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SUPPLEMENTAL MATERIAL AND METHODS 

Expression microarray pre-processing 

Raw Affymetrix HTA 2.0 array intensity data were analyzed using open-source 

Bioconductor packages on R. The quiescence and the RAS-OIS time series data were 

normalized together (2 conditions, 2 biological replicates per condition, 6 time points per 

replicates) using the robust multi-array average normalization approach implemented in 

the oligo package. Internal control probe sets were removed and average expression 

deciles over time-points were independently defined for each treatment. Probes whose 

average expression was lower than the 4th expression decile in both conditions were 

removed for subsequent analyses. To remove sources of variation and account for 

batch effects, data were finally corrected with the sva package. To recover as much 

annotation information as possible, we combined Affymetrix HTA 2.0 annotations 

provided by Affymetrix and Ensembl through the packages hta20sttranscriptcluster.db 

and biomaRt. Principal component analysis and bi-clustering based on Pearson’s 

correlation and Ward’s aggregation criterion were used to confirm consistency between 

biological replicates and experimental conditions at each step of the pre-processing. 

 

Self-organizing maps (SOM) 

Normalized log-scaled and filtered expression values were processed using the 

unsupervised machine learning method implemented in oposSOM18 to train a self-

organizing map. This algorithm applies a neural network algorithm to project high 

dimensional data onto a two-dimensional visualization space. In this application, we 

used a two-dimensional grid of size 60 x 60 metagenes of rectangular topology. The 

SOM portraits were then plotted using a logarithmic fold-change scale. To define 
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modules of co-expressed meta-genes, we used a clustering approach relying on 

distance matrix and implemented in oposSOM. Briefly, clusters of gene expression were 

determined based on the patterns of the distance map which visualizes the mean 

Euclidean distance of each SOM unit to its adjacent neighbors. This clustering algorithm 

– referred to as D-clustering – finds the SOM units referring to local maxima of their 

mean distance with respect to their neighbors. These pixels form halos edging the 

relevant clusters in the respective distance map and enable robust determination of 

feature clusters in the SOM. We finally performed a gene set over-representation 

analysis in each cluster considering the Molecular Signature Database (MSigDB) 

hallmark gene sets using a right-tail modified Fisher’s exact test and the hypergeometric 

distribution to provide p-value. 

 

Information theory – derived metrics 

To evaluate transcriptome diversity and specialization, we used an approach based on 

information theory as described in 19.  

 

Gene expression unsupervised clustering 

Probes constitutive of the RAS-OIS specific transcriptomic signature were clustered 

using the weighted gene correlated network analysis approach implemented in the 

WGCNA R package49. Standard WGCNA parameters were used for the analysis, with 

the exceptions of soft-thresholding power, which was defined using methods described 

by and set at 18. The 7 co-expressed probe clusters identified were further functionally 

characterized using gene set over-representation tests. The same approach as 

previously described for the SOM-defined clusters was used. 
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Histone modification ChIP-seq data processing 

Reads were cleaned and trimmed using fastq-mcf from the ea-utils suite v1.1.2 to 

remove adapters, low quality bases and reads, and discard reads shorter than 25 bp 

after filtering. Reads were then aligned to the human reference genome (hg19) with 

bowtie v1.1.1 using best matches parameters (bowtie -v 2 -m 1 --best --strata). 

Alignment files were further processed with samtools v1.2 and PicardTools v1.130 to 

flag PCR and optical duplicates and remove alignments located in Encode blacklisted 

regions. Fragment size was estimated in silico for each library using spp v1.10.1. 

Genome-wide consistency between replicates was checked using custom R scripts. 

Enriched regions were identified for each replicate independently with MACS v2.1.0 with 

non-IPed genomic DNA as a control (macs2 callpeak --nomodel --shiftsize --shift-control 

--gsize hs -p 1e-1). These relaxed peak lists were then processed through the 

irreproducible discovery rate (IDR) pipeline50 to generate an optimal and reproducible 

set of peaks for each histone modification and each time point. 

