

Supplementary Materials for

Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites

Hao Guo, Wei-Chun Chou, Yunjia J. Lai, Kaixin Liang, Jason W. Tam, W. June Brickey, Liang Chen, Nathan D. Montgomery, Xin Li, Lauren M. Bohannon, Anthony D. Sung, Nelson J. Chao, Jonathan U. Peled, Antonio L. C. Gomes, Marcel R. M. van den Brink, Matthew J. French, Andrew N. Macintyre, Gregory D. Sempowski, Xianming M. Tan, R. Balfour Sartor, Kun Lu, Jenny P. Y. Ting*

*Corresponding author. E-mail: jenny_ting@med.unc.edu

Published 30 October 2020, *Science* **370**, eaay9097 (2020) DOI: 10.1126/science.aay9097

This PDF file includes:

Materials and Methods Captions for Tables S1 to S5 Figs. S1 to S8 References

Other Supplementary Material for this manuscript includes the following: (available at science.sciencemag.org/content/370/6516/eaay9097/suppl/DC1)

Tables S1 to S5 (Excel files) MDAR Reproducibility Checklist (PDF)

25 Materials and Methods

26 <u>Mice</u>

27 All animal procedures were approved (protocol #17-128/20-054) by the University of 28 North Carolina Chapel Hill (UNC) Institutional Animal Care and Use Committee 29 (IACUC) and were conducted according to US National Institutes of Health Guide for the 30 Care and Use of Laboratory Animals. Animal numbers were empirically determined to 31 optimize numbers necessary for statistical significance based on our previous reports 32 using these models (minimum of three to seven animals per group). Animals were 33 excluded if they exhibited signs of disease not associated with radiation-induced injury 34 (for example, fight wounds and malocclusion). All experiments used littermate controls, 35 or their immediate descendants. Wild-type C57BL/6J mice were obtained from Jackson Laboratory and house-raised at UNC for at least nine generations. Conventionally raised 36 37 mice were bred and housed in specific-pathogen-free (SPF) conditions, and germ-free 38 (GF) animals were generated and housed in the National Gnotobiotic Rodent Resource 39 Center of North Carolina at Chapel Hill in AAALAC-accredited facilities.

- 40
- 41 <u>Total body radiation</u>

42 Total body radiation of mice was performed using an attenuator (X-302) with a 43 ¹³⁷Cesium gamma-ray irradiating source (Mark I, Model 68-1, J.L. Shepard & Associates, San Fernando, CA). Alternatively, a Gammacell® 40 Exactor ¹³⁷Cesium source (Serial 44 45 no. 265, Best Theratronics, Ottawa, Ontario) was also used for gamma-ray irradiation, 46 with dosimetry variation of +/-0.07 Gy as determined with phantoms by Dr. Ke Sheng, 47 UCLA, Los Angeles, CA. Non-anesthetized mice were placed in ventilated plastic pie 48 cages and exposed to 8.0 Gy-9.2 Gy total body radiation (depending on sex, age, 49 SPF/GF). Following radiation, mice were housed in sterile autoclaved cages and provided 50 standard chow and water ad libitum unless otherwise noted. Mice were monitored for 51 changes in body weight and other body parameters through 30 days post radiation unless 52 otherwise noted. A clinical score was determined using a cumulative scoring system (see 53 Supplementary Table S2) based on weight loss, temperature change, physical appearance, 54 posture, mobility, food consumption and hydration (1). Last observation carried forward 55 (LOCF) method was used when interpreting the clinical score plots. Immediate 56 indications for euthanasia included: weight loss greater than 25% of starting body weight, 57 unconsciousness, an inability to remain upright, agonal respiration (gasping) or 58 convulsions.

- 59
- 60 <u>Histopathology</u>

61 To assess tissue pathology, spleens, femurs, small intestines and colons were collected 62 and fixed in 10% neutral-buffered formalin, paraffin-embedded, and sectioned (4-micron 63 thickness) at the UNC Lineberger Animal Histopathology Core Facility. Prior to paraffin-64 embedding, femurs underwent an additional decalcification step in ImmunocalTM 65 (StatLab, McKinney, TX). Slides were stained with hematoxylin and eosin (H&E) and 66 semi-quantitatively scored by a board-certified pathologist (N.D.M.), who was blinded to 67 experimental conditions. Histology was performed using an Olympus BX43 microscope 68 with Olympus objective UPlanFL N 20X (na = 0.17). Images were taken with a DP27 69 camera and CellSens Dimension 1.16 software (Olympus). For all microscopic studies,

evaluation was performed at ambient temperature. Image processing was limited to
contrast adjustment and sharpening and was performed using Adobe Photoshop CS4
v11.0.2 (Adobe, San Jose, CA). Histology scores represent the sum of each histological
alterations as outlined below.

