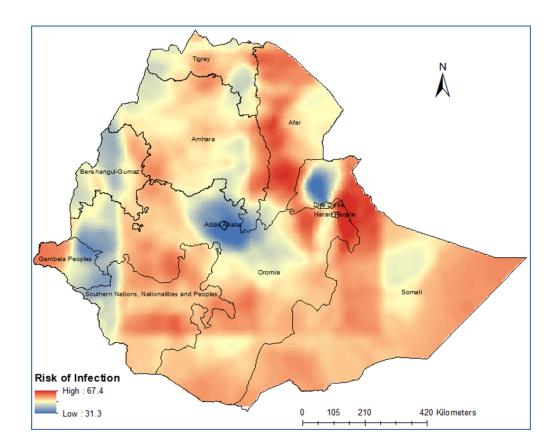

1 2			
Health care access	EDHS 2016	Latitude and longitude point	Difficulty of getting advice or treatment due to lack of money, or distance to a health facility
General service readiness and availability	EPHI SARA	Latitude and longitude point	Availability of equipment and supplies (i.e. basic amenities, equipment, standard precautions, diagnostic capacity, essential medicines) necessary to provide general health services
ICU availability 2 3	EPHI SARA	Latitude and longitude point	Availability of Critical Care Services (ICU) in hospitals
CRD readiness index	EPHI SARA	Latitude and longitude point	Availability of specific services for Chronic respiratory disease (CRD) diagnosis, management, and follow up
TB readiness index	EPHI SARA	Latitude and longitude point	Availability of specific services for tuberculosis diagnosis, management, and follow up
20 Diabetes readiness 1 1ndex 22 23	EPHI SARA	Latitude and longitude point	Availability of specific service for diabetes diagnosis and management and follow up

G-Econ: Geographically based Economic data; EDHS: Ethiopia demographic and health survey; UN OCHA: United Nation Office for Coordination of Humanitarian Affairs; MAP: SRTM: Malaria Atlas Project; Shuttle Radar Topography Mission; EPHI: Ethiopia Public Health Institute: EMOH: Ethiopia Ministry of Health; SARA: Service Availability and Readiness Assessment

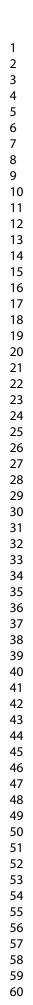
2011	un ber vice mvan	
28	587	
29	588	
30	589	
31	590	
32	591	
33	592	
34	593	
35	594	
36	595	
37	596	
38	597	
39 40	598	
40 41	599	
42	600	
43	601	
44	602	
45	603	
46	604	
47	605	
48	606	
49	607	
50	608	
51	609	
52	610	
53 54	611	
54 55	612	
56	613	
50 57	614	
58	615	
59	616	
60	617	


1 2			
2			
4 010			
5 019			
6 020			
621	1	idence for risk of COVID-19 infection, severity, and death	Df
Indicators	Risk	Evidence	References
9 Demographic indicat	factors		
	015		
Male sex	Severity	Death from and severity of COVID-19 was strongly associated with being male (HR 1.99, 95%CI: 1.88-2.10)	Williamson E ⁴⁰
13 Qlder age	Severity	Older than 65 years were risk factors for disease progression in patients	Zheng Z ²²
15		with COVID-19 (OR =6.06, 95% CI: 3.98, 9.22)	
Socio-economic indic	ators		
Propulation density	Infection	High population density is a risk factor for COVID-19 infection	Ahmadi M ⁴¹
Number of	Infection	Areas with a higher percentage of households with more than one person	Ahmad K ⁴²
Household members		per room had a higher incidence of COVID-19	
49ow wealth index 21	Infection	Socio-economic deprivation (RR 1.26 per SD increase in Townsend Index) associated with COVID -19 infection	Ho FK ⁴³
Connectivity indicato	ors		
Travel times to cities	Infection	The distance between Wuhan and other cities was inversely associated with the numbers of COVID-19 cases in that city	Zheng R ⁴⁴
Proximity to national	Infection	Cross country moment is a risk factor for COVID-19 transmission and importation	Chinazz M ⁴⁵
Distance to major	Infection	Spread of COVID-19 was correlated positively with public transportation	Ayenew B ¹⁶ .
19 ads		per capita	
Glimatic indicators			
3MIean temperature 32	Infection	Low ambient temperatures are associated with more rapid spread of COVID-19	Holtmann M ⁴⁶
Mean precipitation	Infection	Countries with higher rainfall measurements showed an increase in COVID-19 transmission	Sobral MFF ⁴⁷
Wind speed	Infection	Areas with low values of wind speed associated with a high rate of COVID-19 infection	Ahmadi M ⁴¹
Solar radiation	Infection	Areas with low values of solar radiation exposure associated with a high rate of COVID-19 infection	Ahmadi M ⁴¹
39 Water vapour pressure	Infection	High humidity reduces the transmission of COVID-19. Water vapour pressure negatively correctly with COVID-19 infection.	Wang J ⁴⁸ , Li J ⁴⁹
Behavioural indicato	rs		
4shat chewing 44	Severity	There is an association between khat chewing and chronic illness such as HIV infection, elevated diastolic blood pressure	Basker GV ⁵⁰
45 lcohol drinking	Severity	Patients with alcohol use disorders at increased risk for COVID-19	Testino G ²¹
4 Gigarette smoking 47	Severity	Current smoking was a risk factor for disease progression in patients with COVID-19 (OR =2.51, 95% CI: 1.39, 3.32)	Zheng Z ²²
Cooking inside the household	Severity	Areas with a higher percentage of incomplete kitchen facilities had a higher incidence of, and mortality associated with, COVID-19	Ahmad K ⁴²
Use solid fuel for 50 cooking	Severity	Areas with a higher percentage of incomplete kitchen facilities had a higher incidence of, and mortality associated with, COVID-19	Ahmad K ⁴²
Disease prevention k	nowledge in		
Adult illiteracy rate	Infection	Adult learning education is a tool to contain the COVID-19 pandemics	Lopes H ⁵¹
Access to listen to	Infection	Access to media is a crucial factor in public health responses to an	Ayedee N ⁵²
gadio		outbreak	
54 structure str	Infection	Media (Television) has a significant role in creating a positive atmosphere in COVID-19	Ayedee N ⁵²
SA obile phone 60 wnership	Infection	Mobile phone calls and text messages help for the diagnosis, management, and control of infectious diseases	Wood S ⁵³

1 2					
Knowledge towards	Infection	Knowledge towards an infectious disease such as HIV can help to control the transmission of the diseases	Bertozzi S ⁵⁴		
Hand hygiene indicat	tors				
Travel time to water sources	Infection	Adequate water supply is essential for the control of COVID-19 infection	WHO 55		
Place for handwashing	Infection	Hand washing is recommended by WHO for the control of COVID-19 infection	WHO 56		
Spoap or detergent availability for	Infection	Availability of soap or detergent is essential to keep hand hygiene for the prevention of COVID-19 infection	WHO ⁵⁶		
1Bandwashing					
Comorbidities indica	tors				
₩TN 16	Severity	Hypertension was statistically significant with a higher rate of servery and death ($OR = 2.72, 95\%$ CI: 1.60,4.64)	Zheng Z ²²		
ВМ 18	Severity	Death from COVID-19 was associated with DM (HR 1.50, 95%CI: 1.40- 1.60) 1.50	Williamson E ⁴⁰		
19 BMI 20 21	Severity	Death from COVID-19 was associated with higher BMI (HR 1.27, 95%CI: 1.18-1.36)	Williamson E ⁴⁰		
21 <u>£</u> VD 23	Severity	Cardiovascular disease was significantly associated with higher COVID- 19 servility and death (OR = 5.19 , 95% CI: 3.25 , 8.29)	Zheng Z ²²		
14 IV prevalence 25	Severity	Mortality from COVID-19 was associated with immunosuppression (HR 1.69, 95%CI: 1.21-1.34)	Williamson E ⁴⁰		
2 /6B SMR 27	Severity	respiratory diseases were significantly associated with COVID-19 death and severity (OR = 5.15, 95% CI: 2.51, 10.57)	Zheng Z ²²		
Service availability a	nd readines	ss indicators			
3 Q ealth care access	Death	Healthcare resource availability is associated with COVID-19 mortality	Ji Y ⁶		
3 problem					
Reneral service	Death	General health service preparedness is essential for combating the COVID-19 pandemic	WHO 57		
1CU availability	Death	Lack of critical care unite increase the risk of death from COVID-19	Murthy S ⁵⁸		
CRD readiness	Death	Cardiorespiratory disease (CRD) is a risk factor for COVID-19 related death	Zheng Z ²²		
³ B readiness	Death	TB determinants outcomes of patients with COVID-19	Tadolini M 59		
Jabetes readiness	Death	Diabetes affects the prognosis of patients with COVID-19	Zheng Z ²²		
Affice for Coordinatio	44 622				
46 47 48					
49 50 51					
52 53					
54 55					
56 57					
58 59					
60					


381x292mm (72 x 72 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml



165x44mm (150 x 150 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

249x201mm (96 x 96 DPI)

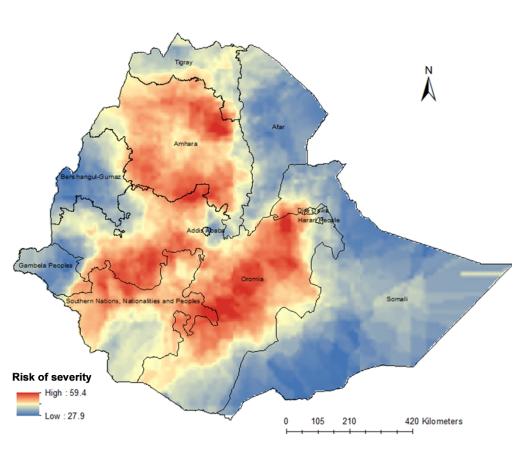
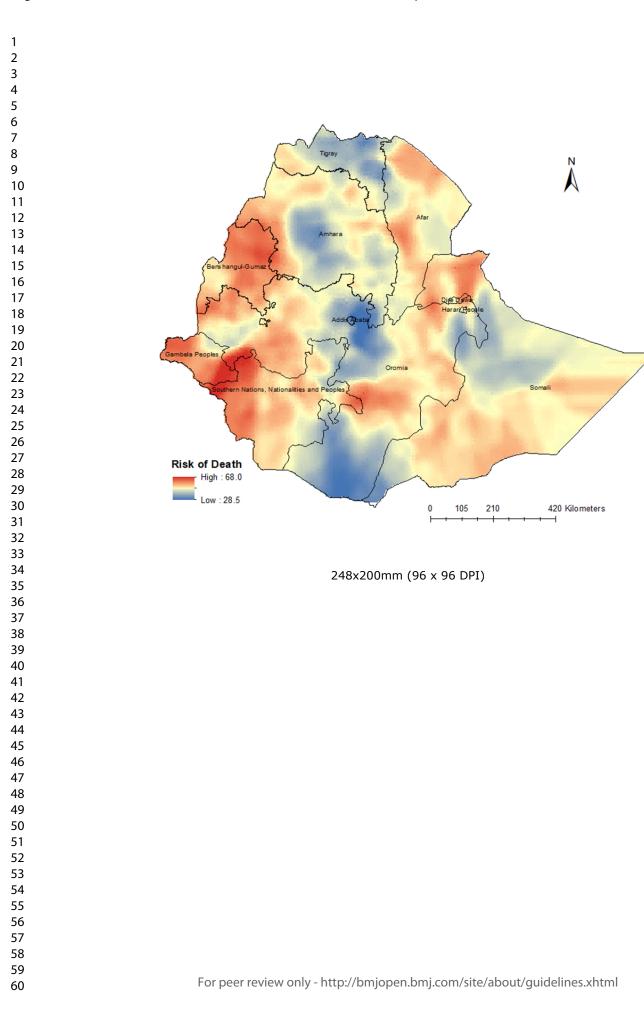



Figure 4

Afar

Dire Dawa Harari (Beople Ň

Som ali

420 Kilometers

Tigray

Amhara

AddisAbaba

Oromia

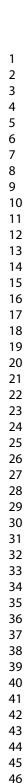
0 105 210

н

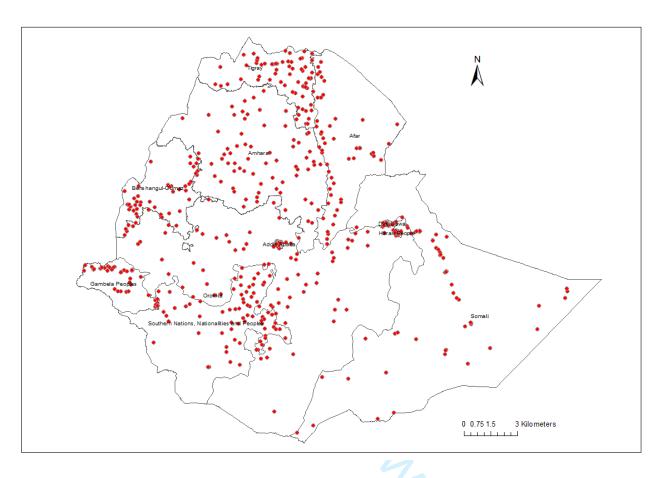
210x296mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