 

ATAC-seq data processing 

Paired-ends reads were cropped to 100bp with trimmomatic v0.3651 and cleaned using 

cutadapt v1.8.352 to remove Nextera adapters, low quality bases and reads, and discard 

reads shorter than 25 bp after filtering. Fragments were then aligned to the human 

reference genome (hg19) using bowtie2 v2.2.3 discarding inconsistent pairs and 

considering a maximum insert size of 2kb (bowtie2 -N 0 --no-mixed --no-discordant --

minins 30 --maxins 2000). Alignment files were further processed with samtools v1.2 

and PicardTools v1.130 to flag PCR and optical duplicates and remove alignments 

located in Encode blacklisted regions. Accessible regions were identified using MACS2 
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v2.1.0 without control (macs2 callpeak --gsize hs -p 1e-3). These relaxed peak lists were 

then processed through the irreproducible discovery rate (IDR) pipeline to generate an 

optimal and reproducible set of peaks for each time point. 

 

Normalized ATAC-seq and ChIP-seq signal tracks 

After verifying the consistency between biological replicates, time points and data type 

using deepTools53, alignments related to biological replicates for a given assay and a 

given time point were combined. We then binned the genome in 200bp non-overlapping 

windows and generated genome-wide read count matrices for each assay 

independently. These matrices were finally quantile normalized with custom R script and 

further used to generate genome-wide signal tracts. 

 

Histone modification ChIP-seq and ATAC-seq differential analysis 

After assessing library saturation using preseqR, alignment and peak data were 

imported and pre-processed in R using the DiffBind package54. Briefly, for a given 

histone modification type, we first defined the global reproducible peak set as the union 

of each time-specific reproducible peak sets defined previously. We then counted the 

number of reads mapping inside each of these intervals at each time point and for each 

replicate. The raw count matrix was then normalized for sequencing depth using a non-

linear full quantile normalization as implemented in the EDASeq package55. To remove 

sources of unwanted variation and consider batch effects, data were finally corrected 

with the RUVSeq56 package considering 2 surrogate variables. Differential analyses for 

count data were performed using edgeR57 considering time and batch in the design 

matrix, by fitting a negative binomial generalized log-linear model to the read counts for 
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each peak. Peaks were finally annotated using ChIPpeakAnno considering annotations 

provided by Ensembl v86.  

 

Chromatin state differential analysis 

To quantify and define combinatorial chromatin state dynamics in space and time, we 

analyzed histone modification combinations with the chromstaR package58. Briefly, after 

partitioning the genome into 100bp non-overlapping bins and counting the number of 

reads mapping into each bin at each time point and for each histone modification, this 

algorithm relies on a univariate Hidden Markov Model (HMM) with two hidden states 

(unmodified, modified). This HMM is used to fit the parameters of the two-component 

mixture of zero-inflated negative binomial distribution considered to model read counts 

for every ChIP-seq experiments. A multivariate HMM is then used to assign every bin in 

the genome to one of the multivariate components considering 2(3 time points x 4 histone 

modifications) possible states. To limit computational burden and focus on accurate 

differences, the analysis was run in differential mode with a 100bp resolution (i.e. 

smaller than a single nucleosome), such that every mark is first analyzed separately with 

all conditions combined while the full combinatorial state dynamics is rebuilt by 

combining the differential calls obtained for the four marks. We finally filtered out 

differential calls not overlapping with any histone modification and ATAC-seq 

reproducible peaks. To properly associate histone modification combinations with 

biologically meaningful mnemonics, we made an extensive comparison between the 

binning we obtained in WI38 fibroblasts undergoing RAS-OIS and IMR90 fetal lung 

fibroblasts chromatin states described in the scope of the Epigenomic Roadmap 

consortium. To test for association between changes in chromatin states through time 
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and gene expression modules we ran a correspondence analysis. Briefly, genomic loci 

experiencing changes in chromatin states through time were first associated to the 

nearest gene. We then specifically focused on loci associated to genes belonging to any 

expression module and built a two-way contingency table summarizing the number of 

transition in states (considering all possible combinations) occurring in each expression 

module, further used as an input for a correspondence analysis using FactoMineR59. 

The significance of association between the two qualitative variables (transition in state 

and module) was assed using a 𝝌2 test. Results of the CA were visualized using a row-

metric-preserving contribution asymmetric biplot and filtering for the top contributing and 

well-projected (squared cosine > 0.5) changes in chromatin states. 