54 Spleen scoring system was based on the amount and patterns of extramedullary 55 hematopoiesis (EMH) as described here: (1) atrophy; (2) atrophic white pulp with less 56 than 20% EMH; (3) atrophic white pulp with 20-60% EMH; (4) atrophic white pulp with 57 60-100% EMH; (5) early white pulp recovery with extensive EMH in red pulp; (6) well-58 developed white pulp with extensive EMH in red pulp; (7) normal spleen.

Femur scoring system was based on the overall percentage of marrow space occupied by hematopoietic cells as compared to adipocytes and expressed as percent bone marrow cellularity [(marrow space occupied by hematopoietic cells/total marrow space) × ~100%].

Slides of spleen and femur sections were also stained with Ki67 antibody (Cell
Signaling, #12202) or cleaved caspase 3 antibody (Cell Signaling, #9661).

85

86 Bone marrow stem cells isolation

87 Bone marrow stem cells were obtained using the magnetic cell sorting (MACS) 88 system (Miltenyi Biotec) according to manufacturer's protocols. Briefly, bone marrow 89 cells were collected from the femur and tibia of mice and then incubated with CD117 90 MicroBeads (Miltenyi Biotec, #130-091-224) for 15 minutes in the refrigerator (2-8 °C). 91 After washing with buffer, cells were resuspended in 500 µL of buffer and applied to 92 MACS column. Columns were washed with the appropriate buffer and then placed on a 93 suitable collection tube, where magnetically labeled cells were flushed off. The purity of 94 the CD117⁺cells collected by the MACS was around 90%, and the viability was around 95 99%. These purified CD117⁺ cells were used in immunoblotting or ROS detection assay.

96

97 Intestinal epithelial cell (IEC) and intestinal intraepithelial lymphocyte (IEL) isolation

98 Colons were harvested from mice and cut open longitudinally. Feces were removed 99 by swishing the tissue in a 100 cm dish containing ice-cold PBS. Tissues were washed 100 again in a separate dish containing PBS and cut into small pieces. After transferring to 50 101 mL tubes containing PBS and shaken vigorously by hand, samples were washed with 102 PBS, until no bubbles appeared. Tissue pieces were then transferred into 5 ml Digestion 103 buffer (100 µl DNase (1/50, Sigma, #DN25-1G), 20 µl Collagenase D (1/250, Roche, 104 #11088874103), 100 µl Dispase (1/50, Stemcell, #07913)). Samples were minced well 105 with scissors and transferred into new 50 ml tubes followed by shaking at 37 °C for 30 106 min. Then, samples were further shaken vigorously for 2 minutes by hand. Homogenates 107 were supplemented with 14 mL complete RPMI and the digestion mixture was passed 108 through a 100 µm cell strainer. Cells were washed with 10 ml complete RPMI and the 109 pellets contained both IEL and IEC, which were used in immunoblot assay.

110

111 <u>ROS detection</u>

Intracellular ROS levels in bone marrow stem cells were detected using DCFDA
 Cellular ROS Detection Assay Kit (abcam, #ab113851) according to manufacturer's
 protocol. Briefly, cells were washed once in 1X Buffer and then incubated with 25 μM

115 DCFDA for 45 min at 37 °C. Cells were then washed with 1X Buffer and placed in 96-

116 well plate for fluorescent reading at Excitation/Emission settings of 485/535 nm. The 117 average level of ROS in non-radiation naïve group was calculated, and all samples' 118 results were normalized to this average.

119

120

Fecal DNA extraction, 16S rRNA gene sequencing and data analysis

121 Fecal sample preparation and 16S rRNA sequencing were conducted as previously 122 described (11, 42). Briefly, fecal samples were collected, snap-frozen and stored at -80°C. 123 DNA was isolated by incubating fecal material at 65 °C for 30 min in Lysing Matrix E 124 tubes (MP Biomedicals, #6913-100) containing 200 mM NaCl, 100 mM Tris, 20 mM 125 EDTA (pH 8.0), SDS and proteinase K (Qiagen). Phenol: Chloroform: Isoamyl alcohol (Invitrogen) was added, and samples were homogenized at 4 °C for 3 min using a bead 126 beater homogenizer followed by a centrifugation at 8000 rpm for 3 min at 4 °C. 127 Supernatants were incubated with Phenol: Chloroform (Invitrogen) for 10 min at room 128 129 temperature. Samples were then centrifuged at 13,000 rpm for 5 min at 4 °C, and aqueous phases were incubated with isopropanol and 3 M sodium acetate (pH 5.2) at -20 °C 130 131 overnight. The precipitated DNA was collected by centrifugation at 13000 rpm at 4 °C 132 for 20 min, washed twice with 100% cold ethanol and resuspended in TE buffer. DNA 133 was further purified using a DNeasy Blood and Tissue Kit (Qiagen, #69504) according to 134 the manufacturer's protocol.

