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SUMMARY
CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and
tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors
(TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immuno-
therapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes
(PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME
not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophys-
ical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data
reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immuno-
genic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of
pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.
INTRODUCTION

The CD8+ T cell immune response is key to recognize and kill in-

fected and malignant cells. Over the last decade, the success of

cancer immunotherapy demonstrated that harnessing and

boosting CD8+ T-cell-mediated control and elimination of can-

cer cells is clinically relevant.1–4 A remaining central question is

why some peptides specifically expressed by infected or cancer

cells and displayed on class I human leukocyte antigen (HLA-I)

molecules are recognized by CD8+ T cells and elicit specific im-

mune responses while others do not, as the former provide ideal

targets for vaccines1,3,5 and T-cell-based therapies.2 Unfortu-

nately, even the latest machine learning epitope prediction tools

display low accuracy, with a precision typically around or lower

than 5% when applied to neo-epitope predictions from muta-

tions identified by exome sequencing in cancer.5–9

At the molecular level, CD8+ T cell recognition of peptide epi-

topes is based on a series of specific events.10 First, the peptide

is cleaved from the source protein by the proteasome, is trans-

ported into the endoplasmic reticulum (ER) and binds to HLA-I

molecules. HLA-I molecules bind 8- to 12-mer peptides, are
Cell Repo
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mainly encoded by three genes (HLA-A/B/C), and are highly poly-

morphic across the human population. Upon stable binding, the

peptide-HLA-I (pHLA) complex is presented on the surface of

cells. Second, the T cell receptor (TCR) can bind to the pHLA

complex, which initiates the formation of the immune synapse

and ultimately can lead to the killing of infected ormalignant cells.

Much work has been done to characterize the binding (either

affinity or stability) and presentation of peptides on HLA-I mole-

cules, and several HLA-I ligand predictors are publicly avail-

able.11–16 These tools primarily focus on binding to HLA-I, which

is the most selective and arguably the best understood step in

antigen presentation. Several approaches demonstrated further

improvement in predictions by integrating signals from cleavage

and antigen transport, presentation hotspots, gene expression

of the source protein, or clonality of the mutations for cancer

neo-epitopes.16–21 However, these additional features are not al-

ways experimentally available in typical studies of pathogen or

cancer epitopes, and some can be confounded by tumor purity

or sequencing protocols. Importantly, information about whether

the pHLA complexes are recognized by CD8+ T cells is typically

not included in the training of these tools.
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Less is known about the rules determining whether a pHLA

complex can be recognized by CD8+ T cells. In cancer neo-

epitope analyses, some studies observed that agretopicity,

defined as the ratio between the affinity for HLA-I of the mutated

and the wild-type (WT) peptide, has predictive power for immu-

nogenicity,8,22 especially when the mutations fall on anchor po-

sitions.23 Similarity to existing epitopes (also referred to as

foreignness) was also proposed as a way to improve selection

of neo-epitope candidates.8,19,24 Other studies considered

dissimilarity-to-self based on the hypothesis that mutated neo-

epitopes similar to unmodified peptides are less likely to elicit

T cell recognition due to central tolerance.25,26 However, it can

be challenging to properly define DisToSelf in the context of

TCR recognition.27 Studies focusing mainly on pathogens and

cancer testis antigens suggested that peptide hydrophobicity

plays a role in TCR recognition,28 although these results are

not fully consistent with those of other studies.29 Moreover,

these two approaches are not widely used in today’s class I

epitope prediction pipelines.

Improved predictions of immunogenicity, defined here as evi-

dence of recognition by some CD8+ T cells, will have several ap-

plications. From a clinical point of view, it will facilitate the devel-

opment of peptide-based T cell vaccines in infectious diseases

or personalized cancer immunotherapy.1,3,30 From a more

fundamental point of view, it can guide mechanistic understand-

ing of the molecular and biophysical determinants of TCR recog-

nition. Moreover, it could provide insight into immune pressure

acting on cancer mutations in human, a process often referred

to as immunoediting,31 by taking advantage of large cancer ge-

nomics datasets available from thousands of patients.32 Unfor-

tunately, both the limited accuracy of existing epitope predictors

and the difficulty of building in silico models fully capturing can-

cer mutagenesis processes in the absence of immune selection

make it challenging to use cancer genomics studies for analyzing

immunoediting in human tumors.33

Here, we capitalize on recent (neo-)epitope data to train a pre-

dictor of immunogenic epitopes (PRIME). Unlike studies mainly

focusing on HLA-I binding or antigen presentation,13,15–17,34,35

our approach is able to disentangle HLA-I binding from molecu-

lar TCR recognition propensity. This is accomplished by a careful

annotation and analysis of epitope residues with minimal impact

on binding to HLA-I molecules. Our results show that biophysical

properties of TCR-pHLA interactions can be learned in this way,

improve prediction of neo-epitopes, and lead to a better molec-

ular understanding of the molecular determinants of TCR recog-

nition. Looking at cancer genomics data, we observe that recur-

rent mutations tend to be less frequent in patients where they are

predicted to be immunogenic, demonstrating that PRIME pre-

dictions are consistent with immunoediting in human cancer.

RESULTS

Immunogenicity predictions beyond binding and
presentation on HLA-I molecules
To develop accurate immunogenicity prediction tools that cap-

ture biophysical aspects of TCR recognition, we compiled and

curated a dataset of 4,958 peptides derived from pathogens or

cancer testis antigens (1,153 immunogenic and 476 non-immu-
2 Cell Reports Medicine 2, 100194, February 16, 2021
nogenic) as well as cancer mutations (129 immunogenic and

3,200 non-immunogenic) that were experimentally tested for

immunogenicity in multiple studies in human (Figure 1A; STAR

methods; Table S1).36–46

Among mutated peptides tested in cancer neo-epitope

studies, we observed similar HLA-I allele coverage in the immu-

nogenic and non-immunogenic peptides (Figure 1B). As ex-

pected, the over-representation of HLA-A*02:01 epitopes was

stronger when including data from pathogens and cancer testis

antigens (Figure S1A). We also observed slightly more 9-mers

among immunogenic peptides (Figure S1B). This may be due

to the fact that longer peptides bulging out of the HLA-I binding

site could interfere with TCR binding, although we cannot

exclude that some studies reporting mainly immunogenic epi-

topes were restricted to 9-mers.

We then examined how existing predictors could distinguish

immunogenic from non-immunogenic mutated peptides in can-

cer neo-epitope studies. As expected, our results show that

neo-epitopes were enriched in peptides with better binding to

HLA-I predicted by either MixMHCpred,12 NetMHCpan15 with

eluted ligands (NetMHCpanEL) or binding affinity (NetMHC-

panBA) predictions, MHCflurry,13 HLAthena,16 or NetMHCstab-

pan14 (Figures 1C and S1C). This is the case even if most pep-

tides used in this benchmark, including the non-immunogenic

ones, had been preselected based on binding affinity predic-

tions. We next explored predictors related to antigen process-

ing, TCR recognition, or immune tolerance. The predicted cleav-

age (NetChop),47 the predicted antigen transport (TAP),48 and

the predicted immunogenicity (IEDB.imm)29 had limited power

to predict immunogenicity (Figure 1C). The ratio of binding affin-

ity between the mutant and the WT peptides did not reach sta-

tistical significance either, and the trend was mainly driven by

mutations observed at anchor positions, where the ratio corre-

lates most with the actual binding affinity (Figures S1D and

S1E). The dissimilarity-to-self (DisToSelf) (STAR methods)

demonstrated some statistical power to distinguish immuno-

genic from non-immunogenic cancer mutated peptides (Fig-

ure 1F). The recent method of Wells et al.8 (TESLA; STAR

methods) that combines antigen presentation with agretopicity

and peptide foreignness displayed similar enrichment as HLA-

I ligand predictors (Figure 1C) and similar precision (Figure S1F).

To explore other peptide-intrinsic properties that may be

important for TCR binding and recognition and avoid confound-

ing factors related to affinity to HLA-I, we annotated for each

HLA-I allele the positions in ligand sequences with minimal

impact on HLA-I affinity (referred to as MIA positions) and that

can potentially interact with the TCR (Figure 1D). To this end,

we capitalized on our set of curated HLA-I motifs.12 For every

allele, we selected specific positions between the fourth (P4)

and the second to last (PU-1) that displayed low specificity

(STAR methods; Table S2). The amino acid preferences at these

positions are much less influenced by the binding to HLA-I,

thereby preventing an important confounding factor when

analyzing TCR binding and recognition. These amino acid fre-

quencies were minimally correlated with predicted affinity to

HLA-I (Figure S1G). We then combined the predicted binding

to HLA-I (encoded as MixMHCpred �log(%rank)) with the fre-

quency of each amino acid at these positions (i.e., 1+20
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Figure 1. Immunogenicity predictions beyond binding and presentation on HLA-I molecules

(A) Summary of the data used to benchmark existing tools and develop our new immunogenicity predictor.

(B) Allelic coverage in the immunogenic and non-immunogenic mutated peptides tested in cancer neo-epitope studies for the 15 most frequent HLA-I alleles.

‘‘Other (n)’’ indicates the cumulative frequency of the n remaining HLA-I alleles.

(C) Ability of existing predictors to distinguish between immunogenic and non-immunogenic mutated peptides in cancer neo-epitope studies. The x axis shows

the p values of the Wilcoxon test between immunogenic and non-immunogenic peptides for the scores of each predictor (see Figure S1C).

(D) Graphical representation of the immunogenicity predictor combining affinity to HLA-I and TCR binding signals. PU stands for the position of last epitope

residue. Residues at MIA positions (P4 to PU�1 in this example with HLA-B*44:03) are shown in yellow, and other epitope residues are shown in blue. The HLA is

shown in gray and the TCR in light blue and light green.

