Supplement Information

Personalized nanotherapy by specifically targeting cell organelles to improve vascular hypertension

Rajasekharreddy Pala^{1,2}, Ashraf M. Mohieldin^{1,2}, Kiumars Shamloo^{1,2}, Rinzhin T. Sherpa^{1,2}, Sarmed H. Kathem^{1,2}, Jing Zhou³, Zhongyue Luan⁴, Jian-Guo Zheng⁵, Amir Ahsan⁶, Surya M. Nauli^{*,1,2}

¹Department of Biomedical & Pharmaceutical Sciences, Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA. ²Department of Urology, University of California Irvine, Irvine, CA 92868, USA.³Department of Medicine, Harvard Medical School, Boston, MA, USA. ⁴Chemical Engineering & Material Sciences, University of California Irvine, Irvine, CA 92697, USA. ⁵Irvine Materials Research Institute, University of California Irvine, Irvine, CA 92697, USA. ⁶Department of Physics, Computer Science & Engineering, Chapman University, Orange, CA 92866, USA

*<u>Corresponding author</u>: Surya M. Nauli Chapman University The University of California, Irvine 9401 Jeronimo Road. Irvine, CA 92618-1908 Tel: 714-516-5480 Fax: 714-516-5481 Email: nauli@chapman.edu; snauli@uci.edu **Figure S1.** (a) UV-visible, (b) XRD and (c, d) XPS spectral patterns of both DAu and PLGA nanoparticles. Each spectrum represents the progression of native nanoparticles to active cilia-targeted nanoparticles. (e) FTIR-spectra represents the functional groups associated with the functionalized nanoparticles. (f) HPLC spectra of known fenoldopam (reference compound) concentrations to obtain a standard approach and fenoldopam retention time (top). An HPLC calibration curve of fenoldopam is also shown (bottom). (g) Fluorescence spectra of CT-DAu-NPs and CT-PLGA-NPs. n=3 for all experiments.

Figure S2. Representative images on the effects of CT-DAu-NPs (a) and CT-PLGA-NPs (b) on primary cilia of renal epithelia. Numbers indicate time in hour. ***p < 0.001, ****p < 0.0001 compared to time 0, prior to the treatment with CTNDDS. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S3. Representative images on the effects of CT-DAu-NPs (a) and CT-PLGA-NPs (b) on primary cilia of vascular endothelia from *Pkd1* mice. Numbers indicate time in hour. ****p < 0.0001 compared to time 0, prior to the treatment with CTNDDS. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S4. Representative images on the effects of CT-DAu-NPs (a) and CT-PLGA-NPs (b) on primary cilia of vascular endothelia from *Pkd2* mice. Numbers indicate time in hour. ****p < 0.0001 compared to time 0, prior to the treatment with CTNDDS. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S5. Representative images on the effects of CT-DAu-NPs (a) and CT-PLGA-NPs (b) on primary cilia of vascular endothelia from *IFT88* mice. Numbers indicate time in hour. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test, and there was no statistical significance within groups.

Figure S6. (a) Representative line and bar graphs showing the intracellular Ca^{2+} levels with different treatments. (b) Representative line and bar graphs showing the intracellular NO levels with different treatments. Arrows indicate the start of fluid-flow. n=5 for all experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S7. To measure the cytosolic and ciliary calcium, the DIC, mCherry and GFP images were captured after cells were treated with (a) PBS or (b) Fenoldopam under sub-minimal shear stress (0.5 dyn/cm^2). The colour bar indicates Ca²⁺ levels. n=3 for all experiments.

Figure S8. To measure the cellular and ciliary calcium, the DIC, mCherry and GFP images were captured after cells were treated with (a) cCT-DAu-NPs or (b) CT-DAu-NPs under sub-minimal shear stress (0.5 dyn/cm^2). The colour bar indicates Ca²⁺ levels. n=3 for all experiments.

Figure S9. To measure the cellular and ciliary calcium, the DIC, mCherry and GFP images were captured after cells were treated with (a) cCT-PLGA-NPs and (b) CT-PLGA-NPs under subminimal shear stress (0.5 dyn/cm²). The colour bar indicates Ca²⁺ levels. n=3 for all experiments. **Figure S10.** (a) Mean cytosolic (red) and cilioplasmic (blue) Ca^{2+} levels are shown in line graphs. The presence of shear stress is represented by the green background. (b) Kymograph analyses of Ca^{2+} signalling in the cell body and cilia in response to 0.5 dyn/cm² flow were performed. (c) Representative traces of changes in Ca^{2+} speed, acceleration, speed intensity and mean intensity within a single cilium are shown. The presence of shear stress is represented by the green background. n=3 for all experiments.