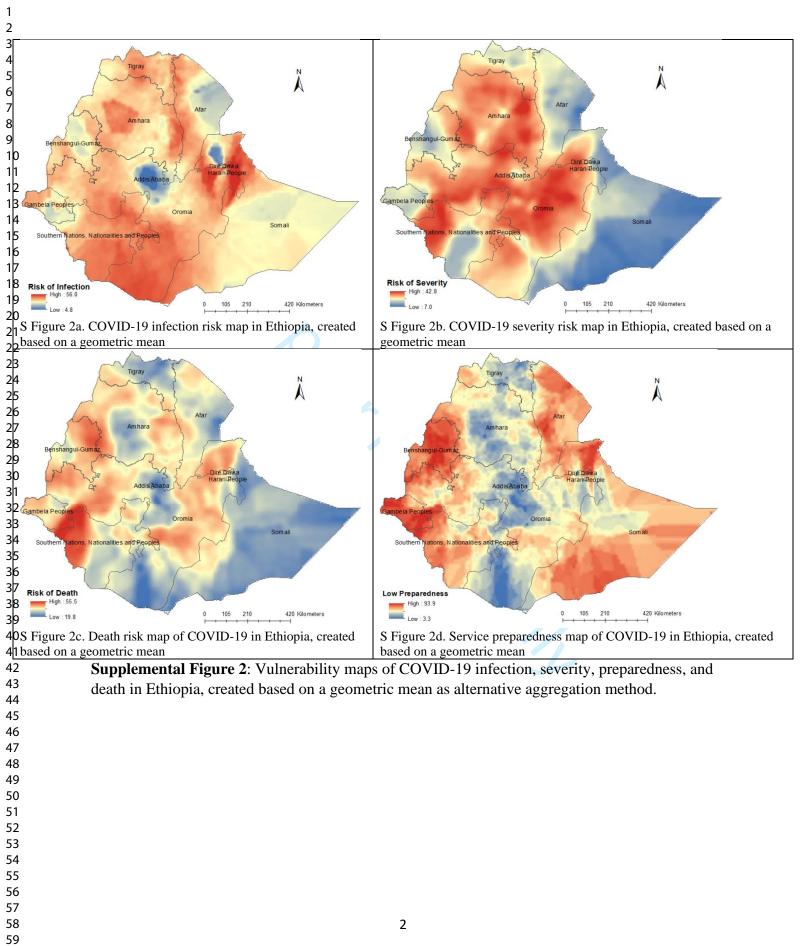
Benshangul-Gun

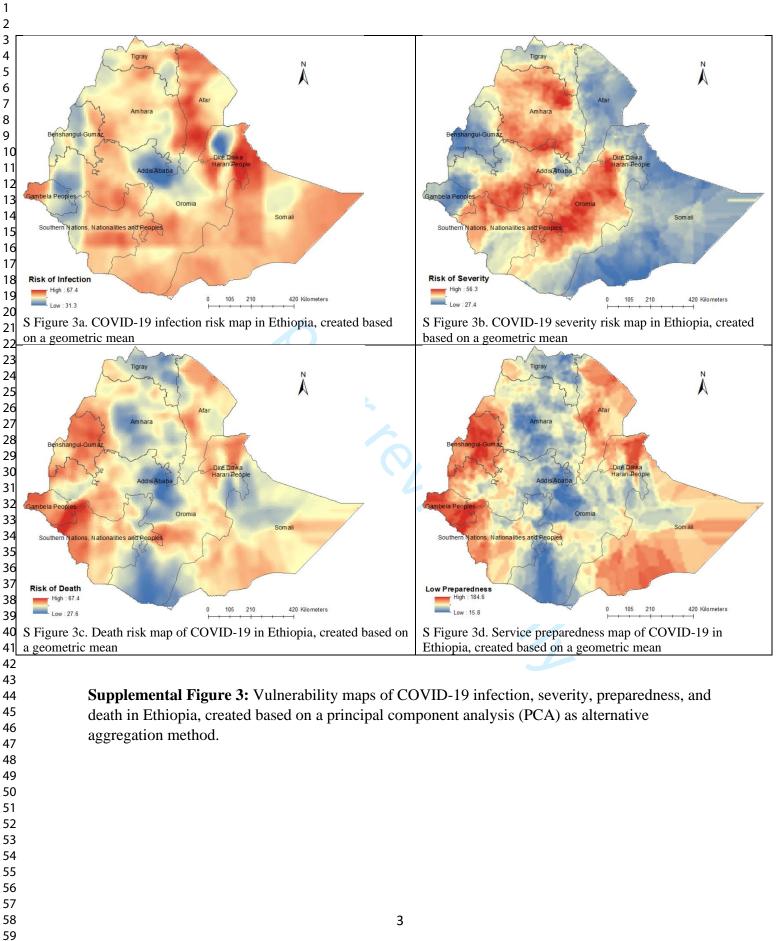

Southern Nations, Nationalities and Peoples

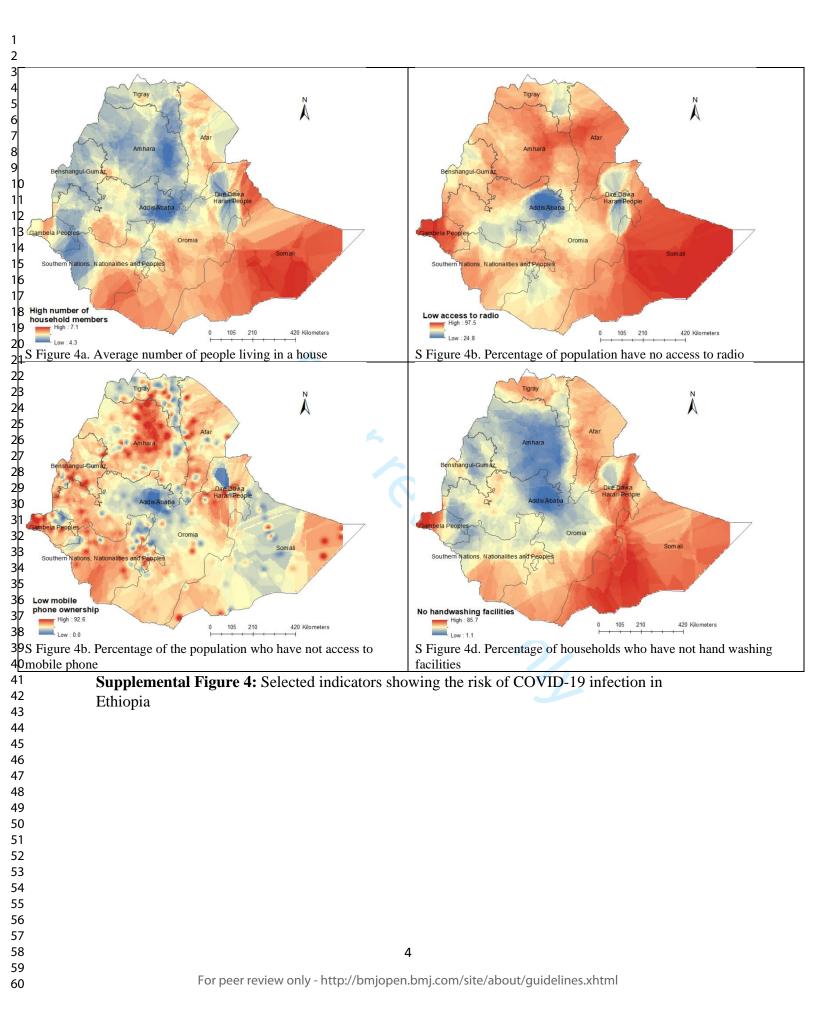
ibela Peop

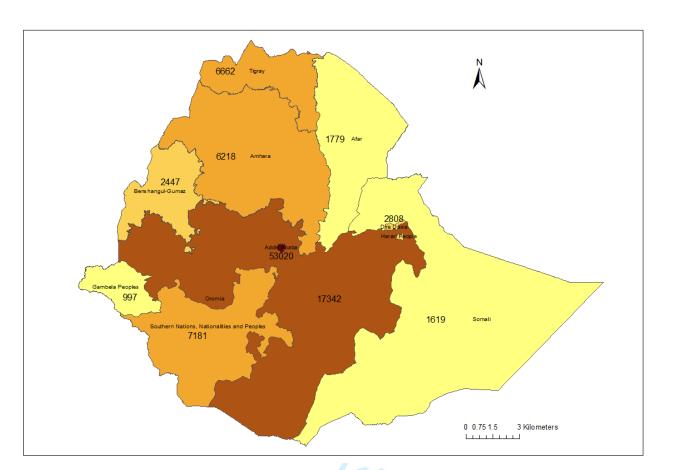

Low Preparedness

High : 11.1


Low : 94.3




Supplemental Information



Supplemental Figure 1: A map showing the distribution of the Ethiopia Demographic and Health Survey (EDHS 2016) datapoints.

Supplemental Figure 5: Number of COVID-19 confirmed cases at regional level in Ethiopia on 15 November 2020.

3 Supplemental Table 1: STROBE Statement—Checklist of items included in this study Item Page No Recommendation number (a) Indicate the study's design with a commonly used term in the title or the abstract Title and abstract 1 (b) Provide in the abstract an informative and balanced summary of what was done and what was 3 found Introduction Background/rationale 2 Explain the scientific background and rationale for the investigation being reported 5 Objectives 3 State specific objectives, including any prespecified hypotheses 6 Methods Study design 4 Present key elements of study design early in the paper 6 Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-5 6 up, and data collection Participants (a) Give the eligibility criteria, and the sources and methods of selection of participants 6,7 &8 6 ¹Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give 6,7 &8 18 diagnostic criteria, if applicable Data sources/ 8 For each variable of interest, give sources of data and details of methods of assessment 6, 7, 8 & ²measurement (measurement). Describe comparability of assessment methods if there is more than one group Table 1 2^{Bias} 9 Describe any efforts to address potential sources of bias 9 23 tudy size 10 Explain how the study size was arrived at NA 2 Duantitative Explain how quantitative variables were handled in the analyses. If applicable, describe which 11 8&9 24ariables groupings were chosen and why 25statistical methods 12 (a) Describe all statistical methods, including those used to control for confounding 8&9 26 8&9 (b) Describe any methods used to examine subgroups and interactions 27 (c) Explain how missing data were addressed 8 & 9 28 (d) If applicable, describe analytical methods taking account of sampling strategy NA b9 (*e*) Describe any sensitivity analyses 9 ³Results ^BParticipants 13 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined 9 & 10 B2 for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed B3 (b) Give reasons for non-participation at each stage 9 & 10 B4 Figure 1 (c) Consider use of a flow diagram ³Descriptive data 14 (a) Give characteristics of study participants (eg demographic, clinical, social) and information on Table 1 86 exposures and potential confounders 87 (b) Indicate number of participants with missing data for each variable of interest NA BOUtcome data 9 & 10 15 Report numbers of outcome events or summary measures ³⁹Main results 40 NA 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were 41 included 42 (b) Report category boundaries when continuous variables were categorized NA 43 (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time NA 44 period 450ther analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses 9 4Discussion ⁴Key results 18 10 Summarise key results with reference to study objectives 48 imitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss 13 49 both direction and magnitude of any potential bias 59nterpretation 10-13 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 5 Generalisability 21 Discuss the generalisability (external validity) of the study results 13 ⁵Other information 5**4**Funding Give the source of funding and the role of the funders for the present study and, if applicable, for the 22 15 55 original study on which the present article is based 56 57

58

1 2

- 59
- 60

BMJ Open

COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection, case severity, and death