(E)AUCandPRAUCvaluesof the 10-foldcross-validation (left), the leave-one-study-out cross-validation (middle), and the leave-one-allele-out cross-validation (right).

(F) AUC and PRAUC values obtained based on mouse neo-epitopes from Capietto et al.23
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dimensional vector) to train a predictor of immunogenic epitope

(PRIME) using a logistic regression (STAR methods; Figure 1D).

Peptides with a predicted binding to HLA-I higher than a

threshold T (T = 5% on %rank) were further given a score of

0 in the logistic regression, because they are very unlikely to

bind to HLA. The same thresholdingwas applied to the other pre-

dictors. 10-fold cross-validation (Figure S2A) for all mutated pep-

tides in neo-epitope studies demonstrated improvement with

PRIME compared to other predictors both in terms of area under

the receiver operative curve (AUC) and area under the precision-

recall curve (PRAUC) (Figure 1E). Standard cross-validation re-

sults can be artificially boosted by batch effects because

different peptides from the same study are found in both the

training and testing sets. To overcome this issue, we selected

the seven neo-epitope studies with at least five experimentally

validated positives and negatives and performed a leave-one-

study-out cross-validation (Figure S2A). Our results demon-

strated improved prediction accuracy with PRIME (Figure 1E;

Table S3). To exclude biases due to higher frequency of specific

HLA-I alleles, we performed a leave-one-allele-out cross-valida-

tion across the nine alleles with at least 5 experimentally vali-

dated positives and negatives in our neo-epitope dataset (Fig-

ure S2A). Here again, PRIME performed better than other tools

(Figure 1E; Table S3).

To further investigate the importance of both affinity to HLA

and amino acids at MIA positions, we trained PRIME only with

the frequencies of amino acids at MIA positions. The perfor-

mance was much lower (Figure S2B). We then attempted to

randomize the amino acids at MIA positions and retrained

PRIME on such data (STARmethods). Our results show that pre-

dictions became less accurate (Figure S2B).

We next investigated the effect of combining NetChop, TAP,

IEDB.imm, or DisToSelf with affinity to HLA-I (MixMHCpred). In

general, the combinations were better than the single predictors

but less accurate than PRIME with only one exception (AUC for

MixMHCpred combined with DisToSelf in the leave-one-allele-

out cross-validation; Figure S2C). When combining these four

different predictors with PRIME, we observed mainly similar or

lower performance, with again the exception of combining
4 Cell Reports Medicine 2, 100194, February 16, 2021
PRIME with DisToSelf in the leave-one-allele-out cross-valida-

tion (Figure S2D). Using the threshold on binding affinity or not

had limited impact on the performance of PRIME and HLA-I

ligand predictors but more impact on other predictors, as ex-

pected (Figure S2E).

We then asked whether PRIME could also be used for predict-

ing mouse neo-epitopes in the study of Capietto et al.,23 where

409 mutated peptides identified by exome sequencing have

been tested for immunogenicity. In terms of AUC, PRIME outper-

formed existing tools that can be used with mouse major histo-

compatibility complex (MHC) alleles. The difference with

NetMHCpanBAwasmodest, andNetMHCpanBA displayed bet-

ter PRAUC (Figure 1F), although this comparison may be biased

by the fact that the peptides experimentally tested in Capietto

et al. had been preselected based on binding affinity predictions

with NetMHCpan. MixMHCpred and HLAthena were not

included because mouse MHC alleles are not available with

these tools. Half-lives predicted by NetMHCstabpan were al-

ways lower than the 1.4h threshold derived in Wells et al.,8 pre-

venting us to compute AUC and PRAUC values for the TESLA

method.

In terms of computational efficiency, PRIME runs 10 times

faster than MHCflurry and from 10 to 1,000 times faster than

NetMHCpan and HLAthena (Figure 2). This makes it especially

appropriate to score large datasets of potential epitopes.
PRIME correlates with structural avidity
Given that PRIME is capturing determinants of TCR recognition

propensity, we hypothesized that it could also correlate with

structural avidity of CD8+ T cells, which is a more quantitative

measure of peptide immunogenicity.49 To this end, we used

proprietary fluorescence-activated cell sorting (FACS)-based

NTAmer technology to determine the monomeric pHLA-TCR

dissociation rate (half-life [t1/2]), a physical parameter correlated

with T-cell potency.50,51 We analyzed multiple CD8+ T cells

with distinct TCRs recognizing thirteen known epitopes,

including viral, tumor associated, and neo-epitopes (Figure S3A;

Table S4A; STAR methods). PRIME predictions were signifi-

cantly correlated with half-lives, while no significant correlation

could be observed with affinity, stability, cleavage, TAP, or

immunogenicity predictors (Figure 3). Significant correlations

could be seen with DisToSelf, although this analysis may be

influenced by the mixing of immunodominant pathogen epi-

topes with cancer epitopes, and the correlation mainly reflects

the separation between pathogen and cancer epitopes. Of

note, the ratio and the TESLA predictions were not included

because they can only be applied to neo-epitopes. The version

of PRIME trained without predicted affinity resulted in lower

performance (Figure S3B). We further measured the cytolytic

activity of T cell clones, recognizing eleven of the different epi-

topes by in vitro killing assay (EC50; STAR methods; Table

S4B). In this case, PRIME displayed higher correlation than

other predictors, although no tool reached statistical signifi-

cance (Figure S3C). Overall, our results indicate that PRIME

can be used to prioritize epitopes of high structural avidity,

which are most promising for vaccine design and personalized

cancer immunotherapy.
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PRIME reveals determinants of TCR recognition
To gain insights into the molecular mechanisms underlying the

improved predictions of immunogenicity with PRIME, we plotted

the coefficients of the logistic regression corresponding to amino

acids at MIA positions. We observed a striking correspondence

with biophysical properties of amino acids. In particular, the

three aromatic amino acids (W, F, and Y) showed the highest

values, followed by the three other most hydrophobic ones (V,

L, and I), whereas charged amino acids (especially R, K, and E)

as well as Q, which are characterized by long and charged/polar

sidechains, showed the opposite trend (Figure 4A). The same

pattern was observed when training PRIME with different affinity

predictors and a similar trendwas seenwhen excluding peptides

restricted to HLA-A*02:01 (Figure S4A). A similar trend was also

observed when considering the frequency of amino acids at MIA

positions in neo-epitopes, normalized either by the one in human

proteins or the one in non-immunogenic cancer mutant peptides

with the same distribution of predicted affinity to HLA-I, the same

HLA-I allele distribution and the same peptide length distribution

as the neo-epitopes (Figure S4B).

To investigate whether PRIME truly captures properties

related to TCR binding and recognition and not merely provides

a better model of binding to HLA, we computed the amino acid

frequency at MIA positions in naturally presented HLA-I ligands

with the same allele/length distribution, normalized by the ex-

pected amino acid frequency in their source proteins (STAR

methods). A distinct ranking of amino acids was observed with

no enrichment in aromatic or hydrophobic residues (Figure S4C).

We further attempted to predict HLA-I ligands coming from 10
samples not used in the training of MixMHCpred. MixMHCpred

performed better than PRIME in all samples (Figure S4D), further

indicating that the improvement in immunogenicity predictions

with PRIME is likely not due to better predictions of binding to

HLA-I.

The results of Figure 4A recapitulate some observations from

previous studies but also highlight important discrepancies.

For instance, in Chowell et al.,28W and Fwere only slightly corre-

lated with immunogenicity and Y was negatively correlated with

immunogenicity, whereas C was the most over-represented

amino acid among immunogenic peptides. In Calis et al.,29

charged amino acids, such as E or R, contributed positively to

immunogenicity, whereas L and Y had a negative contribution.

The correlation between the immunogenicity propensity deter-

mined in Calis et al.29 and the data in Figure 4A did not reach sta-

tistical significance (r = 0.38; p = 0.101; Figure S4E).

To experimentally validate these results, we selected two viral

HLA-A*02:01-restricted epitopes (ALIRILQQL from HIV and

NLVPMVATV fromCMV) and replaced the peptide residue at po-

sition 5 with each other amino acid. Position 5 is known to have

limited impact on binding affinity to HLA-A*02:01, thereby

providing a well-suited test case for our immunogenicity predic-

tions (Figures S4F and S4G). To assess the relative immunoge-

nicity of the different peptide variants, naive CD8+ T cells were

isolated from three HLA-A*02:01-positive healthy donors and

stimulated in vitro with each peptide separately (STAR methods;

Figure S4H; Table S4C). In two out of three donors, variants

showing high immunogenicity, as determined by interferon

gamma (IFNg) ELISpot, were enriched in residues predicted to
Cell Reports Medicine 2, 100194, February 16, 2021 5
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Figure 4. PRIME reveals molecular determinants of TCR recognition

(A) Ranking of the coefficients in PRIME corresponding to amino acids at MIA positions.

(B) IFNg-ELISpot signals obtained after stimulating naive CD8+ T cells from three healthy donors (d1, d2, and d3) with all P5 variants of the HIV (ALIRILQQL) and

CMV (NLVPMVATV) epitopes (two technical replicates).

(C) Spearman correlation coefficients between immunogenicity predictions and IFNg ELISpot signals for P5 variants of the HIV and CMV epitopes from each

donor. Stars indicate Spearman correlation p values smaller than 0.05.

(D) Functional avidity of CD8+ T cell responses (EC50) measured for five variants of the CMV epitopes used to vaccinate HLA-A*02:01 transgenic mice (4–7

biological replicates). Data were renormalized for each epitope based on the signal at 103 nM. No response was detected for the peptide with K at P5 (values of

0 are shown).
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confer high immunogenicity, with the only exception of a weak

response for the proline variant of the CMV epitope in donor 2

(Figure 4B). When correlating the immunogenicity of the distinct

variants with different predictors, we observed significant corre-

lations in three cases with PRIME, MHCflurry and NetMHC-

panBA (Figure 4C). The other predictors were less successful

at capturing the immunogenicity signal present in these data.