- 135 Fecal DNA samples were amplified by PCR using barcoded primer pairs targeting the V1-V2 or V3-V4 region of the 16S rRNA gene. PCR amplicons were sequenced using 136 137 the Mi-Seq Illumina sequencer. The resulting bacterial sequence fragments were 138 clustered into Operational Taxonomic Units (OTUs) and aligned to Greengenes microbial 139 gene database with 97% sequence similarity in QIIME (1.8.0). Bacterial taxonomy 140 summarization, rarefaction analyses of microbial diversity, compositional differences 141 (with dissimilarity value indicated by Unweighted UniFrac Distance) were calculated in 142 QIIME as previously described using scripts (including pick open reference otus.py, 143 alpha rarefaction.py, jackknifed beta diversity.py summarize taxa.py, and 144 make distance boxplots.py) (11). PCA plots were generated by QIIME script 145 (make 2d plots.py). Heatmap was generated based on normalized bacteria abundance 146 using a R function heatmap (a function in R stats). Specifically, we first removed bacteria 147 which have zero or very low abundance (total abundance across samples < 0.000165) in 148 all samples. This reduced the total number of bacteria from 172 to 81. For the remaining 149 81 bacteria, we sorted them by t-test statistics (to test abundance between the elite-150 survivors and controls). To enhance the contrast, we used by-row (by bacteria) 151 normalized values of relative abundance to generate the heatmap.
- 152

153 SCFAs detection by GC-MS quantitation

Authentic reference standards of acetic acid (AA), propionic acid (PA), and butyric 154 acid (BA) were obtained from Sigma-Aldrich (St. Louis, MO, USA). Stable isotope 155 156 labelling d4-AA, d2-PA and d2-BA were obtained from CDN Isotopes (Pointe-Claire, 157 Ouebec, Canada). HPLC-grade hexane and water were purchased from Thermo Fisher 158 Scientific (Waltham, MA, USA), whereas propyl chloroformate (PCF), pyridine (Py), 1-159 propanol (PrOH), as well as semiconductor-grade sodium hydroxide (NaOH) and 160 anhydrous sodium sulfate (Na₂SO₄), were purchased from Sigma-Aldrich (St. Louis, MO, 161 USA).

162 Fecal SCFA contents were quantified as described in Zheng et al. (43) with 163 modifications. For each fecal sample, ~40 mg aliquots were extracted on a TissueLyzer (Qiagen, Hilden, Germany) with 0.005 M NaOH solution containing 50 µg/mL of d4-AA, 164 165 10 µg/mL of d2-PA, and 10 µg/mL of d2-BA, followed by 20 min centrifugation at 13,200 rpm. The supernatant layers were transferred to glass tubes and derivatized by 166 167 subsequently adding water, PrOH:Py (3:2, v/v) and PCF. Two-minute sonication was 168 then performed, and the propyl derivatives were extracted twice with hexane, combined 169 and transferred to Na₂SO₄-containing autosampler vials for GC-MS quantitation. The 170 instrumental analysis was conducted on an Agilent 7820A GC-5977B MSD system 171 (Santa Clara, CA, USA), where one-microliter extracts were injected under 1:10 split 172 mode, ionized with an electron ionization source, and separated by an Agilent DB-5 173 column (30m x 0.25mm x 0.25 µm) (Santa Clara, CA, USA) with 1 mL/min helium 174 flowing through the column. The temperature program was as follows: initial oven 175 temperature held at 50 °C for 2 min, ramped to 70 °C by 10 °C/min, to 85 °C by 3 °C/min, to 110 °C by 5 °C/min, to 290 °C by 30 °C/min, and finally held at 290 °C for 8 min. The 176 177 relative standard deviations of both intra- and inter-day precision of analysis were below 178 10%. Limits of quantitation was determined to be 1 ng on column for AA, 1 ng for PA 179 and 0.1 ng for BA.