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-044606.R2
Article Type:	Original research
Date Submitted by the Author:	27-Jan-2021
Complete List of Authors:	Alene, Kefyalew; Curtin University, Faculty of Health Sciences; Telethon Kids Institute, Wesfarmers Centre of Vaccines and Infectious Diseases Assefa, Yalemzewod; University of Gondar; University of New South Wales, School of Women's and Children's Health Fetene, Dagnachew ; Burnet Institute Koye, Digsu ; The University of Melbourne School of Population and Global Health Melaku, Yohannes Adama; Flinders University, Public Health; The University of Adelaide Adelaide Medical School Gesesew, Hailay; Mekelle University, Epidemiology Department, School of Health Sciences; Flinders University Birhanu, Mulugeta ; St Paul's Hospital Millennium Medical College Adane, Akilew; Telethon Kids Institute Muluneh, Muluker; Western Sydney University; Amref Health Africa in Ethiopia, Monitoring Evaluation and Research Dachew, Berihun; University of Gondar, Institute of Public Health; Curtin University, School of Public Health Abrha, Solomon; University of Canberra; Mekelle University, School of Pharmacy Aregay, Atsede; Monash University; Mekelle University, School of Nursing Ayele, Asnakew ; University of Gondar, School of Pharmacy; University of New England Bezabhe, Woldesellassie; University of Tasmania Faculty of Health Tadesse, Kidane ; Queensland University of Tasmania Faculty of Health Gebremedhin, Tesfaye; University of Canberra Tesfay, Amanuel; Telethon Kids Institute, Wesfarmers Centre of Vaccines and Infectious Diseases; Curtin University, School of Public health Gebremichael, Lemlem; Mekelle University, Pharmacology Department; University of South Australia, School of Pharmacy and Medical Sciences, Therapeutics Research Centre Geleto, Ayele; Haramaya University; The University of Newcastle Faculty of Health and Medicine Kassahun, Habtamu ; Griffith University, Australian Rivers Institute Kibret, Getiye ; Debre Markos University, College of Health Science; University of Technology Sydney Mekonnen, Alemayehu; Deakin University; The University of Sydney, School of Pharmacy

	Mirkuzie, Alemnesh; Ethiopian Public Health Institute; University of Washington, Institute for Health Metrics and Evaluation Mohammed, Hassen; The University of Adelaide; Women's and Children' Health Network Tegegn, Henok; University of New England; University of Gondar Gebresilassie, A; Mekelle University, Epidemiology; University of New South Wales, The George Institute for Global Health Tesfay, Fisaha; Flinders University Faculty of Medicine Nursing and Health Sciences, South gate institute for Health, Society and Equity ; Mekelle University College of Health Sciences, School of Public Health Wubishet, Befikadu ; University of Canberra Kinfu, Yohannes; University of Canberra; Qatar University, College of Medicine
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health, Infectious diseases
Keywords:	Epidemiology < TROPICAL MEDICINE, Public health < INFECTIOUS DISEASES, PUBLIC HEALTH

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1		
2		
3		
4 5	1	COVID-19 in Ethiopia: A geospatial analysis of vulnerability to infection,
6	2	case severity, and death
7	2	case severity, and death
8 9	2	
10	3	Kefyalew Addis Alene ^{1,2,3*} , Yalemzewod Assefa Gelaw ^{3,4+} , Dagnachew Muluye Fetene ⁵ , Digsu N
11	4	Koye ⁶ , Yohannes Adama Melaku ^{7,8} , Hailay Abrha Gesesew ^{9,10} , Mulugeta Molla Birhanu ¹¹ , Akilew
12	5	Awoke Adane ¹² , Muluken Dessalegn Muluneh ^{13,14} , Berihun Assefa Dachew ^{3,15} , Solomon Abrha ^{16,17} ,
13	6 7	Atsede Aregay ^{18,19} , Asnakew Achaw Ayele ^{20,21} , Woldesellassie M Bezabhe ²² , Kidane Tadesse Gebremariam ^{23,24} , Tesfaye Gebremedhin ²⁵ , Amanuel Tesfay ^{15,2} , Lemlem Gebremedhin
14 15	8	Gebremichael ^{26,27} , Ayele Geleto ^{28,29} , Habtamu Tilahun Kassahun ³⁰ , Getiye Dejenu Kibret ^{31,32} , Cheru
16	9	Tesema Leshargie ^{33,34} , Alemayehu Mekonnen ^{35,36} , Alemnesh H. Mirkuzie ^{37,38,39} , Hassen
17	10	Mohammed ^{40,41} , Henok Getachew Tegegn ^{21,42} , Azeb Gebresilassie Tesema ^{22,43} , Fisaha Tesfay ^{9,10,44} ,
18	10	Befikadu L. Wubishet ⁴⁵ , Yohannes Kinfu ^{38,46,47,48+}
19	12	Defikadu E. Wubishet , Tohannes Kinit
20		
21 22	13	¹ Faculty of Health Sciences, Curtin University, Western Australia, Australia
23	14	² Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western
24	15 16	Australia, Australia ³ Institute of Public Health, University of Gondar, Gondar, Ethiopia
25	10	⁴ Population Child Health Research Group, School of Women's and Children's Health, University of
26	18	New South Wales, Australia
27	19	⁵ Burnet Institute, Melbourne, Victoria, Australia
28 29	20	⁶ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health,
30	21	University of Melbourne, Australia
31	22	⁷ Adelaide Institute for Sleep Health, College of Medicine and Public health, Flinders University,
32	23	Australia
33	24	⁸ Adelaide Medical School, University of Adelaide, Australia
34	25	⁹ College of Medicine and Public Health, Flinders University, Australia
35 36	26 27	¹⁰ Epidemiology Department, School of Health Sciences, Mekelle University, Ethiopia ¹¹ Department of nursing, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
37	28	¹² Telethon Kids Institute, The University of Western Australia, Nedlands, Western
38	29	Australia, Australia
39	30	¹³ Amref Health Africa in Ethiopian, Monitoring Evaluation and Research, Addis Ababa, Ethiopia
40	31	¹⁴ School of Nursing and Midwifery, Western Sydney University, Sydney Australia
41	32	¹⁵ School of Public health, Curtin University, Western Australia, Australia
42 43	33	¹⁶ Faculty of Health, University of Canberra, Bruce, Canberra, Australian Capital Territory, Australia.
44	34	¹⁷ Department of Pharmaceutics, School of Pharmacy, College of Health Sciences, Mekelle University,
45	35	Mekelle, Ethiopia
46	36	¹⁸ School of Nursing and Midwifery, Monash University, Melbourne, Australia
47	37 38	¹⁹ School of Nursing, Mekelle University, Ethiopia ²⁰ School of Health, Faculty of Medicine and Health, University of New England, Armidale 2351,
48	39	Australia
49 50	40	²¹ Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science,
51	40	University of Gondar, Gondar, Ethiopia
52	42	²² School of pharmacy and pharmacology, University of Tasmania
53	43	²³ School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia
54	44	²⁴ School of Public Health, Mekelle University, Ethiopia
55 56	45	²⁵ Faculty of Business, Government and Law, University of Canberra
56 57	46	²⁶ School of Pharmacy and Medical Sciences, Therapeutics Research Centre, University of South
58	47	Australia, Adelaide, Australia
59	48	²⁷ School of Pharmacy, Pharmacology Department, Mekelle University, Mekelle, Ethiopia
60	49	²⁸ School of Public Health, College of Health and Medical Sciences, Haramaya University, Ethiopia

1		
2		
3	50	²⁹ School of Medicine and Public Health, Faculty of Health and Medicine, the University of
4 5	51	Newcastle, Australia
6	52	³⁰ Australian Rivers Institute, Griffith University, Nathan, Australia
7	53	³¹ Debre Markos University, Ethiopia
8	54	³² University of Sydney, Australia
9	55	³³ School of Public Health, Faculty of Health, University of Technology Sydney, Ultimo, Australia
10	56	³⁴ College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
11	57	³⁵ Institute for Health Transformation, Deakin University, Australia,
12	58	³⁶ School of Pharmacy, University of Sydney, Sydney, Australia
13	59	³⁷ Ethiopian Public Health Institute, Addis Ababa, Ethiopia
14	60	³⁸ Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA
15 16	61	⁴⁹ Center for International Health, University of Bergen, Bergen, Norway
17	62	⁴⁰ Vaccinology and Immunology Research Trials Unit, Women's and Children's Health Network,
18	63	Adelaide, South Australia, Australia
19	64	⁴¹ Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
20	65	⁴² School of Rural Medicine, University of New England, Armidale, Australia
21	66	⁴³ The George Institute for Global Health, University of New South Wales, Australia, Sydney
22	67	⁴⁴ School of Health and Social Development, Deakin University
23	68	⁴⁵ Research Centre for Generational Health and Ageing, University of Newcastle, Australia
24	69	⁴⁶ Faculty of Health, University of Canberra, Australia
25	70	⁴⁷ College of Medicine, Qatar University, Qatar
26 27	71	⁴⁸ Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
27	72	
29		
30	73	*Corresponding Author: Kefyalew Addis Alene, Faculty of Health Sciences, Curtin
31		
32	74 75	University, Western Australia, Australia, Kent St, Bentley WA 6102, Australia. Tel:
33	75	+61404705064; E-mail: kefyalew.alene@curtin.edu.au
34	76	
35	76	
36 37	77	⁺ Equal contributor
38	77 78	Equal contributor
39	70	
40	79	
41	19	
42	80	
43	80	
44	01	
45	81	
46 47	07	
47 48	82	
49	02	
50	83	
51	0.4	
52	84	
53		
54	85	Keywords: Risk map, vulnerability, infection, severity, death, COVID-19, Ethiopia, geospatial
55		
56	06	
57 58	86	
58 59		
60	87	

Abstract

Background: COVID-19 has caused a global public health crisis affecting most countries, including Ethiopia, in various ways. This study maps the vulnerability to infection, case severity, and likelihood of death from COVID-19 in Ethiopia.

Methods: Thirty-eight potential indicators of vulnerability to COVID-19 infection, case severity and likelihood of death, identified based on a literature review and the availability of nationally representative data at a low geographic scale, were assembled from multiple sources for geospatial analysis. Geospatial analysis techniques were applied to produce maps showing the vulnerability to infection, case severity, and likelihood of death in Ethiopia at a spatial resolution of 1 km X 1 km.

Results: This study showed that vulnerability to COVID-19 infection is likely to be high across most parts of Ethiopia, particularly in the Somali, Afar, Amhara, Oromia, and Tigray regions. The number of severe cases of COVID-19 infection requiring hospitalisation and intensive care unit admission is likely to be high across Amhara, most parts of Oromia and some parts of the Southern Nations, Nationalities, and Peoples' Region. The risk of COVID-19-related death is high in the country's border regions, where public health preparedness for responding to COVID-19 is limited.

Conclusion: This study revealed geographical differences in vulnerability to infection, case severity, and likelihood of death from COVID-19 in Ethiopia. The study offers maps that can guide the targeted interventions necessary to contain the spread of COVID-19 in Ethiopia.

108				
109				
110				
111				
112				
113				
			2	

1 2		
3	114	
4 5		Strengths and limitations of this study
6		This is the first study that maps vulnerability to COVID-19 infection, severe cases,
7 8		and associated death in Ethiopia at a high level of resolution across the entire territory
9		
10 11		of Ethiopia.
12		\succ This is also the first study that has attempted to present the degree of service
13		preparedness for COVID-19 across the country.
14 15		> The study incorporated a wide range of indicators from multiple sources and applied
16		rigorous geospatial techniques to provide the best possible prediction maps.
17 18		
19		However, some important indicators such as psychosocial and clinical factors were
20		not captured in our modelling due to the lack of geocoded data.
21 22		
23	115	
24 25		
26	116	
27 28		
29	117	
30 31		
32	118	
33 34		
34 35	119	
36		
37 38	120	
39		
40 41	121	
42	121	
43 44	122	
45	122	
46 47	123	
48	125	
49 50	174	
50 51	124	
52	40-	
53 54	125	
55		
56 57	126	
58		
59 60	127	

128 Introduction

Coronavirus disease (COVID-19) has become one of the most serious global public health crises in modern times ¹. The disease was declared a pandemic on 11 March 2020 and has currently affected more than 216 countries and territories ². As of 3 August 2020, there were more than 17.6 million confirmed COVID-19 cases and over 680,000 associated deaths around the globe ³. The highest numbers of cases and deaths have been reported from the USA, Brazil, India, and some European countries, such as Russia, the United Kingdom, Italy, and Spain³. African countries, including Ethiopia, have reported a low number of COVID-19, although the number of cases and deaths are currently on the rise⁴. In Ethiopia, the first case of COVID-19 was reported on 13 March 2020 in Addis Ababa, but at the time of this study almost all regions of the country were affected by COVID-19 at different magnitudes ⁵. However, the number of cases in Ethiopia is still very low due to limited testing capacity and delays in reporting confirmed cases.