Figure S11. The cytotoxicity of CTNDDS (10 μg/mL for 48 hours) was analyzed with apoptotic (Annexin-V) and necrotic (propidium iodide, PI) markers. (a) Cells were analyzed with FACS.
(b) Representative images were taken with microscope. DIC=differential interference contrast; negative control=phosphate saline treatment; positive control=30 minutes of methanol treatment.

Figure S12. Intracellular cGMP levels were quantified in cells treated with vehicle (PBS; control) or other treatments. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S13. (a) Representative phase contrast images showing *Pkd2* zebrafish at 48 -hours postfertilization. Fish were injected with vehicle (PBS), CT-DAu-NPs or CT-PLGA-NPs. Bar graphs showing the measurements of curly tail, which is an indication of disease phenotype. (b) H&E sections showing the *Pkd2* zebrafish treated with different treatments. Cystic kidneys are denoted by red asterisks, and the bar graph shows the percentage of zebrafish with cystic kidneys. (c) The quantitation of the artery diameters shown in the bar graph. (d) Representative line graphs show circulation characteristics and cardiac measurements are shown in the bar graphs to examine cardiovascular functions. n=3 for all experiments if not represented in dot plot. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to wild-type vehicle. #p < 0.05, ##p < 0.01, ####p < 0.001, ####p < 0.0001 compared to *Pkd2* vehicle. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S14. (a) Representative immunofluorescence images of primary cilia in arteries (A; white box) and veins (V; red box) are shown when the zebrafish treated with vehicle (PBS), CT-DAu-NPs or CT-PLGA-NPs. Average cilia length of the blood vessels is shown in the bar graphs. (b) Representative immunofluorescence images of primary cilia in the heart is shown. The square boxes show one cilium for visualization purposes. Average cilia length in the heart is shown in the bar graphs in zebrafish treated with vehicle (PBS), CT-DAu-NPs or CT-PLGA-NPs. For all immunofluorescence studies, green (acetylated- α -tubulin or cilia marker), red (NPs), and blue (DAPI or nucleus). n=50 for all experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 compared to wild-type vehicle. #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 compared to *Pkd2* vehicle. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S15. (a) Pharmacokinetics profile of fenoldopam showing bolus injection (CT-DAu-NPs and CT-PLGA-NPs) and 30-minute infusion (fenoldopam-alone). (b) Area under the curve was calculated as an indication of total plasma concentration of fenoldopam in an hour. N=3 for each group. *p < 0.05 compared to fenoldopam-alone. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S16. Representative immunofluorescence images of primary cilia from aortic endothelial cells showing red fluorescent CTNDDS (red arrows) and cilia (green arrows) at 24- or 72-hours after treatment. The insets show reduced views of the whole aorta and magnified views of cilia. White boxes indicated the magnified areas. Cilia length is shown in the bar graph. n=50 for all experiments. ****p < 0.0001 and ####p < 0.0001, compared to vehicle-treated wild-type and *Pkd2* mice, respectively. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S17. Representative immunofluorescence images show the localization of CTNDDS and length of cilia in cardiac myocytes. Cilia length is presented in the bar graphs. For all immunofluorescence studies, green (acetylated- α -tubulin or cilia marker), red (CTNDDS), and blue (DAPI or nucleus). n=50 for all experiments. ****p < 0.0001 and ####p < 0.0001, compared to vehicle-treated wild-type and *Pkd2* mice, respectively. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S18. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) measurement.

Figure S19. (a) Parameters of heart function were analysed. (b) NP fluorescence was quantified in major visceral organs to determine the NP bio-distribution at 24- and 72-hours after the intravenous injection. (c) A H&E histopathological analysis of major visceral organs from different treatments. n=5 mice for all experiments. *p < 0.05, **p < 0.01, ***p < 0.001, **p < 0.001, *p < 0.00

0.0001 compared to wild-type vehicle. #p < 0.05, ##p < 0.01, ###p < 0.001, ###p < 0.001, ###p < 0.0001 compared to *Pkd2* vehicle. Statistical analysis was performed using ANOVA followed by a Bonferroni post hoc test.

Figure S20. (a) Line graphs showing the changes in systolic (SBP) and mean arterial (MAP) blood pressures when *IFT88* mice treated with different treatments for 8 weeks. (b) Representative left ventricular pressure-volume (P-V) loops from treatment with control (PBS), fenoldopam, CT-DAu-NPs or CT-PLGA-NPs. (c) The representative loop diagrams show the LVV and LVP relationship without (vehicle; PBS) and with stressors. Stress was achieved with either epinephrine (Epi) or diltiazem (Dlz). (d) Representative ECGs of the hearts over a 5-second duration. Arrows indicate uneven heart beats. ****p < 0.0001 compared to wild-type vehicle. Statistical analysis was performed using a second order quadratic polynomial Goodness of Fit followed with ANOVA using a Tukey's multiple comparisons test.