- 180
- 181 <u>Untargeted metabolomics</u>

182 LC-MS grade solvents including water, methanol, acetonitrile, and formic acid were 183 purchased from Thermo Fisher Scientific (Waltham, MA, USA). Untargeted 184 metabolomics of mouse feces was performed on a high-resolution accurate mass (HRAM) 185 mass spectrometry-based platform coupling to а cutting-edge integrated 186 chemoinformatics pipeline as modified from a previous publication (22). Untargeted metabolomic profiling of mouse feces was conducted on a LC-MS platform. The system 187 188 consisted of a Vanquish UHPLC and a Thermo Scientific Q-Exactive high resolution 189 /accurate mass spectrometer interfacing with a heated electrospray ionization (HESI) 190 source and a hybrid quadrupole-orbitrap mass analyzer operated at 70,000 mass 191 resolution (Waltham, MA, USA). For each sample, ~25 mg feces was aliquoted, shake-192 extracted by ice-cold methanol:water (1:1, v/v) and centrifuged at 12,000 rpm for 10 min. 193 The supernatants were dried in a vacuum concentrator (Waltham, MA, USA) and 194 resuspended in acetonitrile:water (2:98, v/v) upon instrumental analysis. Extracts of 195 equivalence to 0.125 mg raw feces were injected and subject to a chromatographic 196 separation using a C18 column (Waters Acquity UPLC HSS T3, 2.1 mm × 100 mm, 1.7 197 μ m) (Milford, MA, USA). The mobile phases consisted of 0.1% formic acid in water 198 ("A") and 0.1% formic acid in acetonitrile ("B") and the LC eluents were run at a 199 constant flow rate of 0.4 mL/min under 40 °C, following the gradient: 2% B, 0-2 min; 2% 200 B to 80% B, 2-11 min; 80% B to 98% B, 11-12 min; 98% B, 12-16 min; 98% B to 2% B, 201 16-16.1 min; 2% B, 16.1-20 min. The HESI ion source conditions were as follows: sheath 202 gas flow rate, 60 L/min; aux gas flow rate, 10 L/min; sweep gas flow rate, 1 L/min; spray 203 voltage, 2.75 kV; capillary temperature, 325 °C; aux gas heater temperature, 400 °C. 204 Stringent quality assurance (QA) /quality control (QC) procedures were applied, 205 including timely mass calibration, sample randomization, and intermittent QC injection.

All MS1 raw data were processed in XCMS (Scripps, La Jolla, CA) for peak picking, peak alignment, gap filling and sample normalization. Univariate Welch's t-test and multivariate principal component analysis (PCA) were applied to screen for ion features of distinct group differences. For ion features of top 500 largest fold changes or of potential microbial relevance, MS/MS spectral data in fullscan plus parallel reaction monitoring (PRM) hybrid mode were collected and fed to a cutting-edge chemoinformatic pipeline that integrates empirical MS/MS database search and in-silico structural dereplication. Compound identification was implemented in MS-DIAL 2.94 and MS-FINDER 3.12, with four analytical metrics (i.e. accurate mass, isotopic abundances, tandem mass spectra and retention time) imported to boost annotation confidence while reducing scoring bias. All identifications were manually curated and validated as available using an in-house metabolomic database established based on authentic chemical standards. Confidence level of annotation was assigned to each structure as required by the Metabolomics Standards Initiative (MSI). For pathway analysis and visualization, MetaboAnalyst 4.0 was used to perform metabolite enrichment analysis (MSEA) and create a heatmap showing a select of 50 annotated structures with largest group difference; a MetaMapp approach was used to compute a metabolomic network clustering by biochemical and chemical relationship that was further visualized in CytoScape 3.7.1.

Fig. S1.

Gut microbiota from elite-survivors attenuate radiation-induced disease. SPF C57BL/6 mice passively received microbiota exchange via dirty cage sharing followed by a high dose of total body radiation as shown in Fig 1E. Femurs and spleens were obtained from recipients at day 30 post radiation and stained for H&E (A), cleaved caspase 3 (B) and Ki67 (C). In (A), white pulp (WP, black dash circles), red pulp (RP, areas between black solid lines), granulopoiesis (yellow dash circle), and megakaryocytes (black arrows) are shown. Bone marrow cellularity and spleen extramedullary hematopoiesis (EMH) scores were quantified (see Method). (D) Spleens were collected at day 30 post radiation. Cleaved caspase 3 protein levels were detected by western blot. A.U., arbitrary units. Each lane and symbol represent one mouse. Figures represent or are pooled from two-three independent experiments. Error bars show SEM, **p<0.01, ***p<0.001, ****p<0.001 determined by Mann-Whitney test (A, D).