Multiple factors, such as socio-demographic, connectivity, behavioural, climatic, and comorbidity factors, are strong predictors of the differences in transmission, hospitalisation, and mortality rates among and within countries ^{6,7}. Studies conducted in Africa have provided limited information on the vulnerability of different areas to COVID-19 infection ^{4,8}. These studies have been conducted at the country level using a limited number of indicators ^{4,8}. Mapping the risks of COVID-19 (infection, case severity, service preparedness and death) at the lowest administrative unit, such as the district is important in many ways. First, the generated evidence can help the government and community better prepare and respond to the health- and non-health-related impacts of COVID-19 according to their contextual circumstances. Second, it can help the relevant bodies determine effective and efficient resource-mobilisation efforts, such as providing training for health care workers, supplying hospitals with necessary equipment, prioritising testing practices, and distributing hand sanitizer and protective facemasks. Third, the information can be utilised as a guide for designing targeted travel restrictions or applying full or partial lockdowns as needed. Fourth, the evidence can stimulate further study on COVID-19 in the country.

Given Ethiopia's large population size, variation in resources and vast geographic size, the risk of COVID-19 infection, case severity and likelihood of death are likely to differ across regions, zones, and districts, suggesting that local and context-specific interventions be implemented.

Therefore, this study aimed to map the vulnerability to infection, case severity, and likelihoodof death from COVID-19 in Ethiopia using rigorous state-of-the-art geospatial techniques.

161 Methods

10 162 Study area

This study focused on Ethiopia, the second-most populous country in Africa, with an estimated population size of more than 115 million ⁹. Ethiopia has a total area of approximately 1.1 million square kilometres, making it the 10th largest country in Africa and the 27th largest in the world. The country has a tiered administrative system consisting of regional states (first level), zones (second level), woredas or districts (third level), and kebeles or neighbourhoods (fourth level) ¹⁰. There are nine administrative regional states in Ethiopia, including Tigray, Afar, Amhara, Oromia, Somali, Benishangul-Gumuz, Harari, Gambella, and the Southern Nations, Nationalities, and Peoples' Region (SNNPR), and two administrative cities (Addis Ababa and Diredawa). Four of these regional states (namely, Afar, Somali, Benishangul-Gumuz, and Gambella) are relatively less developed, and categorised as developing regional states. They lag behind the rest of the country in all indicators related to human development and disease prevention and control programs. The administrative units of Ethiopia (shapefiles) were obtained from the Database for Global Administrative Areas ¹¹.

³⁴ 176 Data sources and variable selection

The data for this study were assembled from multiple sources (Table 1). Potential indicators were selected based on evidence of association with COVID-19 infection, case severity, and death based on a literature review and the availability of country-wide representative data at a district geographic scale or lower (Figure 1). Table 2 presents the evidence for the association between indicators and COVID-19, as well as the rationale for selecting these indicators for the study.

The following area-level demographic and socio-economic indicators were used as indicators of COVID-19 infection and case severity: the average number of persons per household, the proportion of the population aged ≥ 65 years, the proportion of males, and the number of households in the lowest wealth quintile. All of these socio-economic and demographic indicators were obtained from the latest Ethiopia Demographic and Health Survey (EDHS)¹². A map showing the distribution of EDHS datapoints are available as supplementary information (Supplemental Figure 1). Population density, estimated as the number of people per grid, was obtained from WorldPop¹³.

Page 9 of 35

BMJ Open

Connectivity indicators, which measure the population-level vulnerability to infection, were also captured using distance and time-bounded markers. Specifically, average travel time (measured in minutes) to the nearest city and proximity to international borders (measured in kilometres) were included to measure each area's level of susceptibility to infection. Data on travel time to the nearest city, obtained from the University of Oxford's Malaria Atlas Project (MAP), were used to quantify the accessibility of an area to high-density urban centres at a resolution of 1 km×1 km¹⁴. Data on proximity to international borders were obtained from the EDHS spatial data repository and were used to measure ¹⁵ the geodesic distance to the nearest international border in kilometres, indicating the risk of cross-border transmission and the spread of COVID-19. Infection rates and the spread of COVID-19 were also positively correlated with the per capita public transportation use rate¹⁶. Thus, to determine the nearest cross-country road to each location on the map, we obtained and applied data for major roads from the World Bank ¹⁷.

It is evident that inadequate knowledge about COVID-19 and a lack of awareness of prevention measures exacerbate community transmission of the disease ¹⁸. Therefore, we extracted data on adult literacy rate, access to media (such as radio, television, and mobile phone messages) and knowledge about other infectious diseases (e.g., HIV) from the EDHS as proxies for knowledge of COVID-19 prevention measures in each area of the country ¹². According to the WHO, maintaining good hand hygiene through regular washing with soap and water is one of the most effective preventative measures for reducing the transmission of COVID-19^{19,20}. Using the same data as above, we also assessed hand hygiene practices, access to water, and the availability of handwashing stations in a household.

Previous studies have shown that underlying chronic comorbidities and behavioural factors such as cigarette, alcohol and khat consumption were associated with more severe COVID-19 infections ^{21,22}. Data on khat chewing and the alcohol consumption rate were obtained from the EDHS 2016¹², and data on cigarette smoking were obtained from the Ethiopia Public Health Institute STEP wise approach to Surveillance (STEPS) study ²³. The STEP survey was also used to measure the prevalence of selected non-communicable diseases (NCDs) such as hypertension, heart disease, and diabetes mellitus (DM).

The level of preparedness and readiness of health facilities to detect, manage, and control the
 COVID-19 pandemic at a given location was measured using data from the Service Availability
 and Readiness Assessment (SARA) survey ²⁴. For each geo-location, the obtained measures

BMJ Open

include the availability and readiness of facilities in terms of basic amenities and equipment, standard precautions, diagnostic capacities, and essential medicines. In addition, data on service readiness for specific diseases such as DM, chronic respiratory disease (CRD), and tuberculosis (TB), as well as the availability of intensive care units (ICUs) and laboratory facilities, were obtained from this same survey. To augment the health facility data, we extracted population-level indicators on health care access and barriers to care from EDHS 2016 12.

Finally, climatic data (temperature, precipitation, humidity, and sunlight exposure) were obtained from the WorldClim v2.0 Global Climate Database ²⁵. These data were extracted at a spatial resolution of 30 seconds or ~1 km² and were considered indicators of COVID-19 infection in this study.

Geospatial data processing

All data were georeferenced using a geographical information system, ArcGIS 10.6.1 software (ESRI Inc., Redlands CA, USA). The ideal resolution for spatial analysis was a latitude and longitude point that represented the location of the data cluster (point-level data), but when these were not available, we geolocated the available data to the smallest geographical areal unit, typically representing an administrative unit such as village or districts. In instances when the latitude and longitude coordinates of the village or district were not available in the dataset, centroids of the village or districts were also identified using Google Maps. A very small rectangular polygon (fishnet) with its centroid (fishnet centroid) covering the whole territory of Ethiopia was created using a sampling tool under the data management tools in the ArcToolbox (Figure 2). The fishnet centroid contained a unique identification number and was used as a common georeferenced system to process, join, and extract the raster and vector data collected from various sources. All vector data (point, polygon, and line) were converted to raster data using geostatistical methods ²⁶. Raster grids were then resampled to the common georeferenced system at a spatial resolution of 1 km x 1 km. Finally, a raster mask covering the entire country was created by clipping smaller spatial units from a large global raster data source.

Statistical analyses

Geostatistical techniques such as spatial autocorrelation, kriging and semivariograms were applied to create a prediction grid surface from a scattered set of points ²⁷. Kriging assumes that the distance or direction between sample points reflects a spatial correlation that can be used to explain variation in the surface ²⁸. Since the variables had different units of

Page 11 of 35

BMJ Open

measurement, the datasets were normalised using a min-max approach to a standard scale ranging from 0 (the lowest risk) to 100 (the highest risk)²⁹. After normalisation, the indicators were averaged to create a vulnerability index, measuring the risk of COVID-19 for each geo-location ³⁰. The vulnerability indices were calculated separately for each domain, namely, the vulnerability to infection, case severity, and likelihood of death from COVID-19. The three domains were then averaged to produce the overall COVID-19 vulnerability index. Given that COVID-19 is a new virus, there is a lack of evidence for assigning weights for each indicator. Hence, equal weight was given to all indicators when calculating the arithmetic mean for the vulnerability indices. However, we also used principal component analysis (PCA) and geometric mean methods, which produced broadly similar results (Supplemental Figure 2 and Supplemental Figure 3). The risk maps were then created separately for infection, case severity, service preparedness, and death from the composite index using geostatistical tools in ArcGIS. All data transformations were performed in R³¹. All items included in this study are available in the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) Statement checklist (Supplemental Table 1).

271 Ethics aspects: Ethical approval was not required for this study as it was based on publicly272 available data.

Patient and public involvement: This research was done without patient and public

274 involvement.

Funding: There was no funding source for this study.

Results

277 Vulnerability to COVID-19 infection

Figure 3 shows the vulnerability map of COVID-19 infection in Ethiopia. The map highlights that most parts of the country are likely to have a relatively high vulnerability and be at substantial risk for COVID-19 infection. Most parts of the country are identified as vulnerable to COVID-19 infection, with the exception of Addis Ababa and the north-western Somali region. The peripheral areas of the country bordering Djibouti, Somalia, Eritrea, and South Sudan appeared to be vulnerable to COVID-19 infection. These outlying areas are characterised by a low level of geographical connectivity and low scores for disease knowledge, hand hygiene and socio-economic indices (Supplemental Figure 4). They also have certain climatic factors that were found to be important indicators of COVID-19 transmission.

287 Vulnerability to severe cases of COVID-19 infection

Areas across the Amhara region and most parts of the Oromia region are likely to experience severe forms of COVID-19 that require hospitalisation and ICU admission. Some parts of the SNNPR are also expected to be at high risk of severe COVID-19 infections. The combination of demographic (high proportion of older adults), comorbidity (high prevalence of hypertension, DM, obesity, HIV, and TB), and behavioural and economic indicators (high proportion of smokers and high level of alcohol and khat consumption, interior cooking, and solid fuel use) renders these parts of the country at a higher risk of severe forms of COVID-19. Figure 4 shows the levels of vulnerability to severe forms of COVID-19.

9 296 Vulnerability to death from COVID-19

People living around border areas in Ethiopia are at a high risk for COVID-19-related death, as illustrated in Figure 5. Districts and zones in the Benishangul-Gumuz, Gambela, Afar, SNNPR, Dire Dawa, Southwest Somali, Northwest Amhara, Western Tigray, and Western and Eastern Oromia regions are at high risk for COVID-19-related death. The level of service preparedness and readiness to mitigate the health effects of COVID-19 appear to be very low in these regions (Figure 6). Ethiopia's border regions have inadequate ICU availability and laboratory capacity as well as limited health care access. They also have low general and service-specific readiness, as shown in Figure 6.

Discussion

This is the first study that maps vulnerability to COVID-19 infection, severe cases, and associated death in Ethiopia at a high resolution. This is also the first study that has attempted to present the degree of service preparedness for COVID-19 across the country.

We found that most parts of the country are vulnerable to COVID-19 infections, and the greatest burden might be outside of Addis Ababa. It is likely that compared to other regions, a higher proportion of people from the Amhara and Oromia regions, the two most populous regions of the country, will develop severe forms of COVID-19 leading to hospitalisation and ICU admission. Border areas of the country are also expected to face a higher risk of death than areas located in the central regions. The findings of this study are of paramount importance in preventing and controlling COVID-19 transmission and in designing targeted interventions, such as enacting travel restrictions, distributing preventative masks and determining which areas to prioritise if a COVID-19 vaccine becomes available. As some of these areas also have lower preparedness scores and low general and service-specific readiness scores, the findings

Page 13 of 35

BMJ Open

have wider implications for allocating resources and strengthening the health care system after the COVID-19 pandemic.

Despite the disproportionately high infection rate in Addis Ababa at present (Supplemental Figure 5), we found that the risk of COVID-19 infection is likely to become rather high in other regions. The high infection rate in Addis Ababa at this initial stage is expected, given that Addis Ababa is a major travel hub and Bole International Airport, located in the city, is one of the largest international airports in Africa. This exposes the city to a higher risk of imported cases and, subsequently, to an early surge of infections, leaving the areas outside the city at a higher risk of later infection. Second, we considered multifaceted risk factors (indicators) for COVID-19 infection in our geospatial model. This means that although the city has a high degree of connectivity, it is also characterised by higher scores for information penetration, knowledge of disease prevention and hand hygiene practices that could help slow the rate of infection in the city ¹². Third, Addis Ababa has relatively better and more consistent test-and-contact tracing practices than in other parts of the country, which means that the chance of new infections being detected in the city are much greater than in other parts of the country ⁵. Future efforts to expand testing and tracing practices in other areas of the county are likely to increase the extent of confirmed infections in those other areas. Recent studies have demonstrated that effective social distancing and contact tracing can significantly reduce the rate of infection ^{32,33}. These interventions should be strengthened and expanded to areas identified as high risk in this study.