The good performance of MHCflurry and NetMHCpanBA may

be explained by the fact that binding affinity data used to train

these algorithms are enriched in verified CD8+ T cell epitopes,

unlike HLA peptidomics data, which only capture presentation
6 Cell Reports Medicine 2, 100194, February 16, 2021
on HLA-I molecules and are the main source of training data

for MixMHCpred, NetMHCpanEL, and HLAthena. Similar im-

provements in predictions with PRIME could be observed

when analyzing immunogenicity data for HLA-A*02:01 restricted

peptide analogs tested in Tangri et al. (Figure S4I; Table S4D).52

To see whether the higher immunogenicity of aromatic resi-

dues could also be observed in vivo in mouse, we vaccinated

HLA-A*02:01 transgenic mice separately with five variants at

P5 of the CMV epitope (NLVPMVATV) and measured the func-

tional avidity of T cell responses 14 days post-immunization

(STAR methods). Our results confirm that aromatic sidechains



A B C

D E

Figure 5. TCR-pHLA structures provide molecular interpretations for the predictions of PRIME

(A) HLA-A*02:01 binding of the PMEL209(2M)–217 epitope (IMDQVPFSV) and the F7A substitution (thermal stability measured by differential scanning fluorimetry).

Solid lines represent bi-Gaussian fits to the data. The measured Tm values are 61.9�C ± 0.2�C for the epitope and 61.7�C ± 0.2�C for the F7A-modified epitope

(fitted values with standard fitting errors).

(B) Recognition of the PMEL209(2M)–217 WT and F7A mutant by the SILv44 TCR. Solid line for the WT represents a 1:1 fit to the data, yielding a KD of 140 ± 20 mM

(average and standard deviation of three independent measurements). No detectable binding was observed for the F7A modified epitope.

(C) Crystal structure of the SILv44 TCR in complex with PMEL209(2M)–217 presented by HLA-A*02:01.

(D) Crystal structure of a TCR in complex with the HHAT68–76 L75F neo-epitope (KQWLVWLFL; PDB: 6UK4).27

(E) Frequencies of 9-mer epitope residues with sidechains directly contacting TCR residues in TCR-pHLA X-ray structures, normalized by the amino acid fre-

quencies in the source proteins.
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(W and F) triggered the highest avidity, whereas the positively

charged sidechain (K) resulted in a total lack of recognition for

this peptide (Figure 4D). In this case, E and M displayed similar

T cell recognition. It is important to realize that the observations

of Figure 4A reflect a general propensity of molecular TCR recog-

nition but do not exclude recognition of less immunogenic resi-

dues in specific contexts. In particular, the vast potential diver-

sity of the TCR repertoire can result in recognition of sub-

optimal residues, although with lower probability.

TCR-pHLA structures provide molecular interpretations
for the predictions of PRIME
To structurally interpret the prevalent role of aromatic residues in

TCR binding and recognition, we first considered a well-known

HLA-A*02:01 restricted tumor-associated antigen (ITDQVPFSV;

PMEL209–217) that displayed an aromatic sidechain (F) at position

7. The peptide, along with the T2M variant, is recognized well by

several TCRs,53 including the PMEL209–217-specific TCR SILv44.

The latter was studied recently for its therapeutic potential.54

Consistent with the predictions of PRIME, substitution of phenyl-

alanine at position 7 (P7) with alanine in the PMEL209(2M)–217
epitope did not impact binding to HLA-A*02:01 (Figure 5A) but

eliminated recognition by the SILv44 TCR (Figure 5B). To gain in-

sights into the structural basis of this observation, we solved the

X-ray structure of the SILv44-PMEL-HLA-A*02:01 ternary com-

plex (Table S5A; Figures S5A and S5B). Within the interface,

the F7 sidechain inserts into a cleft on the TCR surface formed

by sidechains and backbones of residues of CDR3b and

CDR2b (Figure 5C). It forms a CH-p hydrogen bond with I94 of

CDR3b and 17 van der Waals contacts with the TCR, burying

69 Å2 of solvent accessible surface area.

As a second example, we considered an ovarian cancer neo-

epitope enriched in aromatic and hydrophobic residues

(KQWLVWLFL; HHAT68–76; L75F mutant)5 in complex with a

cognate TCR, for which we have recently solved the crystal

structure.27 Our structure indicated a prevalent role of the side-

chain of W at P6 in the interaction with the TCR, including hydro-

phobic packing with sidechains of CDR3a and CDR3b and a NH-

p hydrogen bond with Y100 of CDR3a (Figure 5D). The mutated

phenylalanine (F8) plays a less important role in the binding to the

TCR compared to W6, mainly burying surface and making some

hydrophobic contacts. These results indicate that T cell
Cell Reports Medicine 2, 100194, February 16, 2021 7



A

B

C D

Figure 6. PRIME provides insight into immunoediting in human cancer

(A) Proposed framework to study immunoediting acting on cancer mutations. For each mutation, patients are stratified based on whether the mutation

would be immunogenic (P+ , yellow rectangle) or would not (P�, red rectangle). The actual frequency of the mutation is compared between these two groups

(legend continued on next page)
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recognition of neo-epitopes is not restricted to mutations that

specifically introduce new amino acids with much higher immu-

nogenicity or stronger binding to HLA-I but also includes the sit-

uation where immunogenic amino acids are already present (W6

in this example) and mutations fall elsewhere on these epitopes.

We then surveyed publicly available X-ray structures of TCRs

interacting with pHLA complexes (Table S5B). Consistent with

the predictions of PRIME, we observed a clear enrichment of ar-

omatic sidechains and a depletion of charged sidechains among

epitope residues directly interacting with the TCR (Figure 5E;

STAR methods). The correlation between the ranking of amino

acids of Figure 4A and the one in Figure 5E was highly significant

(r = 0.81; p = 1.033 10�5), despite the limited number of epitopes

with available X-ray structures used to estimate amino acid fre-

quencies in Figure 5E. In many of the TCR structures, the peptide

aromatic residues penetrate between the TCR loops, forming a

variety of interactions, as demonstrated by the large buried sol-

vent-accessible surface areas (Figures S5C and S5D; Table S5C).

PRIME provides insight into immunoediting in human
cancer
One of the hallmarks of cancer is the ability to escape immune

recognition. This can be achieved by several mechanisms,

such as physical barriers preventing T cell infiltration, establish-

ment of an immuno-suppressive microenvironment, downregu-

lation or alteration of the antigen presentation machinery,55 or

negative selection of mutations giving rise to neo-epitopes—

the so-called immunoediting.31,56

Here, we hypothesized that the ability of PRIME to integrate

presentation on HLA-I and TCR recognition could be useful to

investigate immunoediting in immunotherapy-naive tumors in

human. Practically, we took advantage of the diversity of HLA-I

alleles in the human population and reasoned that cancer muta-

tions should undergo higher immune selective pressure (and

therefore show lower frequency) in patients where they have

higher probability to give rise to immunogenic neo-epitopes (Fig-

ure 6A).57 To explore this hypothesis, we collected non-synony-

mous mutations found in The Cancer Genome Atlas (TCGA) and

predicted the PRIME score with all HLA-I alleles of each patient

(STARmethods). For each mutation, we compared its frequency

among patients where it would give rise to neo-epitopes (f + ) with

its frequency among patients where it would not (f�; Figures 6A

and 6B; STAR methods). For rare mutations with a low number

(N) of occurrences in the TCGA cohort, we observed no differ-

ences between f + and f� (Figure 6C). However, as the number

of occurrences of the mutations in the TCGA cohort increased,
(f + = ðjP+XMj =jP+ jÞ and f� = ð��P�XM
�
� =
�
�P���Þ, where M stands for the subset o

compared to those obtained after shuffling the HLA-I alleles between patients

(B) Frequency of KRAS G12D mutation in patients where it would give rise to neo

alleles of a patient with the mutation in P+ (upper row, with the two predicted ep

(C) Top: average value of f + � f� for mutations observed N times (N = jMjÞ in the

values of the mutation occurrence (N > 0). Bottom: average value of f + � f� for

circles and error bars correspond to randomized HLA-I alleles (mean and standa

(D) Top: average value of f + � f� for mutations observed N times in colorectal tum

Nmin times in colorectal tumors of TCGA is shown.

The insets in (C) and (D) show the boxplots of the frequencies f + and f� for all m

Nmin = 10 in D). r and p values shown in the top plots in (C) and (D) correspond to th

of the bottom plots in (C) and (D) correspond to paired Wilcoxon tests. All freque
the mutations started to display lower frequency in patients

where theywould give rise to neo-epitopes (Figure 6C). These re-

sults indicate that recurrent mutations, which are often onco-

genic, tend to be less frequent among patients where they would

give rise to neo-epitopes. Consistent with previous studies,57,58

the trend is especially strong in colorectal cancer, suggesting

that this tumor type may be especially prone to immunoediting

(Figures 6D and S6A). To further test the robustness of our

model, we reasoned that the trend should be sensitive to the

actual HLA-I typing of the patients.57 The red circles and error

bars in Figures 6C and 6D show the results obtained after

randomly shuffling the HLA-I alleles in TCGA patients (STAR

methods). As expected, the trend was much weaker after shuf-

fling HLA-I alleles.

We further attempted to investigate the potential effect of gene

expression, clonality, and deleterious alterations in the antigen

processing machinery (STAR methods). To this end, we

restricted the analysis to patients for which expression data

were available. For a given mutation, patients for which the

source gene of the mutation was poorly expressed, for which

the mutation was predicted to be sub-clonal, or with deleterious

alterations in antigen processing machinery were removed from

the set of patients with the mutation (M in Figure 6A) and fre-

quencies were recomputed. An even slightly stronger trend

could be observed, demonstrating the robustness of our obser-

vations (Figure S6B). Reversely, the trend was no longer

observed when considering for each mutation only patients

with low expression of the source gene of the mutation, where

the mutations were predicted to be sub-clonal or with delete-

rious alterations in antigen presentation genes (Figure S6C).