Fecal microbiota transplant protects against radiation-induced injury and death. (A)

Illustration of FMT experiment in SPF C57BL/6 mice. (B) Survival rates and (C) clinical scores were monitored for 30 days post total body radiation. Fractions indicate the number of mice that survived to the end of the experiment. Figures represent pooled data from three independent experiments. (D) Mice were euthanized at day 12 post radiation. Femurs and spleens were stained for H&E and quantified for bone marrow cellularity and spleen extramedullary hematopoiesis (EMH) scores. Focal hematopoiesis (yellow arrows and area within yellow solid lines) and lymphocyte depleted follicles (area within black dashed lines) are shown. Each symbol represents one mouse. Error bars show SEM, **p<0.01, ***p<0.001 determined by log-rank (Mantel Cox) test (B) and Mann-Whitney test for area under the curve (AUC) (C).

Bacteria strains that were reduced in elite-survivors do not show any radioprotection. SPF C57BL/6 mice received antibiotics treatment followed by *Staphylococcus aureus*, *Staphylococcus saprophyticus*, *Streptococcus agalactiae*, *Lachnospiraceae* (Lachno, a mixture of 23 individual strains in the family *Lachnospiraceae*) or media control (BHI) administration twice a week for eight weeks. A high dose of total body radiation was conducted. (A) Survival rates and (B) clinical scores were monitored for 30 days post radiation. Fractions indicate the number of mice that survived to the end of the experiment. Figures represent pooled data from three independent experiments. Each symbol represents one mouse. Error bars show SEM, *p<0.05, ***p<0.001 determined by log-rank (Mantel Cox) test (A) and Mann-Whitney test for area under the curve (AUC) (B).

Lachnospiraceae does not promote tumor growth nor does it interfere with the efficacy of radiotherapy. (A) Illustration of *Lachnospiraceae* administration in tumor models. SPF C57BL/6 mice received antibiotics treatment followed by *Lachnospiraceae* (Lachno) or media control (BHI) administration twice a week for eight weeks. Then, melanoma cell line (B16) or lymphoma cell line (EL4) were subcutaneously injected into recipients' abdomen. (B-C) Tumor volumes were monitored and calculated by length*length*width/2. (D) Illustration of *Lachnospiraceae* administration in tumor radiotherapy models. SPF mice received antibiotics treatment followed by *Lachnospiraceae* antibiotics treatment followed by *Lachnospiraceae* (Lachno) or media control (BHI) administration twice a week for eight weeks. Then, melanoma cell line (B16) was subcutaneously injected into recipients' abdomen. Ten days later, tumor site localized radiation (10 Gy) was conducted. (E) Survival rate and (F) Tumor volumes (length*length*width/2) were monitored. (G) Tumor growth in each individual mouse was shown. Figures represent or are pooled from two-three independent experiments. Each symbol represents one mouse. Error bars show SEM, n.s. not significant, **p<0.01 determined by log-rank (Mantel Cox) test (E) and Mann-Whitney test for area under the curve (AUC) (F).

Short chain fatty acid levels are increased in elite-survivors or ES-Recipients as detected by GC-MS. Acetate, butyrate, propionate and total SCFAs levels in the fecal materials were determined by Mass Spectrometry from (A) controls (n=6) and elite-survivors (n=8-12) groups or from (B) recipient groups of dirty cage sharing experiment (Ctrl-Recip, n=7; ES-Recip, n=8) described in Fig. 2A. Fecal samples were collected from two independent experiments. Each symbol represents one mouse. Error bars show SEM, n.s., not significant, *p<0.05, determined by Mann-Whitney test.

The efficiency of *Lachnospiraceae* radioprotection depends on SCFA production. (A-B) 23 individual strains in the family *Lachnospiraceae* were cultured separately and the SCFAs levels in the culture medium were detected by mass spectrometry. Three strains (No. 8, 9, 21) that produced low levels of SCFAs were referred to as Lachno-SCFA low producer; while three strains (No. 2, 14, 20) that produced high levels of SCFAs were referred to as Lachno-SCFA high producer. Although strain No. 7 and 10 produced high levels of SCFAs, we didn't choose them because they grew extremely slowly in vitro. (B) The butyrate and propionate production from these two groups are shown. (C) Illustration of Lachno-SCFA low/high producer treatment in SPF C57BL/6 mice. (D) Survival rates and (E) clinical scores were monitored for 30 days post total body radiation. Error bars show SEM, *p<0.05, ****p<0.0001 determined by log-rank (Mantel Cox) test (D) and Mann-Whitney test for area under the curve (AUC) (E).