Our study also showed that the risk for severe cases of COVID-19 infection is high in most parts of the Amhara and Oromia regions. This may be due to the high prevalence of NCDs, which are associated with severe cases of COVID-19. Previous studies have revealed that the burden of NCDs, such as DM and hypertension, is high in these two regions ^{23,34,35}.

Our study also revealed that peripheral areas sharing international borders are likely to see a greater number of COVID-19-related deaths. The high risk of death along the border areas might be attributed to low preparedness in case management and weak health care systems. In contrast, although the Amhara and Oromia regions may have more severe cases, the preparedness indicators show that the regions are better equipped to cope with these anticipated severe cases. However, our study suggests that additional preparation and capacity strengthening are needed mainly in the following areas: emergency response systems, case detection and capacity to care for patients. It is also equally important that hospitals have adequate supplies, health care personnel and life-saving medical intervention resources.

BMJ Open

Despite encouraging efforts by the Ethiopian government and stakeholders to prepare the health care system for the pandemic, the existing health care services in the country may face unprecedented challenges and crises due to the surge of patients that will require hospitalisation and ICU services at the same time. This can, however, be eased by implementing public health and social measures at the individual, community, and public authority levels to prevent infections and subsequent health, economic, and social consequences ³⁶. Studies have shown that implementing non-pharmaceutical interventions such as physical distancing, mask use, and closure of schools, especially during the early stages of infection, can reduce transmission and subsequent potential public health and economic crises ³⁷.

Further, we found notable regional disparities in health system preparedness and readiness levels in the country. This is important because if the health care system is well equipped to prevent and mitigate the spread of the pandemic, then the mortality rate from the disease can be markedly reduced ³⁸. However, we observed that Ethiopia's border regions (i.e., Benishangul-Gumuz, Gambella, Afar, and Somali) have low preparedness levels. Nevertheless, comparisons between the border regions and other regions of the country need to be treated with care because Ethiopia in general has very low doctor-to-resident (1 doctor per 10,000 people) and hospital bed-to-population (3 hospital beds per 10,000 people) ratios ³⁹. Several long-, medium- and short-term strategies, can be implemented to mitigate these problems: (i) providing short-term training for potential actors such as community leaders, students, and traditional and modern medical practitioners, (ii) recruiting additional staff to work in COVID-19-related health care, (iii) establishing COVID-19 clinics and changing outpatient rooms to emergency clinics, (iv) collaborating with private hospitals ahead of surges so that they can be used in the case such surges occur, and (v) establishing mobile clinics and temporary admission rooms in highly vulnerable areas.

Strength and Limitations

This study has several strengths. First, the current study was conducted at a spatial resolution of 1 km x 1 km across the entire territory of Ethiopia. Second, it incorporated a wide range of indicators from multiple sources. Third, it applied rigorous geospatial techniques, including spatial autocorrelation, kriging and semivariograms, to provide the best possible prediction maps. Finally, we produced vulnerability mapping for infection or transmission, case severity, and associated death separately to assist with policy interventions related to each risk.

Page 15 of 35

BMJ Open

However, it is important to note some potential limitations of the study when interpreting the findings. First, the results need constant updating, as some of the variables used in the study may change overtime. Second, the data used in this study were not collected in the same year and the results might be changed if recently available data were used in the analysis. However, many of the variables used in this study were static and may not change over time. Moreover, we used the most recently available data for non-static variables such as EDHS data. Third, ongoing political turmoil in the country means that the dynamics of transmission may change depending on the location and severity of these incidents. For example, in areas of low security resulting from active conflict, the local health systems might be ill-prepared to prevent and control COVID-19. Insecurity also may generate unpredictable population movements, and this in turn could exacerbate infection dynamics in the country. Fourth, the calculation of the composite risk factor index was based on an unweighted average under the assumption that all indicators have equal importance, which may or may not be the case. Some of the variables included in our score may have greater effects on vulnerability to infection, case severity, and likelihood of death than others. Giving equal weight for all these variables may influence the findings of our study, but the exact effect is hard to tell. However, we have calculated a weighted index using PCA as an alternative method, which produced broadly similar results (Supplemental Figure 2 and Supplemental Figure 3). Last, some important indicators, such as psychosocial and clinical factors (e.g., mental illness, quality of life, and social support), were not captured in our modelling due to the lack of geocoded data.

402 Conclusions

Although nearly three-quarters of the current COVID-19 cases reported in Ethiopia are concentrated in and around Addis Ababa, this study predicts that over time, the risk of COVID-19 infection will be higher across most other parts of the country. A higher proportion of people from the Amhara region, most of the Oromia region, and some parts of the SNNPR will develop severe cases of infection. Additionally, the risk of death will be higher in the regions of the country with low preparedness scores for COVID response. Hence, the preventative and control measures that are currently in place in the capital city should be strengthened and extended to regional areas, especially to high-risk areas, to prevent and mitigate the risk of COVID-19 infection, lower the number of severe cases, and limit the number of associated deaths in Ethiopia.

Declaration

Authors' contributions

KAA, YAG, YK, DMF, DNK, YAM, HAG, MB, MDM, AAA, and BAD conceptualised the study. KAA designed and run the geospatial analysis. YAG involved in the data analysis. KAA, YAG, DMF, DNK, and YAM drafted the manuscript. HAG, MB, AAA1, MDM, BAD, SA, AA, AAA₂, WMB, KTG, TG, ATG, LGG, AG, HTK, GDK, CTL, LBM, AAM, HM, HGT, AGT, FT, BLW, and YK Critically reviewed and revised the drafted manuscript. KAA, YK, and AHM were responsible for quality control of accuracy and integrity of data. All the authors interpreted the data. All authors contributed to the final draft and finally approved it to be published. All authors agreed to be accountable for all aspects of the work for any issue related to the accuracy or integrity of any part of the work. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: There is no funding source for this study.

Competing interests: None declared.

Patient and public involvement: This research was done without patient and public involvement.

Data availability statement: Extra data is available by emailing the corresponding author (KAA): kefyalew.alene@curtin.edu.au

Figures

Figure 1: Indicators for the vulnerability of COVID-19 infection, severity, service, preparedness, and related death. DM: diabetes mellitus, BMI: body mass index, CVD: cardiovascular disease prevalence; TB: tuberculosis; HIV: Human immunodeficiency virus; ICU: intensive care unit; CRD: cardiorespiratory diseases

- Figure 2: Rectangular polygon (fishnet), fishnet centroids, and raster mask covering the whole territory of Ethiopia.
- Figure 3. Vulnerability map to COVID-19 infection in Ethiopia.

Figure 4. Vulnerability map to COVID-19 severity in Ethiopia.

- Figure 5. Vulnerability map to death from COVID-19 in Ethiopia.
- Figure 6. Vulnerability map to service preparedness for COVID-19 in Ethiopia.

1	
2	
3	

3 References 443 4 Yang P, Wang X. COVID-19: a new challenge for human beings. Cellular & 444 5 1. 6 molecular immunology 2020; 17(5): 555-7. 445 7 Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta bio-medica: 446 2. 8 Atenei Parmensis 2020; 91(1): 157-60. 447 9 WHO. Coronavirus disease (COVID-19): situation report, 195. 2020. 448 3. 10 Gilbert M, Pullano G, Pinotti F, et al. Preparedness and vulnerability of African 449 4. 11 countries against importations of COVID-19: a modelling study. *The Lancet* 2020; 450 12 395(10227): 871-7. 13 451 14 Baye K. COVID-19 prevention measures in Ethiopia: Current realities and prospects: 452 5. 15 453 Intl Food Policy Res Inst; 2020. 16 454 Ji Y, Ma Z, Peppelenbosch MP, Pan Q. Potential association between COVID-19 6. 17 mortality and health-care resource availability. The Lancet Global Health 2020; 8(4): e480. 455 18 Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug 456 7. 19 therapy, and mortality in COVID-19. New England Journal of Medicine 2020. 457 20 ACSS. Mapping Risk Factors for the Spread of COVID-19 in Africa: Africa Center 21 458 8. 22 for Strategic Studies, 2020. 459 23 UN. Department of Economic and Social Affairs. Population Division, 2019. 9. 460 24 Workie NW, Ramana GN. The health extension program in Ethiopia. 2013. 461 10. 25 Areas GA. GADM database of global administrative areas. *Global Administrative* 11. 462 26 Areas 2012. 463 27 12. CSA. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and 28 464 29 Rockville, Maryland, USA, 2016. 465 30 Tatem AJ. WorldPop, open data for spatial demography. Scientific data 2017; 4(1): 1-466 13. 31 467 4. 32 14. Weiss DJ, Nelson A, Gibson H, et al. A global map of travel time to cities to assess 468 33 inequalities in accessibility in 2015. Nature 2018; 553(7688): 333-6. 469 34 470 15. ICF. The DHS Program Spatial Data Repository. 2018. 35 Ayenew B, Yitayew M, Pandey D. Challenges and opportunities to tackle COVID-19 36 471 16. 37 spread in Ethiopia. Journal of Peer Science 2020; 2(2). 472 38 17. Bank W. Ethiopia Roads. 2014. 473 39 Zhong B-L, Luo W, Li H-M, et al. Knowledge, attitudes, and practices towards 18. 474 40 COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: 475 41 476 a quick online cross-sectional survey. International journal of biological sciences 2020; 42 **16**(10): 1745. 477 43 Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-44 19. 478 45 based mitigation measures influence the course of the COVID-19 epidemic? The Lancet 479 46 2020; 395(10228): 931-4. 480 47 20. Xiao Y, Torok ME. Taking the right measures to control COVID-19. The Lancet 481 48 Infectious Diseases 2020; 20(5): 523-4. 482 49 483 21. Testino G. Are patients with alcohol use disorders at increased risk for Covid-19 50 infection? Alcohol and Alcoholism (Oxford, Oxfordshire) 2020. 484 51 Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A 52 485 22. 53 486 systematic literature review and meta-analysis. Journal of Infection 2020. 54 23. EPHI. Ethiopia STEPS report on risk factors for chronic non-communicable diseases 487 55 and prevalence of selected NCDS. Addis Ababa, 2016. 488 56 489 24. EPHI. Ethiopia Service Availability and Readiness Assessment (SARA) Final Report. 57 490 . Addis Ababa, 2018. 58 Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for 59 491 25. 60 492 global land areas. International journal of climatology 2017; 37(12): 4302-15.

BMJ Open

1

2 3 26. Burrough P. GIS and geostatistics: Essential partners for spatial analysis. 493 4 Environmental and ecological statistics 2001; 8(4): 361-77. 494 5 Childs C. Interpolating surfaces in ArcGIS spatial analyst. ArcUser, July-September 495 27. 6 2004; 3235(569): 32-5. 496 7 28. Negreiros J, Painho M, Aguilar F, Aguilar M. Geographical information systems 497 8 principles of ordinary kriging interpolator. Journal of Applied Sciences 2010; 10(11): 852-67. 9 498 10 29. Patro S, Sahu KK. Normalization: A preprocessing stage. arXiv preprint 499 11 500 arXiv:150306462 2015. 12 Moore M, Gelfeld B, Okunogbe A, Christopher P. Identifying future disease hot 501 30. 13 spots: infectious disease vulnerability index: Rand Corporation; 2016. 502 14 Team RC. R: A language and environment for statistical computing [Internet]. Vienna 503 31. 15 (Austria): R Foundation for Statistical Computing [cited 2019 Aug 8]. 2020. 504 16 17 505 32. Siraj DS, Siraj AS, Mapes A. Early estimates of COVID-19 infections in small, 18 506 medium and large population clusters. *medRxiv* 2020. 19 Getaneh Y, Yizengaw A, Adane S, et al. Global lessons and Potential strategies in 507 33. 20 combating COVID-19 pandemic in Ethiopia: Systematic Review. medRxiv 2020. 508 21 509 34. Tesfaye TD, Temesgen WA, Kasa AS, Yismaw YS. Prevalence and associated factors 22 of hypertension in Amhara regional state city and its' surrounding rural districts: a 23 510 community-based cross-sectional study. African Health Sciences 2019; 19(3): 2580-90. 24 511 25 35. Kibret KT, Mesfin YM. Prevalence of hypertension in Ethiopia: a systematic meta-512 26 analysis. Public Health Reviews 2015; 36(1): 1-12. 513 27 Hartley DM, Perencevich EN. Public health interventions for COVID-19: emerging 514 36. 28 evidence and implications for an evolving public health crisis. Jama 2020; 323(19): 1908-9. 515 29 Pan A, Liu L, Wang C, et al. Association of public health interventions with the 516 37. 30 epidemiology of the COVID-19 outbreak in Wuhan, China. Jama 2020; 323(19): 1915-23. 517 31 32 38. Stafford N. Covid-19: Why Germany's case fatality rate seems so low. Bmj 2020; 518 33 369. 519 34 39. Organization WH. Density of physicians (total number per 1000 population, latest 520 35 available year). Global Health Observatory (GHO) data 2017. 521 36 Williamson E, Walker AJ, Bhaskaran KJ, et al. OpenSAFELY: factors associated 522 40. 37 with COVID-19-related hospital death in the linked electronic health records of 17 million 523 38 524 adult NHS patients. medRxiv 2020. 39 40 Ahmadi M, Sharifi A, Dorosti S, Ghoushchi SJ, Ghanbari N. Investigation of 525 41. 41 effective climatology parameters on COVID-19 outbreak in Iran. Science of The Total 526 42 527 Environment 2020: 138705. 43 528 42. Ahmad K, Erqou S, Shah N, et al. Association of Poor Housing Conditions with 44 COVID-19 Incidence and Mortality Across US Counties. medRxiv 2020. 529 45 Ho FK, Celis-Morales CA, Gray SR, et al. Modifiable and non-modifiable risk factors 43. 530 46 for COVID-19: results from UK Biobank. medRxiv 2020. 47 531 48 Zheng R, Xu Y, Wang W, Ning G, Bi Y. Spatial transmission of COVID-19 via 532 44. 49 public and private transportation in China. Travel Medicine and Infectious Disease 2020. 533 50 Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of 45. 534 51 the 2019 novel coronavirus (COVID-19) outbreak. Science 2020; 368(6489): 395-400. 535 52 Holtmann M, Jones M, Shah A, Holtmann G. Low ambient temperatures are 46. 536 53 associated with more rapid spread of COVID-19 in the early phase of the endemic. 537 54 55 Environmental Research 2020. 538 56 Sobral MFF, Duarte GB, da Penha Sobral AIG, Marinho MLM, de Souza Melo A. 539 47. 57 540 Association between climate variables and global transmission oF SARS-CoV-2. Science of 58 *The Total Environment* 2020; **729**: 138997. 541 59 60

