Chemistry–A European Journal

Supporting Information

Synergistic Effect of Simultaneous Doping of Ceria Nanorods with Cu and Cr on CO Oxidation and NO Reduction

Shawn C. Rood,^[a] Oriol Pastor-Algaba,^[b] Albert Tosca-Princep,^[b] Bruno Pinho,^[c] Mark Isaacs,^[d] Laura Torrente-Murciano,^{*[c]} and Salvador Eslava^{*[a, e]}

Ce L series

250nm

٢

٦

250nm

Figure S1. TEM-EDS analysis of 1%Cu-ceria nanorods.

Ce L series

250nm

250nm

Figure S2. TEM-EDS analysis of 3%Cu-ceria nanorods.

Ce L series

250nm ٦

Г

Cr K series

250nm ٦

Figure S3. TEM-EDS analysis of 5%Cu-ceria nanorods.

250nm

Cu K series

250nm

Ce L series

250nm

250nm

Peak	Centre (°C)	H_2 consumption
Undonad caria paparada	. ,	[Cfff ^{or} (STP) H ₂ g _{cat} ⁻¹]
Low temperature 1	350	7.6
Low temperature 2	467	1.0
High temperature 1	833	20.2
1 wt % Cu	000	20.2
Low temperature 1	333	1 7
Low temperature 2	421	5.0
High temperature 1	844	28.1
3 wt. % Cu	011	20.1
Low temperature 1	297	0.9
Low temperature 2	367	5.6
High temperature 1	831	24.9
5 wt. % Cu		
Low temperature 1	275	1.1
Low temperature 2	338	7.4
High temperature 1	863	26.8
7 wt. % Cu		
Low temperature 1	197	2.5
Low temperature 2	222	5.0
Low temperature 3	272	7.9
High temperature 1	852	23.6
1 wt. % Cr		
Low temperature 1	303	3.2
Low temperature 2	418	6.5
High temperature 1	822	13.9
3 wt. % Cr		
Low temperature 1	295	3.9
Low temperature 2	435	10.4
High temperature 1	826	16.8
<u>5 wt. % Cr</u>		
Low temperature 1	304	2.4
Low temperature 2	414	8.7
High temperature 1	822	14.6
1 wt. % each Cu and Cr		
Low temperature 1	192	3.5
Low temperature 2	313	1.3
Low temperature 3	404	7.1
High temperature 1	798	11.3

Table S1. TPR peak locations and areas for undoped and doped ceria nanorods, using full Gaussian distributions as shown in Figure S1 for an example.

Figure S5. Deconvolution of the TPR experimental data with multiple Gaussian distributions (here for undoped CeO₂). The full area of each gaussian peak was accounted for the calculation of the hydrogen consumption in cm³ (STP) $H_2 g_{cat}^{-1}$.

Figure S6. Nitrogen isotherms for (a) undoped ceria nanorods, (b) 1 wt. % Cu-doped ceria nanorods, and (c) 1 wt. % Cr-doped ceria nanorods.

Figure S7. Repeated CO oxidation steps (a) at different temperatures for (b) undoped ceria nanorods, (c) 1 wt. % Cu-doped ceria nanorods, (d) 1 wt. % Cr-doped ceria nanorods, and (e) 1%Cu/1%Cr-ceria.

Figure S8. Repeated NO reduction steps for (a) undoped ceria nanorods, (b) 1 wt. % Cu-doped ceria nanorods, (c) 1 wt. % Cr-doped ceria nanorods, and (d) 1%Cu/1%Cr-ceria.

Figure S9. CO oxidation catalytic conversions for ceria nanorods co-doped with 1 wt. % each Cu and Cr (15 mg catalyst weight), compared with a physical mixture of 2 wt. % Cu-doped ceria and 2 wt. % Cr-doped ceria (7.5 mg each, to achieve equal amounts of Ce, Cr, and Cu).