Table S1. Working heart analysis of wild-type (vehicle) and *Pkd2* mice.

Table S2. Working heart analysis of *Pkd2* mice treated with CT-DAu-NPs and CT-PLGA-NPs.

Table S3. Working heart analysis of *Pkd2* mice treated with fenoldopam.

Table S4. Safety evaluation of CTNDDS treatment *in vivo* was assessed by analyzing biochemistry parameters.

b Epithelia; CT-PLGA-NPs

b Endothelia; *Pkd1*; CT-PLGA-NPs

2 4 8 16 24 32

time (hour)

0

merged

a Endothelia; *Pkd2*; CT-DAu-NPs

acet-α-tub CT-PLGA-NPs

Endothelia; *Pkd2*; CT-PLGA-NPs

b

b Endothelia; *IFT88*; CT-PLGA-NPs

hi

b Fenoldopam

lo

a cCT-DAu-NPs

Figure S8

b CT-DAu-NPs

cCT-PLGA-NPs a

Figure S9

b **CT-PLGA-NPs**

	wild-type		Pkd2			
	vehicle	epinephrine	diltiazem	vehicle	epinephrine	diltiazem
HR (beat/min)	144±15	209±16	72±20	134±17	230±15	76±9
ESPVR (mmHg/µL)	3.8±0.2	10.0±2.4	1.7±0.3	3.9±0.1	11.2±1.7	2.0±0.2
EDPVR (mmHg/µL)	0.15±0.02	0.12±0.01	0.13±0.01	0.13±0.01	0.13±0.01	0.13±0.01
dP/dtmax (mmHg/s)	5075±123	16222±808	3034±332	4711±157	16480±356	2845±954
dP/dtmin (mmHg/s)	-2008±200	-3048±114	-1401±59	-1297±144	-3096±81	-1071±358
LV Pmax (mmHg)	47.0±1.1	81.1±4.0	33.7±3.7	43.6±14.5	82.4±1.8	31.6±10.6
LV ESP (mmHg)	35.2±0.9	60.8±3.0	25.3±2.8	32.7±10.9	61.8±1.3	23.7±6.0
LV EDP (mmHg)	6.2±0.6	5.1±0.2	5.2±0.1	4.0±1.3	5.2±0.1	4.0±1.3
LV ESV (µL)	12.4±0.4	8.5±1.6	20.4±0.9	11.6±3.8	7.74±1.2	15.6±5.2
LV EDV (µL)	40.1±0.1	41.2±0.1	40.1±0.1	30.1±10.0	41.0±0.2	30.3±10.1
SV (μL)	27.7±0.3	32.7±1.7	19.7±1.0	18.4±6.1	16.6±7.4	14.7±5.0
SW (mmHg•µL)	1130±16	2486±292	562±152	1304±390	2283±114	407±23
EF (%)	69.0±0.9	79.4±4.0	49.1±2.4	61.3±0.9	81.3±2.9	48.6±3.0
CO (µL/min)	3987±45	6828±268	1772±199	2473±104	3829±219	1324±455

HR, heart rate; ESPVR and EDPVR, end-systolic and end-diastolic pressure volume relation, respectively; dP/dtmax and dP/dtmin, maximum rate of left ventricle (LV) pressure rise and fall, respectively; Pmax, systolic pressure; ESP, end-systolic pressure; EDP, end-diastolic pressure; ESV, end-systolic volume; EDV, end-diastolic volume; SV, stroke volume; SW, stroke work; EF, ejection fraction; CO, cardiac output.