Radiation-induced DNA damage is attenuated by SCFAs treatment. SPF C57BL/6 mice received 200 mM acetate-, butyrate- or propionate-containing drinking water for eight weeks followed by a high dose of total body radiation. Primary intestinal epithelial cell (IEC) and intestinal intraepithelial lymphocyte (IEL) were isolated from indicated groups (N: naïve; B: butyrate; P: propionate; C: control) at 24h post radiation. Phosphorylated and total p53 and 53BP1 were detected by western blot.

Metabolic alterations between age-matched controls and elite-survivors by untargeted metabolomics. Metabolite profiles were measured in fecal samples from controls and elite-survivors at day 290 post total body radiation. (A) Hierarchical clustering heatmap representing 50 highly changed metabolites of distinct group patterns are shown. (B) Relative abundance of selected tryptophan metabolites. Each symbol represents one mouse. Error bars show SEM, *p<0.05, **p<0.01 determined by Student's t test.

Table S1.

Bacterial taxa list in heatmap analysis compared between elite-survivors and agematched controls. (separate file)

Table S2.

Clinical score parameters for radiation induced sickness. (separate file)

Table S3.Leukemia patients' information. (separate file)

Table S4.

A list of metabolites assayed and analyzed with significant difference between age- matched controls and elite-survivors (Wech's t-test, P<0.05, fold change>1.2). (separate file)

Table S5.

A list of 141 unique metabolites that showed difference between age-matched controls and elite-survivors, detailing correlations between metabolomics data and community metabolic potential scores and potential taxonomic contributors. (separate file)

H&E

D

- Staphylococcus aureus (n=20)
- -D- Staphylococcus saprophyticus (n=18)

Age-matched controls vs. elite-survivors

В

Lachno-SCFA high producer (n=8)

References and Notes

- M. Hauer-Jensen, J. W. Denham, H. J. Andreyev, Radiation enteropathy: Pathogenesis, treatment and prevention. *Nat. Rev. Gastroenterol. Hepatol.* **11**, 470–479 (2014). doi:10.1038/nrgastro.2014.46 Medline
- A. K. Shadad, F. J. Sullivan, J. D. Martin, L. J. Egan, Gastrointestinal radiation injury: Prevention and treatment. *World J. Gastroenterol.* 19, 199–208 (2013). doi:10.3748/wjg.v19.i2.199 Medline
- 3. A. L. Kau, P. P. Ahern, N. W. Griffin, A. L. Goodman, J. I. Gordon, Human nutrition, the gut microbiome and the immune system. *Nature* 474, 327–336 (2011). <u>doi:10.1038/nature10213</u> <u>Medline</u>
- 4. P. A. Crawford, J. I. Gordon, Microbial regulation of intestinal radiosensitivity. *Proc. Natl. Acad. Sci.* U.S.A. 102, 13254–13259 (2005). doi:10.1073/pnas.0504830102 Medline
- 5. M. A. Ciorba, T. E. Riehl, M. S. Rao, C. Moon, X. Ee, G. M. Nava, M. R. Walker, J. M. Marinshaw, T. S. Stappenbeck, W. F. Stenson, Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. *Gut* 61, 829–838 (2012). doi:10.1136/gutjnl-2011-300367 Medline
- 6. A. Wang, Z. Ling, Z. Yang, P. R. Kiela, T. Wang, C. Wang, L. Cao, F. Geng, M. Shen, X. Ran, Y. Su, T. Cheng, J. Wang, Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: A pilot study. *PLOS ONE* 10, e0126312 (2015).
 <u>doi:10.1371/journal.pone.0126312</u> <u>Medline</u>
- 7. T. E. Riehl, D. Alvarado, X. Ee, A. Zuckerman, L. Foster, V. Kapoor, D. Thotala, M. A. Ciorba, W. F. Stenson, *Lactobacillus rhamnosus* GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. *Gut* 68, 1003–1013 (2019). <u>doi:10.1136/gutjnl-2018-316226 Medline</u>
- C. Manichanh, E. Varela, C. Martinez, M. Antolin, M. Llopis, J. Doré, J. Giralt, F. Guarner, J.-R. Malagelada, The gut microbiota predispose to the pathophysiology of acute postradiotherapy

diarrhea. *Am. J. Gastroenterol.* **103**, 1754–1761 (2008). <u>doi:10.1111/j.1572-</u> 0241.2008.01868.x <u>Medline</u>