Taken together, our results indicate that recurrent mutations

are on average less frequent in patients where they are predicted

to give rise to neo-epitopes, and this association depends on the

patient’s HLA-I typing. For less common mutations, similar

mutational frequencies are observed, and the values obtained

with the actual HLA-I alleles of the patients overlap with those

obtained after shuffling these alleles. Of note, the trend was

weaker when using predictions only based on binding to HLA-I

molecules, highlighting PRIME’s ability to better highlight immu-

noediting acting on recurrent mutations (Figure S6D).

DISCUSSION

Accurate prediction of neo-epitope immunogenicity is a corner-

stone for rational vaccine design and personalized cancer immu-

notherapy. While most recent studies focused on improving
f patients where the mutation is observed). These frequencies will be further

(i.e., f +r and f�r ).
-epitopes (f + ) and where it would not (f�), together with the example of HLA-I

itopes) and one in P� (lower row).

TCGA cohort. The color scale shows the number of distinct mutations for all

mutations observed at least Nmin times in the TCGA cohort is shown. The red

rd deviation of <f +r � f�r > ).

ors of TCGA. Bottom: average value of f + � f� for mutations observed at least

utations observed at least Nmin times in our TCGA samples (Nmin = 35 in C and

e Pearson correlation coefficient (STARmethods). p values shown in the insets

ncies are shown in percentages (%).
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prediction of HLA-I binding and antigen presentation, we capital-

ized on recent (neo-)epitope data to train and validate a method

that goes beyond binding to HLA-I molecules and captures mo-

lecular TCR recognition properties. PRIME not only improved pri-

oritization of neo-epitopes but also correlatedwith structural avid-

ity (Figure 3), which is promising to select optimal epitopes that

could induce strong responses upon stimulation or vaccination.

Unlike previous approaches,29 PRIME combines presentation

on HLA-I molecules with peptide-intrinsic TCR recognition pro-

pensity, which resulted in improved prediction accuracy. Our

work also helps rationalize why some peptides with lowHLA-I af-

finity can be well recognized by CD8+ T cells, as weak pHLA

affinity can be offset by strong TCR binding enabled by particu-

larly immunogenic amino acids. Consistent with previous

studies,8,19,24 adding features linked to peptide foreignness or

DisToSelf, which is an additional aspect of T cell recognition

related to central tolerance and not considered in PRIME, may

further improve predictions.

Our results reveal a convergence between immunogenicity

and biophysical properties of amino acids. In particular, aromatic

sidechains (i.e., W, F, and Y) showed the highest immunoge-

nicity. These observations are attributable to the multifunctional

properties of these aromatic side chains: while hydrophobic,

they can also serve as hydrogen bond acceptors, pair with cat-

ions, engage in various stacking interactions, and possess

limited rotational degrees of freedom. The corresponding bias

against charged amino acids is explained similarly: burying

charges within a protein interface is associated with energeti-

cally expensive desolvation penalties and necessitates precise

alignments between opposing charges in the TCR.59 This also

explains the low immunogenicity of histidine, which can easily

be protonated due to its pKa of 6.0, close to physiological pH.

When considering naturally presented HLA-I ligands identified

by mass spectrometry (MS) (Figure S4C), we observed a

different pattern compared to Figure 4A, supporting our conclu-

sion that PRIME captures signals related to TCR recognition and

not to HLA-I binding or antigen presentation. Figure S4C re-

vealed a strong depletion of cysteine as well as a depletion of

tryptophan. These amino acids can be chemically modified,60

which may explain why they are less well detected in peptides

found by MS.17,34 As such, we cannot exclude that PRIME also

partly corrects the bias against tryptophan that is likely present

in HLA-I ligand predictors trained onMS data, like MixMHCpred.

For all tools considered in this work, we used an ad hoc

threshold based on predictions of binding to HLA and presenta-

tion. The underlying motivation was to avoid cases of peptides

with very low affinity to HLA-I but with a stretch of immunogenic

residues at MIA positions, as these may be underrepresented in

the training set of PRIME. The value of the threshold is a free

parameter in PRIME and setting it to lower %rank will increase

specificity while decreasing sensitivity.

In some of our analyses, naive CD8 T cells were used to probe

T cell reactivity (Figure 4B). The main reason was to avoid biases

due to previous exposure with specific epitopes. As such, these

experiments capture general properties of epitopes to be recog-

nized by some TCRs found in the TCR repertoire. This is some-

times referred to as antigenicity, although a consensus on this

terminology has not been reached in cancer neo-epitope studies.
10 Cell Reports Medicine 2, 100194, February 16, 2021
The idea of using cancer genomics data to investigate immu-

noediting mechanisms in human cancer has been explored in

previous studies.32,57,61–63 For instance, mutated peptides

generated by recurrent oncogenic mutations were shown to

have lower predicted binding to HLA-I molecules compared to

those from less frequent mutations.32 An important challenge

in this type of analysis comes from the fact that non-synonymous

cancer mutations display specific signatures reflecting a

plethora of mechanisms, such as UV light, tobacco, DNA repair

propensity, functional impact, codon degeneracy, etc.64 Accu-

rate models of mutagenesis processes in cancer that would

recapitulate all these different mechanisms, except for the im-

mune selection, are difficult to design, and any bias in these

models can result in wrong interpretations when using them to

compare with actual data.33 The idea of stratifying patients

based on the predicted immunogenicity of a mutation ensures

that our findings do not rely on such theoretical models. This

idea may therefore represent a powerful framework to explore

immune pressure mechanisms in cancer, and our observations

provide an independent validation of the results of Marty et al.32

Several reasons can explain the lack of signal detected for

rare, mainly passenger, mutations. First, we cannot exclude

that a certain fraction of these mutations are false-positives of

mutation-calling algorithms. Second, immunoediting may be

more difficult to statistically detect with our approach. Third, it

is expected that many passenger mutations appear later in

tumorigenesis and undergo lower immune selection.32 We also

emphasize that negative selection of immunogenic mutations

is only one of the multiple factors shaping the landscape of can-

cer mutations. This likely explains why we do not observe a com-

plete absence of mutations in patients where they could give rise

to immunogenic neo-epitopes (Figure 6C). This observation has

important consequences for our understanding of tumor devel-

opment and response to therapy. First, it confirms that several

immunotherapy-naive tumors can afford havingmutations giving

rise to neo-epitopes, including driver mutations, such as KRAS

G12D.65 Second, it may contribute to the success of cancer

immunotherapy, because several immunogenic peptides will still

be presented on cancer cells and could become clinically rele-

vant upon boosting or engineering CD8+ T cells targeting them.

Investigation of the results obtainedwith each tumor separately

(Figure S6A) demonstrated that a different trend was observed in

melanoma (TCGA code: SKCM). Melanoma is among the tumors

that are best recognized by T cells and show the best response

rate to immunotherapy. Presentation of neo-antigens and cancer

testis antigens is likely playing an important role in T cell recogni-

tion of tumors. As such, the lack of detectable immune selection of

recurrent mutations in melanoma samples where they are pre-

dicted to be immunogenic is not inconsistent with the higher

response rate observed in this tumor type.

The lack of signal observed for mutations poorly expressed,

predicted to be sub-clonal, or found in patients with altered an-

tigen presentation would be consistent with a lower immunoedit-

ing (Figure S6C). However, it is important to realize that recurrent

mutations are underrepresented within this set of mutations.

Moreover, the filters that we used have limitations (e.g., expres-

sion can be biased by the presence of non-malignant cells, clon-

ality is challenging to estimate with single biopsies, and
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prediction of mutation functional effects, especially in HLA-I

genes, is not fully reliable).

In vivo CD8+ T cell response against infected or cancer cells

involves many other parameters beyond TCR binding (e.g., co-

receptors, cytokines, T cell fitness, microenvironment, etc.). A

holistic model of immunogenicity will ultimately need to inte-

grate all of these aspects. However, many of these parameters

are currently very difficult, if not impossible, to accurately mea-

sure experimentally in a clinical context, limiting the possibility

to train and use such broad models for practical applications

and quantitative predictions. By focusing on features that are

readily available from peptide sequences, our immunogenicity

predictor (http://prime.gfellerlab.org/) is suitable for large co-

horts of patients in infectious diseases and cancer

immunotherapy.

Limitations of study
One limitation of this study comes from the fact that immuno-

genic peptides were defined as peptides recognized by some

T cells in T-cell assays (e.g., IFNg-ELISpot). As such, our work

uncovers properties of peptides that enhance their propensity

to be physically recognized by TCRs (sometimes referred to as

‘‘antigenicity’’) but does not robustly demonstrate that these

peptides elicit a stronger response upon vaccination. This is

likely one of the big, and currently unmet, challenges toward clin-

ical applications of immunogenicity predictions in personalized

cancer immunotherapy. A second limitation is that PRIME

does not model the potential impact of central tolerance and

therefore should preferentially be used on non-self peptides

(e.g., mutated peptides in cancer or peptides from pathogens).

Finally, although the set of verified neo-epitopes used in our

benchmarks (i.e., 129 positives) is larger than in most recent

neo-epitope prediction studies, it is still limited, and we antici-

pate that larger neo-epitope datasets will lead to additional re-

finements in immunogenicity predictions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-hCD8 Biolegend 313904

Anti-CCR7 Biolegend 353226

Anti-CD45RA Beckman Coulter IM2711U

Biological samples

Healthy donors blood mononuclear cells

and blood mononuclear cells and tumor

infiltrating lymphocytes from cancer

patients

Biobank from the Center of Experimental

Therapeutics, Department of Oncology,

Centre Hospitalier Universitaire Vaudois,

Lausanne, Switzerland.

Protocol 235/14 and 2016-02094, 2016-02166

and 2017-00490

Chemicals, peptides, and recombinant proteins

CMV variant peptides Peptide & Tetramer Core Facility,

University of Lausanne

N/A

HIV variant peptides Peptide & Tetramer Core Facility,

University of Lausanne

N/A

Other peptides Peptide & Tetramer Core Facility,

University of Lausanne

N/A

pMHC NTAmers Peptide & Tetramer Core Facility,

University of Lausanne

N/A

RPMI GIBCO 61870-010

MEM NEAA GIBCO 11140-035

2-Mercaptoethanol GIBCO 31350-010

Sodium Pyruvat GIBCO 11360-033

HEPES Bio Concept 5-31F00H

Pen/strep Bio Concept 4-01F00H

Human Serum Biowest S419H-100

FBS Biowest S-1810-500

IL2 Novartis Proleukina, PZN02238131

DAPI Sigma-Aldrich 10236276001

Incomplete Freund Adjuvant Sigma-Aldrich F5506-10ML

ODN1826 Invivogen Tlrl-1826-5

Critical commercial assays

Human-Interferong release assay Mabtech 3420-2APT-10

Human-CD8 isolation kit Milteny 130-045-201

Murine-Interferong release assay Mabtech 3321-4APT-10

Experimental models: cell lines

T2 cells ATCC CRL-1992

CD4 blasts cells In house N/A

Experimental models: organisms/strains

HLA-A2.1/DR1 mice Pajot et al.66 N/A

Software and algorithms

NetMHCpan4.1 Reynisson et al.15 http://www.cbs.dtu.dk/services/NetMHCpan/

MHCflurry1.6.1 O’Donnell et al.13 https://github.com/openvax/mhcflurry

HLAthena Sarkizova et al., 201916 http://hlathena.tools/ (executable shared by the

authors, private communications)

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

NetChop3.0 Nielsen et al.47; Stranzl and Lundegaard21 http://www.cbs.dtu.dk/services/NetCTLpan/

TAP Peters et al.48; Stranzl and Lundegaard21 http://www.cbs.dtu.dk/services/NetCTLpan/

IEBD immunogenicity predictor Calis et al.29 http://tools.iedb.org/immunogenicity/

NetMHCstabpan1.0 Rasmussen et al.14 http://www.cbs.dtu.dk/services/NetMHCstabpan/

MixMHCpred2.1 Gfeller et al.12 https://github.com/GfellerLab/MixMHCpred

Prism version 8.0.0 GraphPad Software, Inc N/A

FlowJo 9.6.4 FlowJo, LLC N/A

Other

Chromium-51 radionuclide Perkin Elmer NEZ030S002MC
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead contact, Dr. David

Gfeller (David.gfeller@unil.ch).

Materials availability
All unique materials and reagents generated in this study are available from the Lead Contact with a completed material transfer

agreement.

Data and code availability
PRIME is freely available for academic researchers at the web interface http://prime.gfellerlab.org and as command-line tool https://

github.com/GfellerLab/PRIME. All data used to train and validate PRIME are available in Supplementary Materials (Tables S1 and

S4). The accession number for the X-ray structure reported in this paper is PDB: 6VM8.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments
HLA-A2/DR1 mice (C57BL/6-Tg(HLA-A2.1)/Tg(HLA-DR1)/H-2class-I/class-II-knockout)66 were born and maintained in a conven-

tional animal facility at the University of Lausanne, Switzerland. Experiments were conducted in accordance with the Cantonal Vet-

erinary Office (License VD3321). Female and male of 6 to 10 weeks were randomly used for experiments.

Patients, Healthy donors and ethic statement
Peripheral blood samples were collected from HLA-A*0201-positive healthy donors. Patients under study had stage III/IV metastatic

melanoma, ovarian, non-small cell lung cancer and colorectal cancer and had received several lines of chemotherapy. Patients were

enrolled under protocols approved by the respective institutional regulatory committees at the University of Pennsylvania, USA, and

Lausanne University Hospital (CHUV), Switzerland (NCT00112242; https://www.clinicaltrials.gov). Patients and healthy donors’

recruitment, study procedures and blood withdrawal were approved by regulatory authorities and all signed written informed

consents.

Cell lines and primary cells
HLA-A*0201-positive TAP-deficient T2 cells (ATCC) and CD4 blasts were cultured in RPMI 1640 Glutamax media (GIBCO) supple-

mented with 10% FBS (Biowest) and penicillin/streptomycin (BioConcept). Primary CD8+ T cells were cultured in RPMI 1640 Gluta-

max media (GIBCO) supplemented with 8% Humsn serum (Biowest), non-essential amino acids (GIBCO), 2-mercaptoethanol

(GIBCO), sodium pyruvate (GIBCO), HEPES (GIBCO), penicillin/streptomycin (BioConcept) and 150 U/ml of rhIL2 (Novartis). All cells

were maintained at 37�C under 5% CO2 atmosphere.

METHOD DETAILS

Collection of immunogenic and non-immunogenic peptides used for training PRIME
Immunogenic (n = 1,282) and non-immunogenic (n = 3,676) peptides were collected from many recent studies, and comprise both

pathogen and cancer testis antigens as well as cancer neo-epitopes (Table S1 and Figure 1A). In these studies, immunogenicity was

assessed using different T cell assays, such as INFg ELISpot or pHLA tetramer staining. Only peptides with reported HLA-I restriction
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were considered. Non-immunogenic peptides were defined as peptides for which CD8+ T cell reactivity could not be observed in the

experiments where they had been tested.

Existing epitope predictors used for benchmark
Benchmarking of the predictions was performed with several predictions. First, we used predictors of binding to HLA-I molecules and

antigen presentation: MixMHCpred2.112; NetMHCpan4.1 considering both eluted ligand predictions (NetMHCpanEL) or binding affinity

predictions (NetMHCpanBA)15; MHCflurry1.6.113; and HLAthena16. Percentile rank values (%rank) were used for all these predictors

and are displayed as -log(%rank) in Figures. Cleavage predictions based on NetChop-3.047 and TAP transport efficiency48 were

retrieved from the NetCTLpanwebsite21, using the flanking regions consisting of the ten N- and ten C-terminal residues, when possible.

Next, we considered predictors that aim to capture signals related to immunogenicity beyond binding to HLA-I. The immunoge-

nicity predictions with the method of Calis et al.29 were retrieved from the IEDB website (http://tools.iedb.org/immunogenicity/) and

were referred to as ‘‘IEDB.imm’’ in the Figures. As%rank are more comparable between HLA-I alleles and recommended by several

tools, the ratio of affinity between the mutated and the wt peptides (referred to as ‘‘Ratio’’) was computed as log(%rank_wt) - log(%

rank_mutant), based NetMHCpanEL %rank predictions. The dissimilarity-to-self (‘‘DisToSelf’’) was defined by computing the dis-

tance with all peptides of the same length in the human proteome based on the BLOSUM62 substitution matrix, and using the lowest

value as the DisToSelf. Mathematically, for two peptides x = ðx1;.; xLÞ and y = ðy1;.;yLÞ, the distance was computed as
PL

i =1

ðbyi ;yi �
bxi ;yiÞ, where ba;b stands for the BLOSUM62 entry for amino acids a and b. The method of Wells et al.8, referred to as TESLA in this

manuscript, was implemented based on the proposed thresholds: predicted affinity < 34nM AND predicted stability > 1.4h AND (ra-

tio_Kd < 0.1 OR Foreignness > 10�16). Affinity was predicted with NetMHCpan4.1 (Aff(nM)), stability was predicted with NetMHC-

stabpan1.0 (Thalf(h)), ratio_Kd was computed as the ratio between the predicted affinity (Aff(nM)) of the mutated and the wt peptide,

foreignness was computed with the antigen.garnish package (https://github.com/andrewrech/antigen.garnish)26, as done in TESLA.

Expression values could not be considered since they were not determined for the peptides analyzed in this study. The Ratio and the

TESLA predictions were only computed for mutated peptides found in cancer, since they are not defined for pathogens or cancer

testis antigens. The EDGEmethod35 and themethod of Chowell at al.28 could not be included in this benchmark, as neither an execut-

able nor a web interface is available.

Training of the immunogenicity predictor PRIME
To disentangle the influence of affinity to HLA-I molecules from other parameters, we first annotated positions withminimal impact on

HLA-I affinity (MIA positions) and potentially interacting with the TCR for each HLA-I allele, using our set of HLA-I binding motifs

derived from unbiased MS data. To this end, the information content (i.e., 1+
P20

i =1

pij log 20ðpijÞ, where pij represents the frequency

of amino acid i at position j in 9-mer ligands for a given allele) was computed for each position j = 4,.,8 and for each allele based

on 9-mer ligands. Positions with information content lower than a threshold of 0.3 were defined as MIA positions. Position 4 in

HLA-A*02 alleles, position 5 in HLA-A*68:02, position 6 in HLA-A*25:02 and HLA-A*26:01 and position 7 in HLA-A*29:02 were further

removed from the list, as they show residual specificity. This led to 6 different groups of alleles (g = 1,.,6) with specific MIA positions

corresponding to: g = 1: P4 to P8 (e.g., HLA-A*01:01); g = 2: P5 to P8 (e.g., HLA-A*02:01); g = 3: P5, P7 and P8 (e.g., HLA-A*02:03); g =

4: P4, P5, P7 and P8 (e.g., HLA-A*25:01); g = 5: P4 to P6 and P8 (e.g., HLA-A*29:02); g = 6: P4 and P6 to P8 (e.g., HLA-B*08:01) (Table

S2). For peptides of length other than 9, theMIA positions were defined for each group as follows: g = 1: P4 to PU-1; g = 2: P5 to PU-1;

g = 3: P5 to PU-4 and PU-2 to PU-1; g = 4: P4, P5 and P7 to PU-1; g = 5: P4 to PU-3 and PU-1; g = 6: P4 and P6 to PU-1, where U

stands for the length of the peptide.

We next trained a logistic regression (glmnet R package v2.0.16 (alpha = 0 and lambda = 1)) encoding each pHLA pair as a 21-

dimensional vector consisting of the predicted affinity (-log(%rank)) of the peptide to the HLA-I molecule and the frequencies of

the 20 amino acids at MIA positions29. Binding predictions were performed withMixMHCpred2.1. 2,800 (i.e., 50 peptides for 56 com-

mon HLA-I alleles used in our training set) additional 9-mer peptides randomly selected from the human proteome were added to the

training set as negatives (i.e., non-immunogenic) to better match the real situation where non-immunogenic peptides are in excess

compared to immunogenic ones. Peptides with low predicted binding to HLA-I (MixMHCpred %rank > T, with T = 5% in this work)

were always predicted as non-immunogenic (i.e., given a score of 0 in the PRIME logistic regression). The same threshold was

applied to the other tools used in all validation based on the predicted affinity (%rank) for each HLA-I affinity predictor and based

on MixMHCpred %rank for the other tools (NetChop, TAP, IEDB.imm, Ratio, DisToSelf and TESLA) (i.e., giving a score of 1 minus

the score of the peptide with the lowest score to compute the AUC). Logistic regressions were used when combining different pre-

dictors (i.e., NetChop, TAP, IEDB.imm or DisToSelf with MixMHCpred or PRIME, Figures S2C and S2D). Randomizing amino acids at

MIA positions was performed by replacing the residues at these positions in each peptide with randomly selected residues from the

human proteome.

In the upper panel of Figure S4B, amino acid frequencies at MIA positions were computed for all neo-epitopes and renormalized by

those in human proteins, considering residues between the fifth and the second to last positions (this is to avoid including in those

background frequencies residue that cannot be found at MIA positions by constructions, especially the starting Met). In the lower
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panel of Figure S4B, all neo-epitopes with at least one non-immunogenic cancer mutant peptide from the same allele, of the same

length and with the same predicted affinity (based on 10 equal bins between the lowest and highest value of MixMHCpred log(%

rank)) were considered to compute amino acid frequencies at MIA positions (115 out of 129 neo-epitopes). For renormalization,

amino acid frequencies at MIA positions in non-immunogenic cancer mutated peptides were computed after weighting each of these

peptides in order to have exactly the same distribution of alleles, peptide lengths and binding affinities as in the 115 neo-epitopes.

For each allele, percentile ranks (%rank) for PRIME were computed based on a dataset of 700,000 8- to 14-mer peptides (100,000

for each length) randomly selected from the human proteome, similarly to what is done for HLA-I ligand predictors such as

MixMHCpred or NetMHCpan.

Cross-validation
Validation on neo-epitopes was first carried out with ten-fold cross-validation. To this end, the set of cancer mutated peptides was

split into ten groups, and each group was iteratively used as testing set (Figure S2A). Similarly the other peptides (i.e., pathogens/

cancer testis antigens + random negatives) were also split in ten groups and nine of themwere iteratively used to train the algortithm.

To ensure that our results are not biased by one specific study, we also used a leave-one-study-out cross-validation strategy (Fig-

ure S2A). Each neo-epitope study with at leasty five immunogenic and five non-immunogenic peptides (seven studies in total) were

iteratively removed from the training of the predictor and used as testing set. The remaining peptides used only for training were also

split into seven groups, and 6 of them were iteratively used for training (Figure S2A). Finally, we performed a leave-one-allele-out

cross-validation over the set of HLA-I alleles with at least five immunogenic and five non-immunogenic peptides in the testing set.

To avoid biases due to the similarity beteeen HLA-I alleles, peptides testedwith alleles from the same super-type than the HLA-I allele

used in the testing set were excluded from the training (Figure S2A). The area under the receiver operating curve (AUC) and the area

under the Precision Recall curve (PRAUC) were used to assess the prediction accuracy.

Epitopes used for external validations
Data fromCapietto et al.23 were retrieved from the original publication. For these epitopes, NetMHCpanBA4.1 was used to predict%

rank used in PRIME, since MixMHCpred cannot run on mouse MHC alleles. Only peptides experimentally validated for immunoge-

nicity were used in the benchmarking of Figure 1F (26 positives in total). Data from Tangri et al.52 for the analogs of the two epitopes

(IMIGVLVGV fromCEA and KVAELVHFL fromMAGEA3) were manually retrieved from the Figures published in this study (Table S4D)

and the ranking of the peptide analogs was used to compute Spearman correlation coefficients in Figure S4I. Only mutations at P5

were considered, since this position is the one with the lowest impact on affinity to HLA-A*02:01 (Figures S4F and S4G).

Computational efficiency
In Figure 2, peptides of length 8 to 13 were used for PRIME, NetMHCpan andMHCflurry, and peptides of length 8 to 11 for HLAthena,

since longer peptides are not supported. Predictions were performed with six common HLA-I alleles (HLA-A*02:01, HLA-A*03:01,

HLA-B*07:02, HLA-B*08:01, HLA-C*04:01, HLA-C*07:02), on a single core (MacBookPro, 2.9 GHz Intel Core i7).

Measurements of structural avidity (half-lives) and cytolytic activity (EC50) of antigen-specific CD8+ T cells
CD8+ T cells directed against shared viral, tumor associated antigens and cancer neo-epitope of Figure 3were isolated from patients

as previously described5. Written informed consents were obtained from all patients and HDs. NTAmers were produced by the Pep-

tide and Tetramer Core Facility of the University of Lausanne. NTAmers are dually labeled pHLA multimers built on NTA-Ni2+-His-tag

interactions and were used for monomeric pHLA-TCR dissociation kinetics measurements as previously described51,67. Briefly, an-

tigen-specific CD8+ T cells were stained for 45 min at 4�C in PBS, 0.2% BSA, 5 mM EDTA with cognate NTAmers. NTAmer staining

was assessed at 4�C on a SORP-LSR II flow cytometer (BD Biosciences). Following 30 s of baseline acquisition, imidazole (100 mM)

was added and Cy5 fluorescence was measured during the following 10 minutes. Data were analyzed using the kinetic module of

FlowJo software (v.9.7.6, Treestar) and modeled (1-phase exponential decay) using Prism software (GraphPad) to determine the

half-life (t1/2 = ln(2)/koff). The list of t1/2 for different TCRs tested with each epitope can be found in Table S4A, and the average of

the logarithms of t1/2 for each epitope was used in Figure 3. The binding affinity ratio was not considered since it is not defined

for tumor associated and viral antigens.

Cytolytic activity (Figure S3C) was measured by chromium release assay. 51Cr-labeled HLA-A*0201-positive TAP-deficient T2

cells, or alternatively CD4 blasts cells, were pulsed with serial dilutions of peptides of interest, and incubated with antigen-specific

CD8+ T cell clones at an effector/target ratio of 4:1 for 4 hours at 37�C. Percentages of specific lysis were calculated as 100 x (exper-

imental – spontaneous release) / (total – spontaneous release). EC50 values were derived by dose-response curve analysis (log(agon-

ist) versus response) using Prism software (GraphPad). The list of EC50 values for different TCRs tested with each epitope can be

found in Table S4B, and the average of the logarithms of EC50 for each epitope was used in Figure S3C.

Analysis of naturally presented HLA-I ligands
A subset of naturally presented HLA-I ligands detected by MS from the compilation done in Gfeller et al.12 was selected to contain

the same distribution of allele/length distribution as the neo-epitopes. These peptides were used to compute amino acid frequencies

at MIA positions (Figure S4C). These frequencies were normalized by the amino acid frequencies between the fifth and the
e4 Cell Reports Medicine 2, 100194, February 16, 2021



Article
ll

OPEN ACCESS
second-to-last positions of the set of source proteins detected in HLA-I peptidomics studies. This is done to prevent confounding

factors mainly because the first (including the starting methionine) and last residues are never found at MIA positions, by

construction.

HLA-I ligands from the ten HLA peptidomics samples measured in Gfeller et al.12 and not included in the training of MixMHCpred

were used to benchmark predictions of HLA-I ligands with PRIME and MixMHCpred. AUC values (Figure S4D) were computed by

taking as negatives for each sample 99-fold excess peptides randomly selected from the human proteome with length 8 to 14.

Analysis of antigen-specific CD8+ T cells from healthy donors and cancer patients
Peripheral blood mononuclear cells (PBMCs) were collected from HLA-A*02:01 positive healthy donors (HDs). Fresh PBMCs were

positively enriched using anti-CD8-coated magnetic beads (Miltenyi Biotec), stained in PBS, 0.2% BSA, 5 mM EDTA with anti-

CCR7 and anti-CD45RA for 45 min at 4�C. After washing, cells were resuspended in PBS, 0.2% BSA, 5 mM EDTA containing

DAPI and naive CD8+ T cells (CCR7+/CD45RA+) were directly sorted on a FACSAria flow cytometer (BD Biosciences). Purified naive

CD8+ T cells were plated in 24-well plates (2x106/ml) and stimulated three times in vitro (every 10 days) with 1 mM of single CMV or

HIV-derived peptides, irradiated autologous PBMC and 150 U/ml of rhIL-2. Ten days after the last stimulation the T cell cultures were

tested for IFN-g production by ELISpot following manufacturer’s instructions. Briefly, 100,000 CD8+ T cells were incubated for 16 h

with 30,000 T2 cells priorly pulsed for 1 h with single CMV or HIV variant peptides (1 mM). A positive response was considered if the

average number of spots in the peptide-exposed wells wasR 2-fold higher than the number of spots in the unstimulated wells, and

there were R 10 specific spots/100,000 T cells. For positive responses, the number of IFNg-secreting cells reported in Table S4C

correspond to the number of spots in the stimulated well minus the number of spots in the background (unstimulated well). The

ELISpot assay was performed according to manufacturer’s instructions (Mabtech, Nacka Strand, Sweden). All measurements

were performed in duplicates. As these experiments are based on pathogen derived peptides directly used to stimulate CD8

T cells, NetChop, TAP, Ratio and DisToSelf were not included in Figure 4C, as they are either not defined or less meaningful.

Peptides and pMHC NTAmers
Peptides and pMHC NTAmers were produced by the Peptide and Tetramer Core Facility (PTCF) of the University of Lausanne. Pep-

tides were HPLC purified (R90% pure), verified by MS and kept lyophilized at �80�C. NTAmers containing 5% glycerol, were ali-

quoted (5 ul), kept at �80�C and single used.

Mouse immunization
HLA-A*02:01/DR1 transgenic, H-2�/� mice66 (n = 4-7 per condition) were immunized with peptides essentially as described68. In

brief, single CMV-derived peptides and the DR1 restricted influenza HA306-318 peptide (10 mg each) were injected subcutaneously

at the base of the tail in an emulsion containing PBS, IFA and ODN 1826 (InvivoGen, San Diego). Only one peptide (i.e., P5 variants

of the CMV epitope NLVPMVATV) was injected in eachmice. After twoweeksmice were booster immunized and a fortnight later their

spleens harvested, 100,000 splenocytes were incubated overnight with T2 cells previously pulsed with different concentrations

(ranging from 10�3-103 nM) of single peptide at a 1:1 ratio. Production of IFNg was assessed using a mouse ELISpot kit following

the manufacturer’s instructions (Mabtech, Nacka Strand, Sweden). A positive response was considered positive if the

number of spots in the peptide-exposed wells was R 2-fold higher than the number of spots in the un-stimulated wells, and there

were R 10 specific spots/100,000 splenocytes. All measurements were performed in duplicates. The functional avidity of the

different peptide-specific T cell responses was determined by calculating the peptide concentration able to mobilize 50% of the

maximal number of spot forming unit (SFU).

Recombinant protein production and X-ray crystallography
Recombinant SILv44 TCR and HLA-A*02:01 were generated from bacterially-produced inclusion bodies as previously described69.

Peptides were synthesized commercially and obtained at > 95% purity. Proteins were refolded in vitro and purified using ion-ex-

change followed by size exclusion chromatography, concentrated, and concentrations determined using predicted extinction coef-

ficients. Crystals of SILv44 bound to PMEL209(2M)-217 were grown in 20% PEG 3350 and 236 mM ammonium citrate dibasic at 6 mg/

mL total protein concentration by vapor diffusion at 23�C. Diffraction data was collected on the 22ID beamline at the Advanced

Photon Source at Argonne National Laboratories. Data was indexed, integrated, and scaled in HKL200070. The structure was solved

by molecular replacement using the MoRDa pipeline within the CCP4 suite71. Following molecular replacement, the model was

rebuilt using PHENIX Autobuild72. Multiple rounds of restrained refinement were performed using PHENIX Refine73. Evaluation of

models and map fitting were performed using COOT74. Structures were evaluated by MolProbity75 during and after refinement.

The fully refined complex was deposited to the Protein Data Bank and assigned accession code PDB: 6VM8 (see Table S5A). The

assembled pHLA-TCR biological unit can be constructed by visualization of symmetry-related molecules.

Analysis of TCR binding and peptide/HLA-A*02:01 thermal stability
Surface plasmon resonance (SPR) experiments were conducted on a Biacore T200 instrument in 10 mM HEPES (pH 7.4), 150 mM

NaCl, 3 mMEDTA and 0.005% surfactant P-20 at 25�C as previously described69. TCRs were coupled to a Biacore CM5 sensor chip

using amine coupling. Increasing concentrations of pHLA were flowed over immobilized SILv44 at a rate of 5 mL/min. Steady-state
Cell Reports Medicine 2, 100194, February 16, 2021 e5
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responses (RU) were determined by averaging the final 10 s of each injection and subtracting the response values from identical in-

jections over a blank surface. Each concentration was injected in duplicate for each experiment. Binding affinity was determined by

fitting a 1:1 binding curve to a plot of RU versus pHLA concentration. Both datasets were globally fit to enhance accuracy and pre-

cision of the determined KD
76. The reported SILv44 KD value is the average and standard deviation of three independent measure-

ments. Thermal stability experiments were measured by differential scanning fluorimetry (DSF) using SYPRO fluorescent dye as pre-

viously described77. RT-PCR excitation and emission wavelengths were set to 587 nm and 607 nm, respectively. Excess SYPRO

orange was added to approximately 10 mM of protein. The temperature range spanned 20-95�C at a ramp rate of 1�C/min. Melting

temperature values were determined by fitting the peak center of the first derivative of the melting curve fit to a Bigaussian function,

with errors reported as standard fitting errors.

Analysis of known X-ray structures
TCR-pHLA X-ray structures were downloaded from the PDB. Structures with mutated HLA-I alleles, modified/non-peptidic epitopes

or incomplete TCRswere not included. The final list of structureswith 9-mer epitopes is available in Table S5B. For each structure, the

contacts between the sidechains of the epitope and the TCRwere computed, using a threshold of 4Å between heavy atoms. Epitope

sidechains making direct contacts with the TCR are listed in Table S5B. Amino acid frequencies at these positions were computed

and normalized by the average amino acid frequencies in the source proteins of the epitopes (for synthetic peptides, the amino acid

frequency in the human proteome was used) (Figure 5E). As many structures contain redundant epitopes, each epitope, and the cor-

responding source protein, was weighted by the inverse of the number of epitopes that show at least 80% sequence identity, result-

ing in an effective number of sequences (i.e., sum of weights) equal to 22.44. Representative structures of each 9-mer epitope with

aromatic sidechains interacting with the TCR are displayed in Figure S5C.

Analysis of TCGA data
TCGA mutations from BLCA, BRCA, CESC, COAD, GBM, HNSC, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, SKCM, STAD, THCA

and UCEC tumor types were downloaded from the GDC data portal using the Aggregated Somatic Mutations files. Non-synonymous

single nucleotide substitutions identified by MuSE, MuTect2, SomaticSniper and VarScan2 were considered. Mutations were map-

ped to the GRCh38 or GRCh37 proteome to retrieve all 9- to 11-mers encompassing each mutation. HLA-I typing was retrieved from

The Cancer Immune Atlas (TCIA)78, and completed by data from Marty et al.32 for samples without HLA-I typing data in TCIA (8,317

tumor samples in total with available HLA-I typing, representing a total of 1,136,329 unique mutations, with 92.8% percent observed

only once, 5.8% observed in two patients and 0.075% observed in more than five patients).

Expression values were used for all patients where they were available (7,736 patients) and a threshold of 1 FPKM was used to

define genes that were poorly expressed. Clonality predictions were performed by comparing the mutant allelic fraction (average

over all four variant callers) with the one expected after tumor purity correction. Tumor purity values were retrieved from Aran

et al.79 or estimated with EPIC80 for samples absent from this study and with available expression data (8,185 samples in total). In

first approximation, the expected mutant allelic fraction was defined as the coverage (based on the average of all four variant callers)

multiplied by the purity and divided by 2. To account for variability in cancer genomic data and provide conservative predictions of

sub-clonality, sub-clonal mutations were defined as those having a reported mutant allelic fraction lower than 50% of the expected

one. Patients predicted to have altered antigen presentation machinery were defined as those harboring deleterious mutations

(based on SIFT ‘‘deleterious’’ or ‘‘deleterious_low_confidence’’ predictions and PolyPhen ‘‘probably_damaging’’ or ‘‘possibly_

damaging’’ predictions) in the HLA-A, HLA-B, HLA-C, B2M, TAP1, TAP2, TAPBP, TAPBPL, ERAP1 or ERAP2 genes. These filters

removed 59.6% of actual mutation/patient pairs considered in Figure 6C.

Statistical model of immunoediting
To compute the frequency of a mutation among patients where it would give rise to neo-epitopes, and those where it would not, the

PRIME%rank was computed for all 9- to 11-mers encompassing the mutation with each HLA-I allele of each patient. Patients with at

least one peptide encompassing the mutated residue showing a PRIME%rank score lower or equal to 0.5% with at least one of the

patient’s HLA-I alleles were assigned to the group where the mutation would be immunogenic (P+ in Figure 6A). Patients with all pep-

tides showing a PRIME%rank larger or equal to 2%with all HLA-I alleles of the patient were assigned to the groupwhere themutation

would not be immunogenic (P�). The frequency of themutation was then computed within each group (f + = ðjP+XMj =jP+ jÞ and f� =

ð��P�XM
�
� =
�
�P���Þ), whereM indicates the set of patients that actually have themutation andN= jMj. Cases where P+was equal to zero

(< 2% of all mutations, including only PIK3CA_E542K amongmutations observed more than 15 times) were not considered since the

frequency f + could not be mathematically defined, although theses may represent another type of interesting immunoediting (i.e.,

mutations not predicted to be immunogenic in any patient). The mean value of the difference between f + and f� across mutations

observed exactly N times or at least Nmin times are shown in Figures 6C and 6D. For mutations observed less than five times, a

random subset of one thousand mutations was used.

To preserve existing linkage between HLA-I alleles in the analysis with randomized HLAs, all alleles of one patient were randomly

swapped with those of another patient, further requesting that no patient gets the same HLA-I alleles as the original ones after

randomizing. 20 different random seeds were used in this randomization of HLA-I alleles (mean and standard deviation shown

with red circles and error bars in Figures 6C and 6D).
e6 Cell Reports Medicine 2, 100194, February 16, 2021
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Enrichment analysis for neo-epitopes
Two-sidedWilcoxon tests were used to measure the enrichment of high scoring peptides among neo-epitopes in Figure 1C for each

predictor.

Half-lives and EC50

For each epitope, average half-life was computed by taking the average of the logarithm of the half-livesmeasured for different clones

(Table S4A). Similarly, the log of EC50 values for different clones (Table S4B) were averaged in Figure S3C. Pearson correlation co-

efficients used in Figures 3 and S3C and corresponding P values were computed with the cor.test function in R.

Correlation with ELISpot signals
Correlation between ELISpot signals (Figure 4C) or ranking (Figure S4I) and different predictors were measured with Spearman cor-

relation and corresponding P values were computed with the cor.test function in R.

Analysis of TCGA data
Mutations were grouped based on their number of occurrences (N) in TCGA patients considered in this work. Pearson correlation

between log(N) and < f + � f� > were computed in Figures 6C and 6D and statistical significance was assessed based on the cor.test

function in R. Two-sided Wilcoxon test were used in the insets of Figures 6C and 6D.

ADDITIONAL RESOURCES

The new immunogenicity predictor is available through the online interface http://prime.gfellerlab.org/ and code (including com-

mand-line executables) can be downloaded from: https://github.com/GfellerLab/PRIME.
Cell Reports Medicine 2, 100194, February 16, 2021 e7
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Figure S1: Immunogenicity predictions beyond presentation on HLA-I molecules, related to Figure 1. 
(A) Allele coverage across immunogenic (green) and non-immunogenic (red) peptides from mutated proteins in 
cancer, cancer testis antigens and pathogen proteins. 
(B) Peptide length distribution of immunogenic and non-immunogenic peptides analyzed in cancer neo-epitope 
studies (left) and cancer neo-epitope + cancer testis antigen + pathogen epitope studies (right). 
(C) Distribution of the scores of existing predictors for immunogenic (“Imm”, n=129) and non-immunogenic 
(“non-Imm”, n=3’200) cancer mutated peptides used in our benchmark. P-values are computed based on 
Wilcoxon test and are also shown in Figure 1C. 
(D) Ratio of binding affinity between the mutated and the wt for immunogenic and non-immunogenic cancer 
mutated peptides for mutations falling at positions with minimal impact on binding affinity (MIA positions, 
STAR Method) (left) or other positions (right). 
(E) Correlation between the predicted affinity and the Ratio of affinity between mutant and wt for immunogenic 
and non-immunogenic mutated peptides with mutations falling at MIA positions (left) or other positions (right). 
(F) Precision among the top n predicted mutated peptides for each predictor, where n=283 corresponds to the 
number of mutated peptides predicted to be immunogenic by the TESLA method. 
(G) Spearman correlation between the different input features of PRIME across all peptides used in our training 
set. 
 



 
Figure S2: Cross-validation and additional combinations of input features in PRIME, related to Figure 1. 
(A) Description of the different cross-validation frameworks. Left: Standard 10-fold cross-validation where the 
algorithm is trained on 9/10th of the data and tested on the remaining 1/10th of neo-epitopes. Middle: Leave-
one-study-out cross-validation across all seven neo-epitope studies with at least five immunogenic and five non-



immunogenic peptides. Each of the seven studies was iteratively used as test set. The other six studies were used 
for training, together with 6/7th of the other data (i.e., other neo-epitope studies + Pathogen/cancer testis + 
random). Right: Leave-one-allele-out cross-validation across the nine HLA-I alleles with at least five 
immunogenic and five non-immunogenic peptides in neo-epitope studies. Peptides restricted by HLA-I alleles 
of the same supertype as the one used in the test set (A02 in this example) were excluded from the training. 
(B) Benchmarking variants of PRIME trained without predicted affinity (“PRIME_NoMix”, dark green), trained 
without predicted affinity and without threshold on affinity values (“PRIME_NoMix_NoThresh”, green) and 
trained after randomizing MIA positions (“PRIME_Random_MIA”, dark red). For comparison, results for 
PRIME (yellow), MixMHCpred (light green), IEDB.imm with thresholding (dark blue) and IEDB.imm without 
thresholding (blue) are shown. 
(C) Effect of combining NetChop, TAP, IEDB.imm and DisToSelf with MixMHCpred. 
(D) Effect of combining NetChop, TAP, IEDB.imm and DisToSelf with PRIME. “comb” (cyan bars) stands for 
the full combination (NetChop + TAP + IEDB.imm + DisToSelf w/o PRIME). 
(E) Effect of the threshold on predicted binding to HLA-I (T=5%rank, based on MixMHCpred). 
 



 
Figure S3: PRIME correlates with structural avidity, related to Figure 3. 
(A) Representative results of dissociation assays (one for each epitope in Figure 3) for the off-rate 
measurements. The fluorescence intensity in the colored regions was averaged and used to fit a single-phase 
exponential decay. 
(B) Correlation between structural avidity (t1/2) and the predictions of PRIME trained without affinity 
predictions (PRIME_NoAff). 
(C) Correlation between killing (i.e., -log(EC50), averaged over multiple clones, see Table S4B) measured for 
eleven epitopes and the scores of the different predictors. Pearson correlation coefficients and P-values are 
shown above each plot. 
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Figure S4: PRIME reveals determinants of TCR recognition, related to Figure 4. 
(A) Coefficients of the logistic regression of PRIME using affinity to HLA-I (%rank) predicted by 
NetMHCpanEL, MHCflurry or HLAthena, or excluding peptides restricted to HLA-A*02:01. 



(B) Normalized amino acid frequencies at MIA positions in neo-epitopes. Normalization is done either by 
amino acid frequencies in the human proteome (taking for each protein residues between the fifth and the 
second-to-last positions to mimic the definition of MIA positions) (upper panel), or by amino acid frequencies at 
MIA positions in non-immunogenic cancer mutated peptides with the same distribution of predicted affinity to 
HLA-I, same HLA-I allele distribution and same peptide length distribution as the neo-epitopes (lower panel). 
(C) Normalized amino acid frequencies at MIA positions for a set of HLA-I ligands identified by MS with the 
same allele/length distribution as neo-epitopes. Normalization is done by the amino acid frequencies in proteins 
seen in HLA-I peptidomics studies (taking for each protein residues between the fifth and the second-to-last 
positions). 
(D) AUC obtained for the predictions with PRIME and MixMHCpred of naturally presented HLA-I ligands 
identified in the ten samples measured in Gfeller et al. (2018) (i.e., not included of the training of 
MixMHCpred). 
(E) Comparison between the regression coefficients of PRIME (Figure 4A) and the coefficients of amino acids 
reported in Calis et al. (2013) The Spearman correlation coefficient and the corresponding P-value are indicated. 
(F) Motif of HLA-A*02:01. The red box shows the fifth position, which displays very low specificity. 
(G) Predicted binding of all the P5 variants of the HIV (ALIRILQQL) and CMV (NLVPMVATV) epitopes 
with MixMHCpred. 
(H) Representative results of the IFNg ELISpot assays of Figure 4B for four different P5 variants of the CMV 
epitope (NLVPMVATV) with donor d2. The second line corresponds to unstimulated wells and the third line to 
the positive control (PMA/iono). 
(I) Spearman correlation coefficient between IFNg ELISpot signals from Tangri et al. (2001) for CEA 
(IMIGVLVGV) P5 analogs (n=17) or MAGEA3 (KVAELVHFL) P5 analogs (n=11) and the scores of different 
HLA-I ligand and immunogenicity predictors. Stars indicate P-values smaller than 0.05. 
 
 
 
 



 
Figure S5: Structural interpretation of PRIME predictions, related to Figure 5. 
(A) Structure of the complex with 2Fo-Fc electron density contoured at 1s shown for the TCR and the peptide. 
(B) Positioning of the TCR over the pHLA. The TCR binds with a traditional crossing angle of 27°. 
(C) Visualization of representative structures for 9-mer epitopes with aromatic residues directly contacting the 
TCR in X-ray structures from the PDB. The peptide is in yellow, the HLA-I in grey, the TCRa chain in light 
green and the TCRb chain in light blue. The PDB code, peptide sequence and buried solvent accessible surface 
area (Å2) of each underlined residue (same order as in the sequence) are given on top of each structure. 
Underlined peptide residues shown with sticks in the structures correspond to aromatic sidechains making direct 
contact (<4Å) with the TCR. 
(D) Distribution of buried solvent accessible surface areas across residues highlighted in (C). 
 



 
Figure S6: PRIME is consistent with immunoediting in human cancer, related to Figure 6. 
(A) Average value of 𝑓! − 𝑓" for mutations observed at least Nmin times in each tumor type in the TCGA 
cohort. Red points and error bars indicate the results after randomly shuffling the HLA-I alleles among patients 
of each tumor type. 
(B) Analysis of TCGA mutation frequencies in patients where they are predicted to be immunogenic (𝑓+) and 
patients where they are not (𝑓"), excluding from M (see Figure 6A) patients where a given mutation is found in 
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a poorly expressed gene, is predicted to be sub-clonal, or come from patients with deleterious alterations in 
antigen presentation genes. 
(C) Analysis of TCGA mutation frequencies in patients where they are predicted to be immunogenic (𝑓+) and 
patients where they are not (𝑓"), restricting M (see Figure 6A) to patients where the mutation either come from 
a poorly expressed, is predicted to be sub-clonal, or patients with deleterious alterations in antigen presentation 
genes. 
(D) Analysis of TCGA mutation frequencies in patients where they are predicted to be immunogenic (𝑓+) and 
patients where they are not (𝑓"), with predictions based on binding to HLA-I (MixMHCpred).  
 
  



Supplementary Tables 
 
Table S2: Positions with minimal impact on HLA-I affinity, related to Figure 1. 
Positions with minimal impact on HLA-I affinity and potentially interacting with the TCR for each of the alleles 
used for training PRIME. Different values of ‘g’ correspond to different groups of HLA-I alleles with distinct 
MIA positions (see STAR Method). 
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