1		
2		
3	542	48. Wang J, Tang K, Feng K, Lv W. High temperature and high humidity reduce the
4 5	543	transmission of COVID-19. Available at SSRN 3551767 2020.
6	544	49. Li J, Zhang L, Ren Z, Xing C, Qiao P, Chang B. Meteorological factors correlate with
7	545	transmission of 2019-nCoV: Proof of incidence of novel coronavirus pneumonia in Hubei
8	546	Province, China. <i>medRxiv</i> 2020.
9	547	50. Basker GV. A review on hazards of khat chewing. Int J Pharm Pharm Sci 2013; 5(3):
10	548	74-7.
11	549	51. Lopes H, McKay V, de Cima P. ADULT LEARNING EDUCATION AS A TOOL
12	550	TO CONTAIN PANDEMICS: THE COVID-19 EXPERIENCE.
13	551	52. Ayedee N, Manocha D. Role of Media (Television) in Creating a Positive
14 15	552	Atmosphere in COVID-19 during Lockdown in India. <i>Role of Media (Television) in Creating</i>
15 16	553	a Positive Atmosphere in COVID-19 during Lockdown in India (May 19, 2020) 2020.
17	554	53. Wood CS, Thomas MR, Budd J, et al. Taking connected mobile-health diagnostics of
18	555	infectious diseases to the field. <i>Nature</i> 2019; 566 (7745): 467-74.
19		
20	556	, , , , , ,
21	557	Disease control priorities in developing countries 2006; 2 : 331-70.
22	558	55. WHO. Water, sanitation, hygiene, and waste management for the COVID-19 virus:
23	559	interim guidance, 23 April 2020: World Health Organization, 2020.
24 25	560	56. WHO. Infection prevention and control guidance for long-term care facilities in the
25 26	561	context of COVID-19: interim guidance, 21 March 2020: World Health Organization, 2020.
20	562	57. WHO. WHO Releases Guidelines to Help Countries Maintain Essential Health
28	563	Services During the COVID-19 Pandemic. Geneva, Switzerland: World Health Organization;
29	564	2020.
30	565	58. Murthy S, Gomersall CD, Fowler RA. Care for critically ill patients with COVID-19.
31	566	Jama 2020; 323 (15): 1499-500.
32	567	59. Tadolini M, Codecasa LR, García-García J-M, et al. Active tuberculosis, sequelae and
33	568	COVID-19 co-infection: first cohort of 49 cases. European Respiratory Journal 2020.
34 35	569	
36	209	
37	570	
38		
39	571	
40	F70	
41	572	
42	573	
43 44	0,0	
44	574	
46		
47	575	
48	576	
49	570	
50	577	
51		
52 53	578	
55 54	E 70	
55	579	
56	580	
57		
58	581	
59	F03	
60	582	

1			
2			
3 4	583		
5 6	584		
7	585		
8			
9	586		
10			
11	587		
12			
13	588		
14			
15	589		
16	500		
17	590		
18	F01		
19	591		
20	592		
21	392		
22	593		
23	555		
24	594		
25	551		
26		Tables	
27	595		

Table 1: Data sources and definitions of indicators for the vulnerability of COVID-19 in Ethiopia.

Indicators	-				
¹	Data	Spatial	Definitions		
27	sources	resolution			
Demographic indicators	5				
Male sex	EDHS 2016	Latitude and	Total number of male populations divided by the total		
35		longitude	number of people participated in the survey		
36		point			
3 Older age	EDHS 2016	Latitude and	Total number of people with age >=65 years divided by		
38		longitude	the total number of people participated in the survey		
39		point			
4Socio-economic indicato	ors				
⁴ Population density	WorldPop	1 km X 1 km	Number of people per square kilometre (grid)		
	EDHS 2016	Latitude and	Average number of people living in a house		
⁴³ members		longitude			
44		point			
Low wealth index	EDHS 2016	Latitude and	Number of people with low wealth index (poorer and		
47		longitude	poorest) divided by the total number of people		
48		point	participated in the survey		
Connectivity indicators					
50Travel times to cities	MAP	1 km×1 km	Travel time in minutes to the nearest city with a		
51			population of more than 50,000		
5P roximity to national	DHS Spatial	Latitude and	The geodesic distance to the nearest international		
53borders	Repository	longitude	borders		
54		point			
5	World Bank	District	Distance in km to cross-country round		
54 oads					
Climatic indicators	⁵⁷ Climatic indicators				
Mean temperature	WorldClime	1 km×1 km	Annual mean environmental air temperature (°C)		
	WorldClime	1 km×1 km	Annual mean rainfall (mm)		

2			
⁸ Wind speed	WorldClime	1 km×1 km	Annual mean wind speed (m s ⁻¹)
Solar radiation	WorldClime	1 km×1 km	Annual mean solar radiation (kJ m ⁻² day ⁻¹)
Water vapour pressure	WorldClime	1 km×1 km	Annual mean water vapour pressure (kPa), equivalent
7			to absolute humidity.
8 Behavioural indicators	1	1	1
Khat chewing	EDHS 2016	Latitude and	Total number of people chewing khat in the last one
10		longitude	month prior to the survey divided by the total number
11		point	of people participating in the survey
Alcohol drinking	EDHS 2016	Latitude and	Total number of people drinking alcohol in the month
3 4		longitude	prior to the survey divided by the total number of
-		point	people participating in the survey
Cigarette smoking	EPHI	Latitude and	Total number of people currently smoke cigarettes
7	STEPS	longitude	divided by the total number of people participating in the
8		point	survey
Cooking inside the	EDHS 2016	Latitude and	Total number of households where cooking takes place
household		longitude	inside the house without a separate building or
21		point	outdoors (i.e. exposure to smoke inside the home)
2		T	divided by the total number of households in the survey
Use solid fuel for	EDHS 2016	Latitude and	Number of households used some type of solid fuel
24cooking		longitude	(wood, dung, grass, crop) for cooking food divided by
25		point	all households in the survey
Disease prevention know			
Adult illiteracy rate	EDHS 2016	Latitude and	Total number of adults (aged 15 years and above) who
18 19		longitude	had not attended school or who cannot read and write
80		point	divided by the total number of adults participated in the
		T ('(1 1	survey
Access to listen to the $\frac{3}{2}$	EDHS 2016	Latitude and	Total number of people who had not access to listen to
adio		longitude	the radio divided by total survey participants
A access to wetch TV	EDHS 2016	point Latitude and	Total gumb an of google have go access to watch
Access to watch TV	EDIIS 2010	longitude	Total number of people have no access to watch television divided by total survey participants
6		•	television divided by total survey participants
37 Mohilo nhono	EDHS 2016	point Latitude and	Total number of people have no access to mobile phone
Mobile phone	ED115 2010		divide by the total number of survey participants
gownership		longitude point	divide by the total number of survey participants
10 IKnowledge toward	EDHS 2016	Latitude and	Number of people with poor knowledge towards HIV
AHIV	ED115 2010	longitude	divided by the total number of people participating in
3		point	the survey
Hand hygiene indicato	urs	point	
⁵ Travel time to water	EDHS 2016	Latitude and	Mean travel time in minutes to obtain water source (i.e.
		longitude	access to a water source)
46 Sources 17		point	
Place for handwashing	EDHS 2016	Latitude and	Number of households have no fixed or mobile place
		longitude	for handwashing divided by total number of households
50		point	in the survey
Soap or detergent	EDHS 2016	Latitude and	Number of households have no essential handwashing
availability for		longitude	agents (i.e. soap, and detergent) divided by total
jandwashing		point	household in the survey
Comorbidities indicate	ors		
6HTN	EPHI	Latitude and	Total number of people with HTN divided by the total
57	STEPS	longitude	number of survey participants
58		point	hander of our top puriorpulity
59	1	L L 2	1

DM	EPHI	Latitude and	Total number of people with DM divided by the total
	STEPS	longitude point	number of survey participants
BMI	EPHI	Latitude and	Mean body mass index
	STEPS	longitude	
		point	
6CVD	EPHI	Latitude and	Total number of people with heart disease divided by
1	STEPS	longitude	total number of people in the survey
2		point	
Cholesterol	EPHI	Latitude and	Mean cholesterol level
4	STEPS	longitude	
5		point	
HIV prevalence	EDHS 2016	Latitude and	Total number of people with HIV divided by survey
7		longitude	participants
8		point	
TB SMR	ЕМОН	District	Standardized morbidity ratio (SMR) as measured by
20			observed number of TB cases divided by the expected
ו: ס			number of TB cases
Service availability an		icators	
Health care access	EDHS 2016	Latitude and	Difficulty of getting advice or treatment due to lack of
problem		longitude	money, or distance to a health facility
26		point	
General service	EPHI SARA	Latitude and	Availability of equipment and supplies (i.e. basic
s eadiness and		longitude	amenities, equipment, standard precautions, diagnostic
A vailability		point	capacity, essential medicines) necessary to provide
0			general health services
ICU availability	EPHI SARA	Latitude and	Availability of Critical Care Services (ICU) in hospitals
52		longitude	
3		point	
CRD readiness index	EPHI SARA	Latitude and	Availability of specific services for Chronic respiratory
5		longitude	disease (CRD) diagnosis, management, and follow up
6		point	
TB readiness index	EPHI SARA	Latitude and	Availability of specific services for tuberculosis
9 9		longitude	diagnosis, management, and follow up
		point	
Diabetes readiness	EPHI SARA	Latitude and	Availability of specific service for diabetes diagnosis
zindex		longitude	and management and follow up
1 2		point	

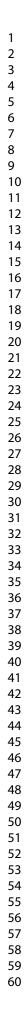
4G-Econ: Geographically based Economic data; EDHS: Ethiopia demographic and health survey; UN OCHA: 4United Nation Office for Coordination of Humanitarian Affairs; MAP: SRTM: Malaria Atlas Project; Shuttle 4Radar Topography Mission; EPHI: Ethiopia Public Health Institute: EMOH: Ethiopia Ministry of Health; 4TARA: Service Availability and Readiness Assessment

1

56 605 57 606

57 606 58 607

₅₉ 608


•		
2		
3	610	
4	611	
5	612	
6 7	613	
8	614	
9	615	
10	616	
11	617	
12	618	
13	619	
14	620	
15	621	
16	622	
17	623	
18	624	
19	625	
20	626	
21	627	
22 23	628	
23 24	629	
24 25	630	
26	631	
-27	632	Table 2: Evidence for risk of COVID-19 infection, severity, and death