 

Motif enrichment analysis in active enhancers 

For each time point independently, we defined the set of active enhancers as the 

overlap between H3K4me1, H3K27ac and ATAC-seq reproducible peaks using 

bedtools60. We then ran 3 independent motif enrichment analyses with homer v4.9 using 

default parameters. 

 

Gene expression time series analysis 

Normalized log-scaled and filtered expression data related to the quiescence and the 

OIS time series were further considered for differential analysis with limma61. To define 

an RAS-OIS specific transcriptomic signature, we proceeded in three steps, each relying 

on linear mixed model cubic B-splines, as nonlinear response patterns are commonly 

encountered in time course biological data. For each probe, and each treatment the 

expression was modeled as follow: 
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𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + 𝛽3𝑥

3 +∑ 𝛾𝑘(𝑥 − 𝜉𝑘)
3𝐾−1

𝑘=0 + 𝜀  

with (𝑥 − 𝜉𝑘) = {
1𝑖𝑓𝑥 ≤ 𝜉

𝑥 − 𝜉𝑖𝑓𝑥 > 𝜉
 

where 𝛽0is the average probe expression over all samples in a given condition, 𝛽1−3 the 

model coefficients, 𝐾 the number of knots, 𝜉𝑘 the 𝑘th knot and 𝜀 the error term. First, we 

defined probes responding over time to RASV12 induction. Second, we considered all 

together the quiescence and the RAS-OIS time series, as well as the interaction 

between time and treatment, and defined probes responding to one or the other 

treatment over time, as well as probes responding differently between the two 

treatments at any time point. We finally defined the set of probes responding 

consistently to both treatment and time and removed these probes from the global set of 

probes responding to RASV12 induction defined at the first step. Moderated F-statistics 

that combine the empirical Bayes moderated t-statistics for all contrasts into an overall 

test of significance for each probe were used to assess the significance of the observed 

expression changes. At any step of this workflow, p-values were corrected for multiple 

testing using the FDR approach for a stringent significance level of 0.005. For validation 

purposes, we compressed the RAS-OIS time-series to achieve a volcano plot 

representation. To this end, we computed the maximal absolute log2 fold change in 

expression in the RAS-OIS time series considering T0 as the reference and selected up 

and down regulated probes using an absolute log2 fold change cutoff at 1.2 and a 

corrected p-value cutoff of 0.005. We then build a scatter-plot plotting the log10 

significance versus log2 fold-change on the y and x axes, respectively. Probes 

responding consistently to both ER: RASV12 induction and quiescence were finally 

over-plotted. 



 8 

 

Correlation and multidimensional analyses 

To highlight differences in expression profiles between quiescence and RAS-OIS 

through time, we used multi-dimensional scaling plot representing leading fold change, 

which is defined as the root-mean-square average of the log-fold-changes for the genes 

best distinguishing each pair of samples. To quantify the evolution of transcriptomic 

variability and noise through time, we looked at the gene expression density distributions 

for all possible pairs of treated vs T0 transcriptomes. Distributions were estimated using 

kernel density estimation of all genes’ expression in the 𝑖th T0 transcriptome and the 𝑗th 

treated transcriptome. We also computed Pearson’s correlation for each of these 

combinations. The Pearson’s correlation between two transcriptomes, 𝑋 and 𝑌 

containing 𝑛 gene expressions, is obtained by 𝑅(𝑋, 𝑌) = ∑ (𝑥𝑖 − 𝜇𝑋) (𝑦𝑖 − 𝜇𝑌) (𝜎𝑋𝜎𝑌)⁄𝑛
𝑖=1 , 

where 𝑥𝑖 and 𝑦𝑖 are the 𝑖th observation in the vectors 𝑋 and 𝑌 respectively, 𝜇𝑋 and 𝜇𝑌 the 

average values of each transcriptome, and 𝜎𝑋 and 𝜎𝑌, the corresponding standard 

deviations. 

 

Transcription factor footprinting 

All transcription factor Position-Weight Matrices (PWM) representing eukaryote 

transcription factors were downloaded from the JASPAR database and used as an input 

for PIQ20 to predict transcription factor binding sites from the genome sequence on 

down-sampled ATAC-seq alignments. For each motif, we retained only binding sites that 

were within the reproducible ATAC-seq peaks and passed the default purity cut-off 

(70%). We then computed pairwise PWM similarities based on Pearson’s correlation, 
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and clustered together PWMs sharing more than 90% similarity, defining a set of 310 

non-redundant and distinct PWMs. The Pearson’s correlation between two PWM 𝑃1 and 

𝑃2 of length 𝑙 was defined as: 

𝑟(𝑃1, 𝑃2) =
1

𝑙
×∑

∑ (𝑃𝑖,𝑏
1 − 0.25)(𝑃𝑖,𝑏

2 − 0.25)𝑏∈{𝐴,𝐶,𝐺,𝑇}

√∑ (𝑃𝑖,𝑏
1 − 0.25)

2

𝑏∈{𝐴,𝐶,𝐺,𝑇} × ∑ (𝑃𝑖,𝑏
2 − 0.25)

2

𝑏∈{𝐴,𝐶,𝐺,𝑇}

𝑙

𝑖=1

 

We further combined the bound instances identified with PIQ according to the PWM 

clustering. 

 

Transcription factor metrics 

For each transcription factor, we computed the chromatin-opening index (COI), the motif 

dependence and the chromatin dependence (CD) following the approach described in 

20.  

 

Validation of PIQ predictions through ChIP-seq 

To compare PIQ prediction with RELA, JUN and FOSL2 ChIP-seq data, we first used 

the approach suggested in 20, computing how many of the total ChIP-seq peaks are 

overlapping with any potential factor motif (since ChIP-Seq peaks can result from co-

factor binding, and methods such as digital genomic footprinting are factor agnostic). We 

then used a more sophisticated approach aiming at correlating the ChIP-seq signal 

intensity with the bound / unbound status at PWM matches. For a given transcription 

factor (cJUN, FOSL2 or RELA,), we first considered all the PWM matches located inside 

ATAC-seq reproducible peaks, we selected all the PWM matches assigned with a purity 

score > 0.7 (the threshold used to define “bound” instances), and then randomly 
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selected 3 times more PWM matches assigned to a purity score < 0.7 (considered as 

“unbound” instances) to obtain a global set containing 25% / 75% of bound / unbound 

instances for each TF. The selected regions were extended up to 2kb (1kb in each 

direction, from the middle of the match), and the 2kb intervals were binned in one 

hundred 20bp windows. We computed the normalized ChIP-seq and ATAC-seq signal 

inside each bin. The windows were finally ranked according to the summed ChIP-seq 

signal in the 10 most central bins (200bp). We finally run a set enrichment analysis with 

the fgsea package to assess whether bound / unbound PWM matches were enriched / 

depleted along this ranking and computed the enrichment score (ES, positive when 

bound instances are enriched for highest ChIP-seq signals, negative when unbound 

instances are depleted for highest ChIP-seq signals) and p-values which revealed the 

strength of the correlation. We performed 1,000 permutations to obtain p-values. 

 

Transcription factor co-binding 

For every cluster of PWM and time-point independently, we first removed all the bound 

instances identified outside enhancers. The remaining bound instances for all PWM 

were then combined for every time point using GEM regulatory module discovery25  

setting at 500 bp the minimal distance for merging nearby TF bound instances into co-

binding regions and at 3 the minimum number of TF bound instances in a co-binding 

region.  

Global pairwise co-binding heatmap. At this step, we obtained a set of contingency 

matrices Mmt of dimension 𝑛𝑚𝑡 × 𝑗 with i the number of co-binding regions for the 

transcriptomic module m at the time point t and j = 310 PWM clusters, for each time 

point and each transcriptomic module. We then generated module- and time- specific 



 11 

normalized pairwise co-binding matrices Cmt by computing the normalized cross-product 

of matrices Mmt defined as: 