- Y. S. Kim, J. Kim, S. J. Park, High-throughput 16S rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. *Anaerobe* 33, 1–7 (2015). doi:10.1016/j.anaerobe.2015.01.004 Medline
- L. Chen, J. E. Wilson, M. J. Koenigsknecht, W.-C. Chou, S. A. Montgomery, A. D. Truax, W. J. Brickey, C. D. Packey, N. Maharshak, G. K. Matsushima, S. E. Plevy, V. B. Young, R. B. Sartor, J. P.-Y. Ting, NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. *Nat. Immunol.* 18, 541–551 (2017). doi:10.1038/ni.3690 Medline
- A. E. Reeves, M. J. Koenigsknecht, I. L. Bergin, V. B. Young, Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. *Infect. Immun.* 80, 3786–3794 (2012). doi:10.1128/IAI.00647-12 Medline
- 12. N. Reichardt, S. H. Duncan, P. Young, A. Belenguer, C. McWilliam Leitch, K. P. Scott, H. J. Flint, P. Louis, Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. *ISME J.* 8, 1323–1335 (2014). doi:10.1038/ismej.2014.14 Medline
- 13. P. M. Smith, M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-Y, J. N. Glickman,
 W. S. Garrett, The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. *Science* 341, 569–573 (2013). doi:10.1126/science.1241165 Medline
- 14. N. Arpaia, C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, A. Y. Rudensky, Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. *Nature* 504, 451–455 (2013). doi:10.1038/nature12726 Medline
- J. H. Kim, R. K. Thimmulappa, V. Kumar, W. Cui, S. Kumar, P. Kombairaju, H. Zhang, J. Margolick, W. Matsui, T. Macvittie, S. V. Malhotra, S. Biswal, NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. *J. Clin. Invest.* 124, 730–741 (2014). <u>doi:10.1172/JCI70812</u> <u>Medline</u>

- 16. X. Gao, Q. Cao, Y. Cheng, D. Zhao, Z. Wang, H. Yang, Q. Wu, L. You, Y. Wang, Y. Lin, X. Li, Y. Wang, J.-S. Bian, D. Sun, L. Kong, L. Birnbaumer, Y. Yang, Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. *Proc. Natl. Acad. Sci. U.S.A.* 115, E2960–E2969 (2018). doi:10.1073/pnas.1720696115 Medline
- M. G. Rooks, W. S. Garrett, Gut microbiota, metabolites and host immunity. *Nat. Rev. Immunol.* 16, 341–352 (2016). doi:10.1038/nri.2016.42 Medline
- M. Levy, E. Blacher, E. Elinav, Microbiome, metabolites and host immunity. *Curr. Opin. Microbiol.* 35, 8–15 (2017). <u>doi:10.1016/j.mib.2016.10.003 Medline</u>
- N. D. Mathewson, R. Jenq, A. V. Mathew, M. Koenigsknecht, A. Hanash, T. Toubai, K. Oravecz-Wilson, S.-R. Wu, Y. Sun, C. Rossi, H. Fujiwara, J. Byun, Y. Shono, C. Lindemans, M. Calafiore, T. M. Schmidt, K. Honda, V. B. Young, S. Pennathur, M. van den Brink, P. Reddy, Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. *Nat. Immunol.* 17, 505–513 (2016). doi:10.1038/ni.3400 Medline
- 20. T. Feehley, C. H. Plunkett, R. Bao, S. M. Choi Hong, E. Culleen, P. Belda-Ferre, E. Campbell, R. Aitoro, R. Nocerino, L. Paparo, J. Andrade, D. A. Antonopoulos, R. Berni Canani, C. R. Nagler, Healthy infants harbor intestinal bacteria that protect against food allergy. *Nat. Med.* 25, 448–453 (2019). doi:10.1038/s41591-018-0324-z Medline
- 21. G. T. Macfarlane, S. Macfarlane, Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC
 Int. 95, 50–60 (2012). doi:10.5740/jaoacint.SGE Macfarlane Medline
- E. E. Canfora, J. W. Jocken, E. E. Blaak, Short-chain fatty acids in control of body weight and insulin sensitivity. *Nat. Rev. Endocrinol.* 11, 577–591 (2015). doi:10.1038/nrendo.2015.128 Medline
- M. C. Maa, M. Y. Chang, M.-Y. Hsieh, Y.-J. Chen, C.-J. Yang, Z.-C. Chen, Y. K. Li, C.-K. Yen, R.-R. Wu, T.-H. Leu, Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. *J. Nutr. Biochem.* 21, 1186–1192 (2010). doi:10.1016/j.jnutbio.2009.10.004 Medline