	I	Pkd2; CT-DAu-NPs		Pkd2; CT-PLGA-NPs		
	vehicle	epinephrine	diltiazem	vehicle	epinephrine	diltiazem
HR (beat/min)	136±16	207±19	94±10	143±11	210±18	89±13
ESPVR (mmHg/µL)	4.4±0.10	9.8±1.30	1.8±0.33	4.3±0.14	9.2±2.50	2.5±0.59
EDPVR (mmHg/µL)	0.14±0.01	0.14±0.01	0.13±0.01	0.15±0.02	0.19±0.03	0.17±0.02
dP/dtmax (mmHg/s)	5900±320	16134±594	3356±188	5758±233	15364±757	3776±347
dP/dtmin (mmHg/s)	-1851±99	-3451±226	-1403±132	-2008±199	-4646±283	-1793±427
LV Pmax (mmHg)	54.6±0.3	80.7±3.0	37.3±2.1	53.3±2.1	76.8±3.8	42.0±3.9
LV ESP (mmHg)	41.0±0.2	60.5±2.2	28.0±1.6	40.0±1.5	57.6±2.8	31.5±2.9
LV EDP (mmHg)	5.7±0.1	5.8±0.4	5.2±0.1	6.2±0.6	7.7±1.0	6.6±0.8
LV ESV (µL)	12.4±0.3	8.5±1.0	21.8±2.7	12.4±0.4	8.5±0.9	18.8 ± 2.8
LV EDV (µL)	40.0±0.1	39.9±0.2	40.2±0.5	40.1±0.1	40.0±0.3	40.0±0.1
SV (μL)	27.7±0.3	31.4±1.1	18.4±2.2	27.7±0.3	31.5±0.6	21.2±2.9
SW (mmHg•µL)	1353±52	2354±307	590±19	1305±25	2177±118	749±53
EF (%)	69.1±0.8	78.7±2.6	45.9±6.2	69.1±0.9	78.8±2.0	53.0±7.1
CO (µL/min)	3767±55	6510±448	1654±221	3975±34	6615±110	1910±37

HR, heart rate; ESPVR and EDPVR, end-systolic and end-diastolic pressure volume relation, respectively; dP/dtmax and dP/dtmin, maximum rate of left ventricle (LV) pressure rise and fall, respectively; Pmax, systolic pressure; ESP, end-systolic pressure; EDP, end-diastolic pressure; ESV, end-systolic volume; EDV, end-diastolic volume; SV, stroke volume; SW, stroke work; EF, ejection fraction; CO, cardiac output.

Table S3

	<i>Pkd2;</i> Fenoldopam			
	vehicle	epinephrine	diltiazem	
HR (beat/min)	140±24	219±44	98±9	
ESPVR (mmHg/µL)	4.4±0.1	9.7±0.9	2.3±0.1	
EDPVR (mmHg/µL)	0.13±0.01	0.16±0.01	0.14±0.01	
dP/dtmax (mmHg/s)	7157±211	16864±85	4020±643	
dP/dtmin (mmHg/s)	-1624±24	-3843±277	-1537±97	
LV Pmax (mmHg)	66.3±2.0	84.3±0.4	44.7±0.7	
LV ESP (mmHg)	49.7±1.5	63.2±0.3	33.5±0.5	
LV EDP (mmHg)	5.0±0.1	6.4±0.5	5.7±0.2	
LV ESV (µL)	15.0±0.1	8.9±0.8	19.5±0.6	
LV EDV (µL)	40.0±0.1	39.9±0.1	40.3±0.8	
SV (µL)	24.9±0.1	31.1±0.7	20.8±0.8	
SW (mmHg•µL)	1530±20	2417±28	812±29	
EF (%)	62.5±0.2	77.7±2.0	51.6±1.4	
CO (µL/min)	3486±81	6810±347	1873±70	

HR, heart rate; ESPVR and EDPVR, end-systolic and end-diastolic pressure volume relation, respectively; dP/dtmax and dP/dtmin, maximum rate of left ventricle (LV) pressure rise and fall, respectively; Pmax, systolic pressure; ESP, end-systolic pressure; EDP, end-diastolic pressure; ESV, end-systolic volume; EDV, end-diastolic volume; SV, stroke volume; SW, stroke work; EF, ejection fraction; CO, cardiac output.

Table S4

Analytes	Vehicle	CT-DAu-NPs	CT-PLGA-NPs
ALB (g/dL)	3.4±0.9	3.1±0.7	3.3±0.6
ALP (U/L)	56±32	38±34	59±28
ALT (U/L)	32±1.6	36±1.8	45±1.4
AMY (U/L)	789±43	730±41	843±51
TBIL (mg/dL)	0.3±0.1	0.3±0.3	0.3±0.2
CA (mg/dL)	9.3±0.8	10.2±0.7	10.6±0.5
PHOS (mg/dL)	8.1±2.1	9.8±3.3	9.0±2.7
CRE (mg/dL)	0.2±0.06	0.3±0.2	0.2±0.07
GLU (mg/dL)	291±54	189±65	327±57
Na ⁺ (mmol/L)	149±2.1	158±1.9	150±2.0
K ⁺ (mmol/L)	4.9±0.9	6.5±0.9	5.8±0.6
TP (g/dL)	4.6±0.6	4.4±0.7	5.2±0.5
GLOB (g/dL)	1.4±0.4	1.8±0.4	1.3±0.2

ALB, albumin; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AMY, amylase; TBIL, total bilirubin; CA, calcium; PHOS, phosphorus; CRE, creatinine; GLU, glucose; Na⁺, sodium; K⁺, potassium; TP, total protein; GLOB, globulin.