𝐶𝑚𝑡 =
𝑀𝑚𝑡 × 𝑀𝑚𝑡

𝑡

∑ ∑ ∑ 𝑎𝑡𝑚𝑗𝑗𝑚𝑡
× 106 

with atmj the number of bound instances for the PWM clusters j, in transcriptomic module 

m, at the time point t. To get a global picture of pairwise co-binding, we summed these 

matrices and tested for each combination of PWM clusters A and B whether the overlap 

between bound instances for A and B was significant using a hyper-geometric test 

defined as: 

𝑝(𝑄,𝑀, 𝑛, 𝑘) = ∑
(
𝑀
𝑚
)(
𝑄 − 𝑀
𝑛 −𝑚

)

(
𝑄
𝑚
)

𝑚𝑖𝑛{𝑘,𝐵}

𝑚=𝑘

 

where Q is the overall number of regions in the universe, M is the number of regions 

bound by A, n is the number of regions bound by B, and k the total number of regions 

bound by A and B. The p-values were further corrected for multiple testing using the 

Bonferroni strategy. We finally clustered the co-binding occurrence matrix using Ward’s 

aggregation criterion and projected corresponding corrected q-values on this clustering. 

Pair-wise co-binding circos plots. To generate the co-binding circos plots, we used the 

global time- and, module-specific pair-wise normalized co-binding matrix Cmt described 

above, after a logarithmic transformation. For each time-point and module 

independently, we selected the top 500 interactions based on their occurrence N. The 

images were generated using the Circos suite62. 
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Identification of TF regulatory modules 

We used the data-sets generated using GEM regulatory module discovery described 

above. We applied a Hierarchical Dirichlet Process topic model which automatically 

determines the number of topics from the data, with the hyperparameter for the topic 

Dirichlet distribution set at 0.1 (encoding the assumption that most of the topics contains 

a few TFs) and the maximum number of iterations set at 2000. The lexicon usage for 

each time point and each transcriptomic was explored using a multiple factor analysis 

(MFA) with the R package FactoMineR, and lexicons were further selected based on 

their goodness of representation on the 3 first components (squared cosine > 0.5). 

 

TF properties 

With the aim of characterizing the binding properties of each TF, we computed the 

dynamicity, the total number of bound regions, the fraction of bound regions in 

enhancers and the fraction of bound regions before stimulation. 

Dynamicity. We quantified the dynamicity of a TF accordingly to the following 

expression: 

𝑑(𝐴) =
∑
𝑛𝑡(𝐴)
𝑇𝑅𝑡

∑
𝑡𝑡(𝐴)
𝑇𝑅𝑡

 

where 𝑑(𝐴) is the dynamicity of TF A; 𝑛𝑡(𝐴) is the number of regions bound by A for the 

first time at time point 𝑡 ; 𝑡𝑡(𝐴) is the number of regions bound by A at time point 𝑡 and 

𝑇𝑅𝑡 is the number of regions bound by any TF in time point 𝑡. The factor 𝑇𝑅𝑡 was added 

to the expression to account for differences in the number of reads sequenced by the 

ATAC-seq protocol and normalizes the number of regions bound by TF A based on the 
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number of bound regions detected at its corresponding time point. Notice that, if all 

samples have the same amount of TF binding events, this expression is reduced to the 

quotient of the sum of the regions first bound at each time point by the sum of all regions 

bound by the TF at each time point. By using this definition, the function 𝑑(𝐴) maps the 

activity of a TF to the interval [
1

𝑁𝑡
, 1], where 𝑁𝑡 is the number of time points in the 

timecourse and is higher as the TF binds to previously not bound regions or leaves 

already bound regions. In the case of a TF that, for every time point, leaves all its 

previous bound regions and binds to only regions not previously bound, the numerator 

will be identical to the denominator, leading to 𝑑(𝐴) = 1. Alternatively, if a TF remains on 

the same regions it has bound at 𝑡 = 0 , then ∑𝑛𝑡 = 𝑛0 and ∑𝑡𝑡 = 𝑁𝑡 ∗ 𝑛0 , resulting in 

𝑑(𝐴) =
1

𝑁𝑡
. One can observe that, if the same region is bound by TF A in different time 

points, it will contribute once to the numerator of the expression, while it will contribute to 

the denominator once for each time point it has been bound to. 