-27 632 Table 2: Evidence for risk of COVID-19 infection, severity, and death					
27 632 Indicators	Risk	Evidence	References		
20	factors				
Demographic indicat	ors				
Jule sex	Severity	Death from and severity of COVID-19 was strongly associated with	Williamson E ⁴⁰		
32 33		being male (HR 1.99, 95%CI: 1.88-2.10)	····		
Alder age	Severity	Older than 65 years were risk factors for disease progression in patients	Zheng Z ²²		
35		with COVID-19 (OR =6.06, 95% CI: 3.98, 9.22)			
Socio-economic indic	ators				
Propulation density	Infection	High population density is a risk factor for COVID-19 infection	Ahmadi M ⁴¹		
3 8umber of	Infection	Areas with a higher percentage of households with more than one person	Ahmad K ⁴²		
Household members		per room had a higher incidence of COVID-19			
49ow wealth index	Infection	Socio-economic deprivation (RR 1.26 per SD increase in Townsend	Ho FK ⁴³		
41		Index) associated with COVID -19 infection			
Connectivity indicato	ors				
Travel times to cities	Infection	The distance between Wuhan and other cities was inversely associated	Zheng R ⁴⁴		
44		with the numbers of COVID-19 cases in that city			
Proximity to national	Infection	Cross country moment is a risk factor for COVID-19 transmission and	Chinazz M ⁴⁵		
porders		importation			
Agistance to major	Infection	Spread of COVID-19 was correlated positively with public transportation	Ayenew B ¹⁶ .		
49 ads		per capita			
Glimatic indicators					
Mean temperature	Infection	Low ambient temperatures are associated with more rapid spread of	Holtmann M ⁴⁶		
52		COVID-19			
Mean precipitation	Infection	Countries with higher rainfall measurements showed an increase in	Sobral MFF ⁴⁷		
54		COVID-19 transmission			
Wind speed	Infection	Areas with low values of wind speed associated with a high rate of	Ahmadi M ⁴¹		
56		COVID-19 infection			
Solar radiation	Infection	Areas with low values of solar radiation exposure associated with a high	Ahmadi M ⁴¹		
59 59		rate of COVID-19 infection			
~ ~					

1 2			
Water vapour pressure	Infection	High humidity reduces the transmission of COVID-19. Water vapour pressure negatively correctly with COVID-19 infection.	Wang J ⁴⁸ , Li J ⁴⁹
Behavioural indicato	ors		
Khat chewing	Severity	There is an association between khat chewing and chronic illness such as HIV infection, elevated diastolic blood pressure	Basker GV ⁵⁰
Alcohol drinking	Severity	Patients with alcohol use disorders at increased risk for COVID-19	Testino G ²¹
Gigarette smoking	Severity	Current smoking was a risk factor for disease progression in patients with COVID-19 (OR =2.51, 95% CI: 1.39, 3.32)	Zheng Z ²²
12 Ooking inside the 13 Dousehold	Severity	Areas with a higher percentage of incomplete kitchen facilities had a higher incidence of, and mortality associated with, COVID-19	Ahmad K ⁴²
Use solid fuel for booking	Severity	Areas with a higher percentage of incomplete kitchen facilities had a higher incidence of, and mortality associated with, COVID-19	Ahmad K ⁴²
D isease prevention k	nowledge in		
Adult illiteracy rate	Infection	Adult learning education is a tool to contain the COVID-19 pandemics	Lopes H ⁵¹
Access to listen to radio Access to watch TV	Infection	Access to media is a crucial factor in public health responses to an outbreak	Ayedee N ⁵²
20 21 21 22	Infection	Media (Television) has a significant role in creating a positive atmosphere in COVID-19	Ayedee N ⁵²
Mobile phone wwnership	Infection	Mobile phone calls and text messages help for the diagnosis, management, and control of infectious diseases	Wood S ⁵³
≱ snowledge towards ≱ 6IV	Infection	Knowledge towards an infectious disease such as HIV can help to control the transmission of the diseases	Bertozzi S ⁵⁴
Hand hygiene indica	tors		
Pravel time to water Sources	Infection	Adequate water supply is essential for the control of COVID-19 infection	WHO 55
Place for handwashing	Infection	Hand washing is recommended by WHO for the control of COVID-19 infection	WHO ⁵⁶
Soap or detergent availability for	Infection	Availability of soap or detergent is essential to keep hand hygiene for the prevention of COVID-19 infection	WHO ⁵⁶
handwashing	40.00		
Gomorbidities indica		Hypertension was statistically significant with a higher rate of servery and	Zheng Z ²²
38	Severity	death (OR = 2.72, 95% CI: 1.60,4.64)	C
39M 40	Severity	Death from COVID-19 was associated with DM (HR 1.50, 95%CI: 1.40- 1.60) 1.50	Williamson E ⁴⁰
49MI 42	Severity	Death from COVID-19 was associated with higher BMI (HR 1.27, 95%CI: 1.18-1.36)	Williamson E ⁴⁰
43 44 45	Severity	Cardiovascular disease was significantly associated with higher COVID- 19 servility and death (OR = 5.19, 95% CI: 3.25, 8.29)	Zheng Z ²²
45 HIV prevalence 47	Severity	Mortality from COVID-19 was associated with immunosuppression (HR 1.69, 95%CI: 1.21-1.34)	Williamson E ⁴⁰
-47 -48 ^B SMR -49	Severity	respiratory diseases were significantly associated with COVID-19 death and severity ($OR = 5.15, 95\%$ CI: 2.51, 10.57)	Zheng Z ²²
Service availability a	nd readines	s indicators	
51 Health care access problem	Death	Healthcare resource availability is associated with COVID-19 mortality	Ji Y ⁶
General service	Death	General health service preparedness is essential for combating the COVID-19 pandemic	WHO ⁵⁷
56 U availability	Death	Lack of critical care unite increase the risk of death from COVID-19	Murthy S ⁵⁸
17 RD readiness 58	Death	Cardiorespiratory disease (CRD) is a risk factor for COVID-19 related death	Zheng Z ²²
59B readiness	Death	TB determinants outcomes of patients with COVID-19	Tadolini M 59
Diabetes readiness	Death	Diabetes affects the prognosis of patients with COVID-19	Zheng Z ²²

1	
2	

Office EPH	G-Econ: Geographically based Economic data; EDHS: Ethiopia demographic and health survey; UN OCHA: United Nation Office for Coordination of Humanitarian Affairs; MAP: SRTM: Malaria Atlas Project; Shuttle Radar Topography Mission; EPHI: Ethiopia Public Health Institute: EMOH: Ethiopia Ministry of Health; SARA: Service Availability and Readiness Assessment		
7			
8	633		
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
22			
24 25			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
50 57			
58			
59			
60			

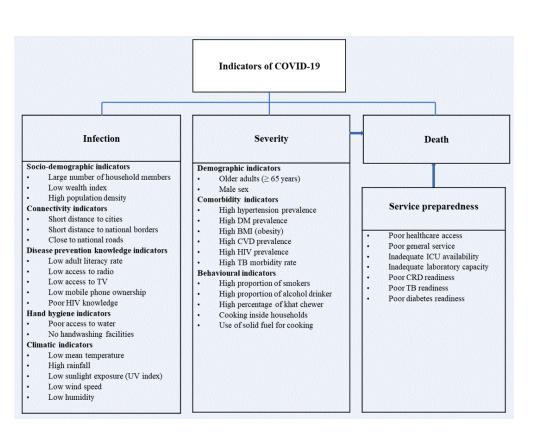
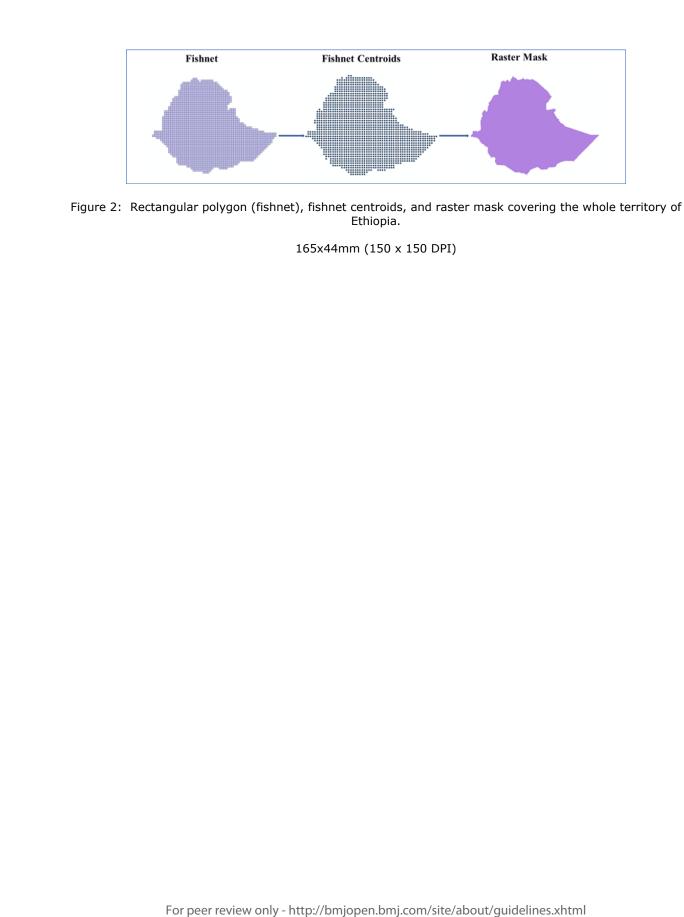
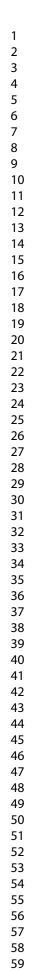
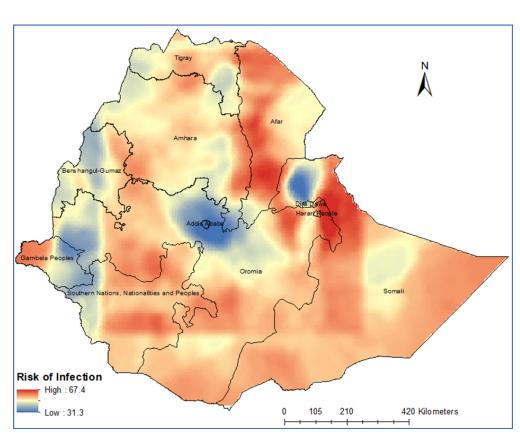
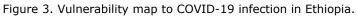
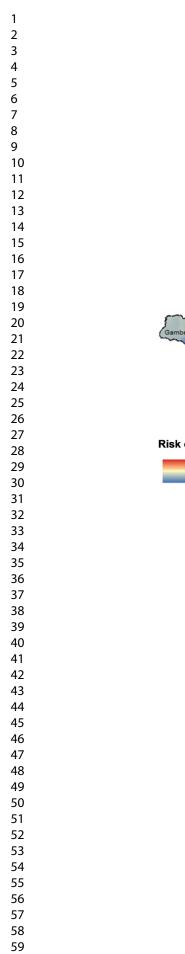






Figure 1: Indicators for the vulnerability of COVID-19 infection, severity, service, preparedness, and related death. DM: diabetes mellitus, BMI: body mass index, CVD: cardiovascular disease prevalence; TB: tuberculosis; HIV: Human immunodeficiency virus; ICU: intensive care unit; CRD: cardiorespiratory diseases



249x201mm (96 x 96 DPI)