- 24. L. Liu, L. Li, J. Min, J. Wang, H. Wu, Y. Zeng, S. Chen, Z. Chu, Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. *Cell. Immunol.* 277, 66– 73 (2012). <u>doi:10.1016/j.cellimm.2012.05.011</u> <u>Medline</u>
- 25. P. V. Chang, L. Hao, S. Offermanns, R. Medzhitov, The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. *Proc. Natl. Acad. Sci. U.S.A.* 111, 2247–2252 (2014). doi:10.1073/pnas.1322269111 Medline
- 26. A. Trompette, E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, B. J. Marsland, Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. *Nat. Med.* 20, 159–166 (2014). doi:10.1038/nm.3444 Medline
- 27. M. Wlodarska, C. Luo, R. Kolde, E. d'Hennezel, J. W. Annand, C. E. Heim, P. Krastel, E. K. Schmitt, A. S. Omar, E. A. Creasey, A. L. Garner, S. Mohammadi, D. J. O'Connell, S. Abubucker, T. D. Arthur, E. A. Franzosa, C. Huttenhower, L. O. Murphy, H. J. Haiser, H. Vlamakis, J. A. Porter, R. J. Xavier, Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. *Cell Host Microbe* 22, 25–37.e6 (2017). doi:10.1016/j.chom.2017.06.007
 Medline
- S. Krishnan, Y. Ding, N. Saedi, M. Choi, G. V. Sridharan, D. H. Sherr, M. L. Yarmush, R. C. Alaniz, A. Jayaraman, K. Lee, Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. *Cell Rep.* 23, 1099–1111 (2018). doi:10.1016/j.celrep.2018.03.109 Medline
- 29. C. J. Kurkjian, H. Guo, N. D. Montgomery, N. Cheng, H. Yuan, J. R. Merrill, G. D. Sempowski, W. J. Brickey, J. P.-Y. Ting, The toll-like receptor 2/6 agonist, FSL-1 lipopeptide, therapeutically mitigates acute radiation syndrome. *Sci. Rep.* 7, 17355 (2017). <u>doi:10.1038/s41598-017-17729-9</u> Medline
- 30. J. U. Peled, A. L. C. Gomes, S. M. Devlin, E. R. Littmann, Y. Taur, A. D. Sung, D. Weber, D. Hashimoto, A. E. Slingerland, J. B. Slingerland, M. Maloy, A. G. Clurman, C. K. Stein-Thoeringer, K. A. Markey, M. D. Docampo, M. Burgos da Silva, N. Khan, A. Gessner, J. A. Messina, K. Romero, M. V. Lew, A. Bush, L. Bohannon, D. G. Brereton, E. Fontana, L. A.

Amoretti, R. J. Wright, G. K. Armijo, Y. Shono, M. Sanchez-Escamilla, N. Castillo Flores, A.
Alarcon Tomas, R. J. Lin, L. Yáñez San Segundo, G. L. Shah, C. Cho, M. Scordo, I. Politikos, K.
Hayasaka, Y. Hasegawa, B. Gyurkocza, D. M. Ponce, J. N. Barker, M.-A. Perales, S. A. Giralt, R.
R. Jenq, T. Teshima, N. J. Chao, E. Holler, J. B. Xavier, E. G. Pamer, M. R. M. van den Brink,
Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation. *N. Engl. J. Med.* 382, 822–834 (2020). doi:10.1056/NEJMoa1900623 Medline

- 31. A. D. Truax, L. Chen, J. W. Tam, N. Cheng, H. Guo, A. A. Koblansky, W.-C. Chou, J. E. Wilson, W. J. Brickey, A. Petrucelli, R. Liu, D. E. Cooper, M. J. Koenigsknecht, V. B. Young, M. G. Netea, R. Stienstra, R. B. Sartor, S. A. Montgomery, R. A. Coleman, J. P.-Y. Ting, The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. *Cell Host Microbe* 24, 364–378.e6 (2018). doi:10.1016/j.chom.2018.08.009
 Medline
- 32. X. Zheng, Y. Qiu, W. Zhong, S. Baxter, M. Su, Q. Li, G. Xie, B. M. Ore, S. Qiao, M. D. Spencer, S. H. Zeisel, Z. Zhou, A. Zhao, W. Jia, A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. *Metabolomics* 9, 818–827 (2013). doi:10.1007/s11306-013-0500-6 Medline
- 33. Z. Lai, H. Tsugawa, G. Wohlgemuth, S. Mehta, M. Mueller, Y. Zheng, A. Ogiwara, J. Meissen, M. Showalter, K. Takeuchi, T. Kind, P. Beal, M. Arita, O. Fiehn, Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. *Nat. Methods* 15, 53–56 (2018). doi:10.1038/nmeth.4512 Medline