Total number of bound regions. The number of bound regions was calculated by the 

following the expression: 

𝑅(𝐴) =
∑
𝑛𝑡(𝐴)
𝑇𝑅𝑡

×∑𝑇𝑅𝑡

𝑁𝑡
 

where 𝑅(𝐴) is the normalized number of bound regions by TF A during the timecourse 

and 𝑛𝑡(𝐴), 𝑇𝑅𝑡 and 𝑁𝑡 are defined as above. The first factor is a normalized sum of the 

regions bound by TF A, counting each region only once. The second factor scales the 

result by the mean of the number of regions bound by all TFs on each day. 

TF percentage of binding at enhancers. The ratio of binding at enhancers, relative to all 

cis regulatory regions, was assessed by: 
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𝑃𝐸(𝐴) =
𝑅𝐸(𝐴)

𝑅𝐸(𝐴) + 𝑅𝑃(𝐴)
 

where 𝑃𝐸(𝐴) is the percentage of bound regions in enhancers for TF A, 𝑅𝐸(𝐴) is the 

number of regions bound by TF A marked as enhancers and 𝑅𝑃(𝐴) is the number of 

regions bound by TF A marked as promoters. 

TF prestimulation binding. For each TF, we computed the ratio of regions bound at T0, 

relative to the number of regions bound during the whole timecourse. We used the 

following definition for the prestimulation binding factor for each TF: 

𝑝(𝐴) =

𝑛𝐷0(𝐴)
𝑇𝑅𝐷0

∑
𝑛𝑡(𝐴)
𝑇𝑅𝑡

 

where 𝑝(𝐴) corresponds to the prestimulation binding of TF A and 𝑛𝑡(𝐴) and 𝑇𝑅𝑡 are 

defined as above. The numerator of this expression corresponds to the normalized 

number of regions bound by TF A at t = T0, while the denominator is the normalized 

number of regions bound by TF A during the whole timecourse. Notice the denominator 

also corresponds to factor 𝑅(𝐴) before scaling. 

 

Hierarchical transcription factor network 

In order to assess the TF chromatin binding hierarchy, i.e. TFs required for the binding 

of a specific TF, we generated a network for each gene module depicting the 

precedence of TF chromatin binding. The algorithms mentioned were implemented in R 

and all networks were visualized in CytoScape63.  

Computing precedence relationships. The edges in the generated networks represent 

the precedence relationship of TFs: an oriented edge from TF A to TF B, represented as 
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(A, B), means that A was present in at least 30 % of the cis-regulatory regions bound by 

B at the same instant or before29. To account for the difference in the number of reads 

sequenced for each sample in the ATAC-seq, we normalized the number of regions 

bound based on the first day they appeared. The weight of an edge from A to B is given 

by: 

𝑤𝐴→𝐵 =
∑
𝑅𝑡(𝐴, 𝐵)

𝑅𝑡

∑
𝑅𝑡(𝐵)
𝑅𝑡

 

where 𝑅𝑡(𝐵) stands for the number of regions first bound by TF B at time point 𝑡 ; 

𝑅𝑡(𝐴, 𝐵), for the number of regions first bound by TF B at time point 𝑡 that were bound by 

TF A at time point 𝑡 or before; and 𝑅𝑡 represents the total number of regions bound by 

any TF in time point 𝑡. In order to handle the networks, we used the igraph package. 

Network simplification. Aiming to analyze the hierarchical relationship of TFs and 

simplify the interpretation of the network, we performed two operations over each gene 

module network: Vertex Sort and transitive reduction (TR)64. Briefly, the vertex sort 

algorithm assigns two parameters for each node in the network: the distance, in edges, 

between the node and the bottom of the network; and the distance between the node 

and the top of the network. Combined, those parameters allow for the topological 

ordering of the network, which consists in listing its nodes such that nodes at the top 

precede downstream nodes. We then defined the ’top layer’ as the set of nodes with 

lowest distance to the top of the network, i.e., nodes that have no incoming edges or 

nodes that assemble a strongly connected component (SCC) with all upstream nodes. 

Analogously, the ’bottom layer’ was defined as the set of nodes with lowest distance to 

the bottom of the network, i.e., nodes with no outgoing edges or that form a SCC with all 
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downstream nodes. The ’core layer’ comprises nodes that link top layer and bottom 

layer. Nodes in the core layer that are exactly one edge from both top and bottom layers 

constitute the ’single-level core layer’, while nodes that link top and bottom through 

paths composed of more than one edge form the ’multi-level core layer’. The result of 

this procedure for each gene module can be seen in Figure 6a and supplementary data. 

The TR, in turn, simplifies the network visualization by generating the network with the 

smallest number of edges that keeps the reachability of the original network. 

Network validation. We validated our approach by comparing the network produced 

when applying our method to the ChIP-seq data produced by 29. Transcription factor 

ChIP-seq peak files were retrieved from Gene Expression Omnibus (GSE36099, 23 

TFs, and 4 time points; note that RUNX1 and ATF4 were discarded from the analysis 

since one and three time points, respectively, were missing on GEO for those TFs) and 

preprocessed as previously described to generated time resolved co-binding matrices, 

further used as an input for our networking algorithm. We computed the precedence 

relationships among TFs and generated the TF binding hierarchy networks for 

visualization. We produced TF hierarchy network using two metrics 29: sensitivity and 

specificity. Sensitivity is calculated as the ratio of edges described in this study over the 

edge number sum for both networks. Specificity is defined as the ratio of the number of 

edges that were described to not exist in the network produced by our software over the 

number of edges described to not occur in any of both studies. 

Proportion of incoming edges based on the classification of the TF source node. Aiming 

to assess the hierarchy of TFs accordingly to their chromatin dependence and 

chromatin-opening index, we computed the number of edges connecting the sets of all 

TFs with a given classification for each gene module. We then divided those values by 
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the number of edges that target TFs with a specific classification. Hence, the proportion 

of incoming edges based on TF classification is given by: 

𝑃𝐶1→𝐶2 =
|𝑊𝐶1→𝐶2|

∑|𝑊𝐾→𝐶2|
 

where 𝑃𝐶1→𝐶2 is the proportion of edges from nodes with classification C1 to nodes with 

classification C2; 𝑊𝐶1→𝐶2 is the set of edges from nodes with classification C1 to nodes 

with classification C2; 𝐾 can represent either pioneer, settler or migrant and |⋅| means 

the cardinality of a set, i.e. the number of elements it contains.  

 We assessed the classification precedence significance for TF interaction with a 

hypergeometric test. We consider the sample space as all possible oriented edges in a 

network with the same number of nodes for each classification as the hierarchy network 

for a given transcriptional module. Formally: 

  𝑝𝐶1→𝐶2(𝐸, 𝐸𝐶1→𝐶2,𝑊,𝑊𝐶1→𝐶2) = ∑
(𝐸𝐶1→𝐶2

𝑥
)(
𝐸−𝐸𝐶1→𝐶2
|𝑊|−𝑥

)

(
𝐸
|𝑊|)

|𝑊|
𝑥=|𝑊𝐶1→𝐶2|

 

 Where 𝐸is the number of edges on the sample space network, i.e., a fully 

connected network with the same number of nodes as the TF hierarchy network for a 

given transcriptional module (excluding self-loops),𝐸𝐶1→𝐶2is the number of edges from 

TFs with classification 𝐶1to TFs with classification 𝐶2 in the sample space network, 

|𝑊|is the number of edges on the TF hierarchy network for a given transcriptional 

module and |𝑊𝐶1→𝐶2|is the number of edges in the same network connecting TFs with 

classification 𝐶1to TFs with classification 𝐶2. 

Network visualization. In order to visualize the network, we exported the adjacency 

matrices in the R environment to CytoScape using the CyREST API65. The networks’ 

layout and style were automated with the help of packages RCy366 and RJSONIO. 
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Network mining 

With the purpose of identifying key TFs in the transition to the senescent phenotype, we 

analyzed the TF binding characteristics with their relative location in the chromatin 

binding hierarchy networks for each gene module. The figures illustrating this analysis 

were generated with the help of the ggplot2 R package. 

TF classification. For each network relative to a transcriptional gene module, the number 

of TF classified as either pioneer, settler or migrant was calculated for each layer, with 

the subdivision of the core layer as ’multi-level’ and ’single-level’ (see “Network 

simplification”). The overrepresentation of TFs with a specific classification in a given 

layer was evaluated by using a hypergeometric test. We calculated the p-value given by: 

𝑝(𝐾,𝑁, 𝑛, 𝑘) =∑
(
𝐾
𝑥
)(
𝑁 − 𝐾
𝑛 − 𝑥

)

(
𝑁
𝑛
)

 

where K is the number of TFs with a certain classification in the whole network, N is the 

number of TFs in the network; n is the number of TFs that belong to a specific layer and 

k is the number of TFs that belong to the same layer and have the referred 

classification. The p-values were corrected for multiple testing with FDR and a corrected 

p = 0.05 was considered an indicative of enrichment for that specific classification in the 

corresponding layer. 

TF dynamicity. For each network, relative to a transcriptional gene module, we 

compared the distribution of the dynamicity of TFs belonging to a certain layer with the 

distribution of the dynamicity of TFs belonging to the rest of the network. We used the 

dynamicity index defined previously for each TF, considering only the regions marked as 
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enhancers belonging only to the gene module relative to the network. For each layer in 

the network, we applied the Kolmogorov-Smirnov test to compare the TF dynamicity 

distribution for the chosen layer with the dynamicity distribution relative to the TFs 

belonging to three other layers in the respective network. To account for multiple 

hypothesis testing, we also performed an FDR correction, considering values of p = 0.05 

as an indicative of statistical significance. 

TF number of binding regions. We performed the same analysis as described in the 

previous section (“TF dynamicity”) for the number of bound regions defined in section 

“Total number of bound regions”, instead of the dynamicity index. 

TF binding characteristics and transcriptional modules. In order to characterize the 

binding activity of each TF for the different gene modules, we ranked them accordingly 

to their dynamicity and their number of bound regions. Both parameters for each gene 

module are shown inExtended Data 6e , which was generated with the 

ComplexHeatmap67 and circlize68 R packages. We used the mean of the ratio 

dynamicity - number of bound regions to order the TFs. We assessed the significance of 

pioneer (respectively, migrant) TF enrichment at the top (respectively, bottom) of the 

ranked clustered list by employing a set enrichment analysis implemented in the 

package fgsea. 

TF chromatin binding hierarchy networks overlap. To analyze the similarity between the 

networks for different transcriptional gene modules, we generated a 7-set Euler diagram, 

where each set contains the edges present in the TF hierarchy network relative to a 

gene module. Edges in two different networks are considered equal if they link nodes 

corresponding to the same TFs in their respective networks. We used the package 

Vennerable to compute the intersections of all possible network combinations and to 
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create the Euler diagram in Extended Data 7a-d. In this figure, the area of each region is 

proportional to the number of edges shared by the networks corresponding to the sets 

that contain the referred region and was calculated using the Chow-Ruskey algorithm69. 

A Euler diagram is similar to a Venn diagram, with the difference that the area of a 

region representing a set is proportional to the number of elements in the set. 

 

Analysis of de novo and remnant enhancers 

To track combinatorial chromatin state dynamics in space and time, we integrated 

histone modification ChIP-seq signals at a sub-nucleosomal resolution considering non-

overlapping 100bp windows genome-wide using chromstaR (see above), which converts 

quantitative ChIP-seq data to qualitative chromatin states. For subsequent analysis, 

since these 100bp windows can be either isolated or organized in stretches 

experiencing consistent changes in states, we summarized the information at a higher 

level, and linked them with the histone modification peaks identified using the more 

classical ChIP-seq and ATAC-seq peak-calling approach. Briefly, after merging all the 

peaks identified for all the time-points, for all the histone modification and for the ATAC-

seq data sets defining cis-regulatory regions, we determined the overlap between 

“poised “, “de novo”, “remnant” or “constitutive enhancers”-flagged 100bp windows. 

When an overlap was found, the entire cis-regulatory regions were annotated according 

to the 100bp window it is overlapping with. This operation rendered a list of annotated 

cis-regulatory regions with de novo, constitutive, poised or remnant enhancer elements. 

We finally considered the center +/- 10kb of these elements. 
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