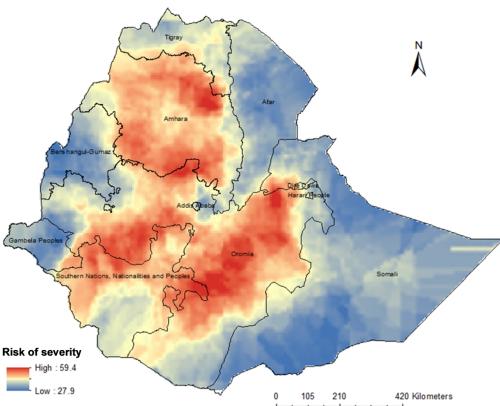
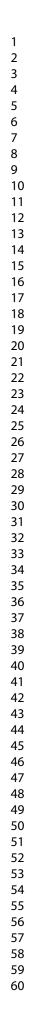
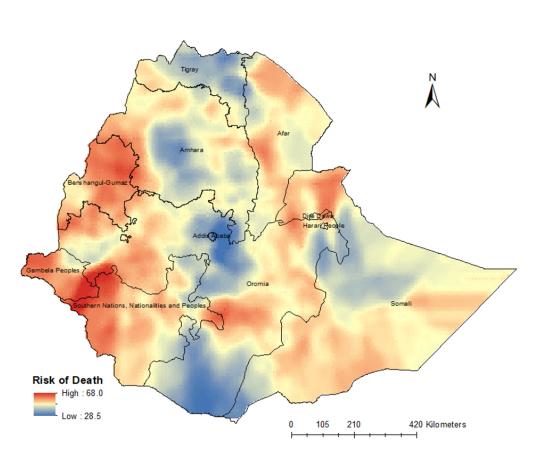
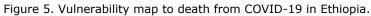
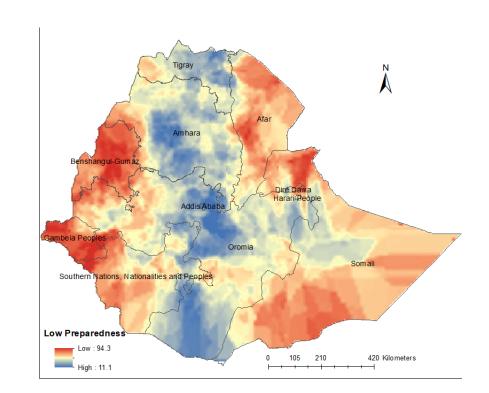
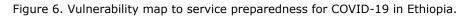
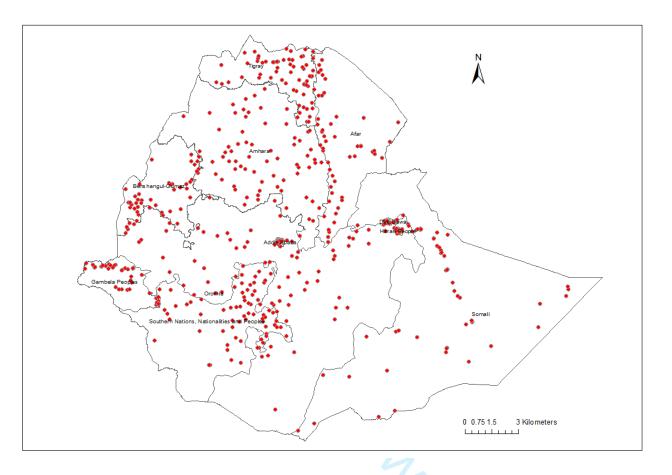
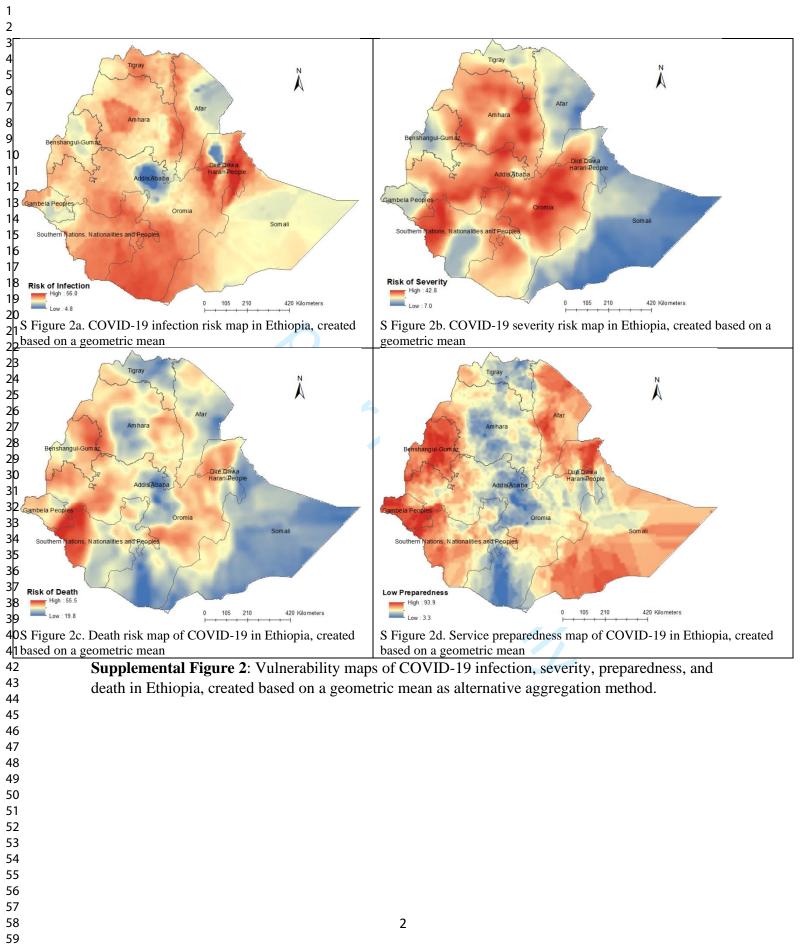





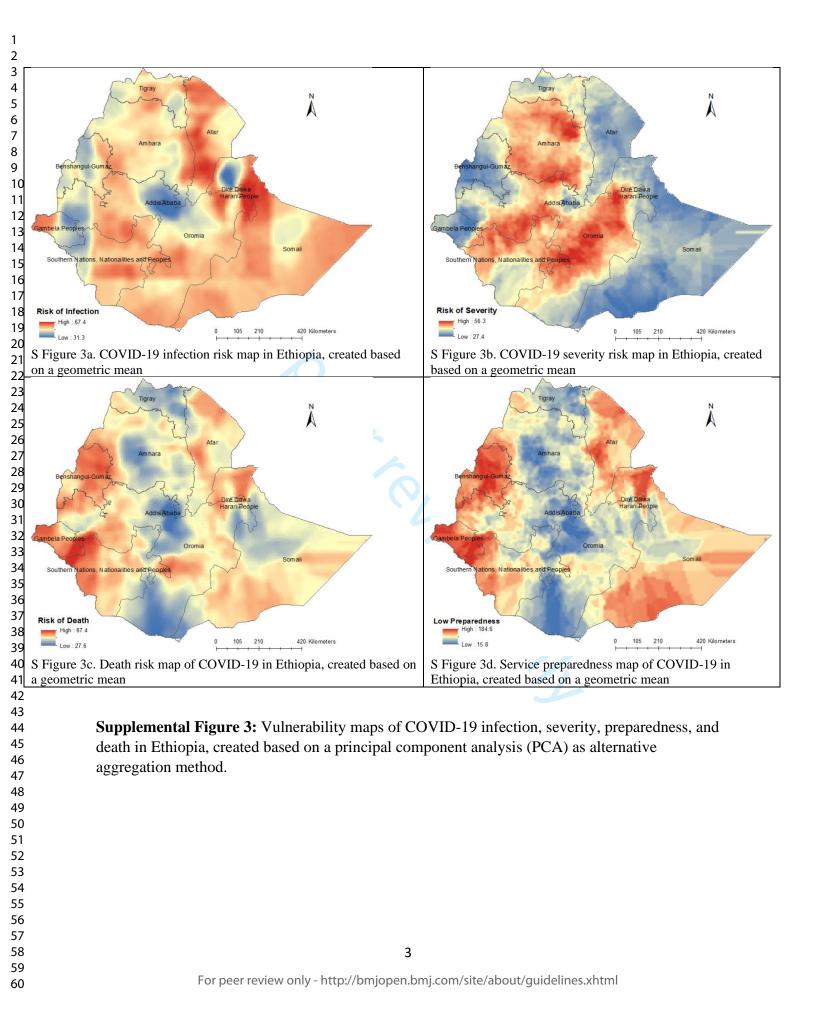
Figure 4. Vulnerability map to COVID-19 severity in Ethiopia.

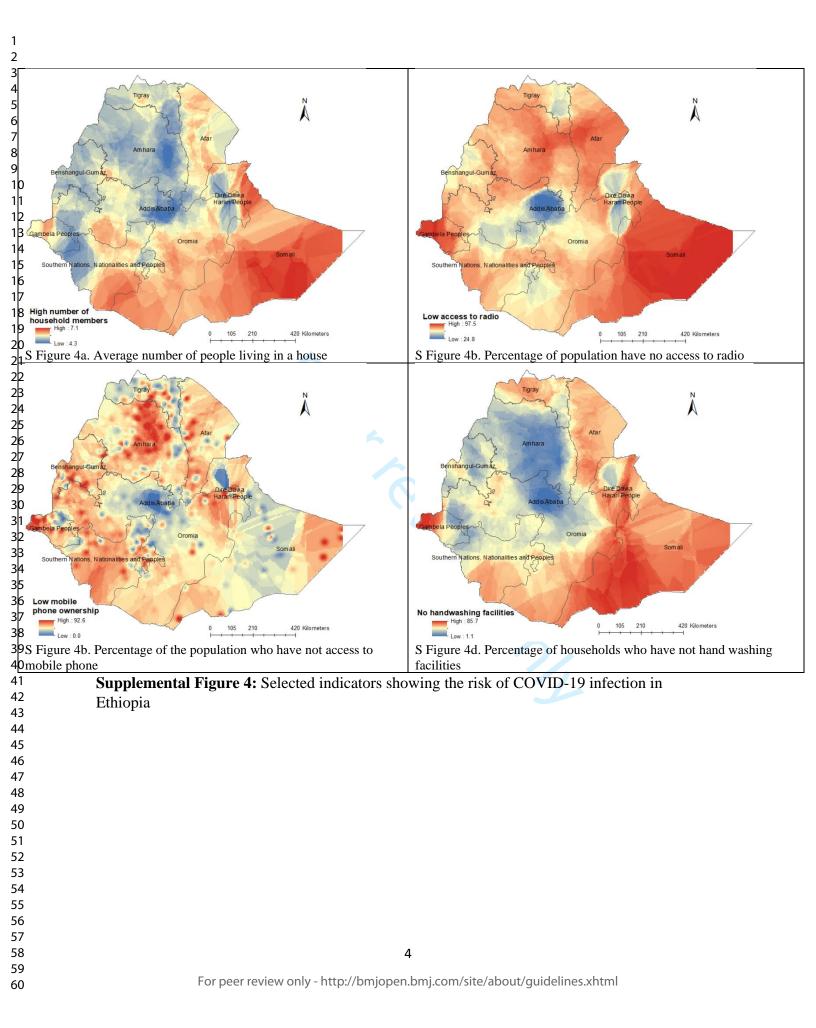

BMJ Open

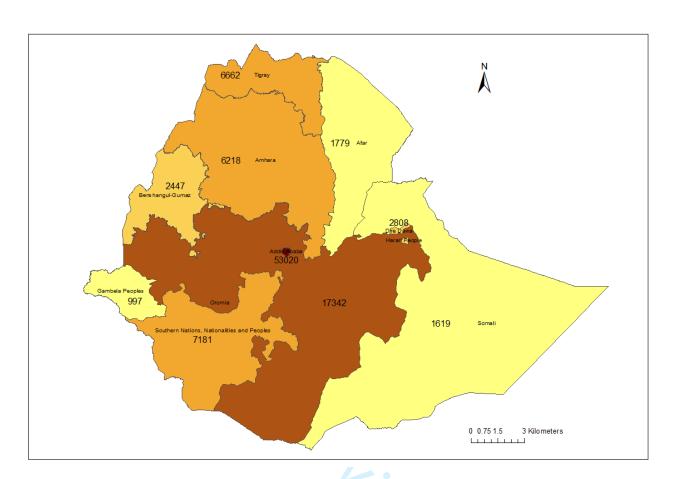



248x200mm (96 x 96 DPI)




210x296mm (96 x 96 DPI)


Supplemental Information



Supplemental Figure 1: A map showing the distribution of the Ethiopia Demographic and Health Survey (EDHS 2016) datapoints.

Supplemental Figure 5: Number of COVID-19 confirmed cases at regional level in Ethiopia on 15 November 2020.

	Item No	Recommendation	Page number
Title and abstract	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found 	1 3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods	4		6
Study design	4 5	Present key elements of study design early in the paper	6
Setting 5	-	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow- up, and data collection	6
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6,7 &8
Variables 8	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6, 7 &8
Data sources/	8	For each variable of interest, give sources of data and details of methods of assessment	6, 7, 8 &
neasurement	-	(measurement). Describe comparability of assessment methods if there is more than one group	Table 1
Bias	9	Describe any efforts to address potential sources of bias	9 NA
Study size	10	Explain how the study size was arrived at	NA 8.6.0
Quantitative Variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	8&9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8&9
6 7		(b) Describe any methods used to examine subgroups and interactions	8&9
		(c) Explain how missing data were addressed	8&9
8 9		(d) If applicable, describe analytical methods taking account of sampling strategy	NA
Results		(e) Describe any sensitivity analyses	9
Participants	13	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined	9 & 10
2 3		for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage	9 & 10
4		(c) Consider use of a flow diagram	Figure 1
Descriptive data	14	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on	Table 1
б	14	exposures and potential confounders	Tuble 1
7		(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data	15	Report numbers of outcome events or summary measures	9 & 10
9 Main results 0 1	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	NA
2 3		(b) Report category boundaries when continuous variables were categorized	NA
3 4		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses Discussion	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	9
Key results	18	Summarise key results with reference to study objectives	10
Limitations 9	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10-13
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information			
Funding 5	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	15

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml