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SUPPLEMENTARY MATERIALS

Head to head evaluation of second generation ALK inhibitors 
brigatinib and alectinib as first-line treatment for ALK+ NSCLC 
using an in silico systems biology-based approach

TPMS technology: systems biology-based model 
creation and analysis for ALK+ NSCLC 

Systems biology-based models were created using 
the Therapeutic Performance Mapping System (TPMS) to 
investigate the molecular Mechanisms of Action (MoA) 
of brigatinib and alectinib towards the modulation of 
ALK+ NSCLC. TPMS is a validated top-down systems 
biology approach that integrates all available biological, 
pharmacological and medical knowledge by means of 
pattern recognition models and artificial intelligence 
to create mathematical models that simulate in silico 
the behavior of human physiology. The methodology 
employed and detailed herein has been previously 
described [60] and applied elsewhere [59, 115, 116, 121]. 
Biological maps were transformed into a mathematical 
model capable of both reproducing existing knowledge 
and predicting new data. TPMS technology uses a set of 
artificial intelligence algorithms to generate the human 
physiology over the human biological network [121–124]. 

Human protein network (HPN) and truth table 
construction

A human protein network (HPN) was created in 
order to obtain the MoAs by including information from 
many public and private databases (KEGG [125, 126], 
REACTOME, [127] INTACT, [128] BIOGRID, [129] 
HPRD, [130] and TRRUST [131] and information 
extracted from scientific literature.

For the construction of the truth table, a selected 
collection of known input-output physiological signals 
considered the “truths” were collated into a table 
(Supplementary Table 7) and was used for training 
the models [132]. The truth table was based on a 
compendium of different databases that contain biological 
and clinical data [133, 134] and provides biological and 
pharmacological input-output relationships (such as drug-
indication pairs). Information relating biological processes 
(adverse drug reactions, indications, diseases and 
molecular pathways) to their molecular effectors, i.e., each 
one of the proteins involved in the physiological process, 
was extracted from the biological effectors database 
(BED) (Anaxomics Biotech SL, [60]). The biological or 
pathological conditions under study were also included 

in the truth table and molecularly characterized through 
specific scientific literature search and hand-curated 
assignment of proteins to the conditions (Supplementary 
Table 2). The obtained final models had to be able to 
reproduce every rule contained in the truth table, and we 
defined the error of a model as the percentage of all the 
rules with which the model does not comply, while the 
accuracy was defined as the percentage of all the rules 
complied with.

Modelling strategies

Two complementary modelling strategies were 
used, (a) TPMS Artificial Neural Networks (ANNs) [59] 
and (b) TPMS Sampling-based Methods [60], to compare 
the efficacy of the drugs (defined as their targets, see 
Supplementary Table 3) and to compute the MoA models. 

(a)	ANNs are supervised algorithms that identify 
relations between proteins (e.g., drug targets) and clinical 
elements of a protein network [59, 118, 120, 135, 136] 
by inferring the probability of the existence of a specific 
relationship between two or more protein sets, based on 
the validation of the predictive capacity of the model 
towards the truth table. The learning methodology used 
consisted in an architecture of stratified ensembles of 
neural networks as a model, trained with a gradient 
descent algorithm to approximate the values of the given 
truth table. The neural network model used consisted in 
a Multilayer Perceptron (MLP) neural network classifier. 
MLP gradient descent training depends on randomization 
initialization and to avoid random errors 1000 MLPs are 
trained with the training subset and the best 100 MLPs 
are used. In order to correctly predict the effect of a 
drug independently of the number of targets, a different 
ensemble of neural networks are trained for a different 
subset of drugs according to their number of targets (drugs 
with 1 target, 2 targets, 3 targets). Then, the predictions 
for a query drug are calculated by all the ensembles, and 
pondered according to the number of targets of the query 
drug (the difference between the number of targets of 
the query and the number of targets of the drugs used to 
calculate each ensemble is used to ponder the result of 
each ensemble). A cross-validation with the truth table 
information showed that the accuracy of the described 
ANNs to reproduce the indications compiled in DrugBank 



[112, 133] is 81.7% for those drugs with all targets in the 
human biological network.  

(b)	Sampling-based methods generate models similar 
to a MLP over the previously constructed HPN, where 
neurons are the proteins and the edges of the network are 
used to transfer the information (Supplementary Figure 1) 
[60]. This methodology was used for describing with high 
capability all plausible relationships between an input (or 
stimulus) and an output (or response). Sampling-based 
methods use optimization algorithms [123] to solve each 
parameter of the equation, i.e. the weights associated to the 
links between the nodes in the human protein network. In 
this approach, the network is limited by considering only 
interactions that connect drug targets with protein effectors 
in a maximum of three steps. The values of activation (+1) 
and inactivation (–1) of the protein targets of the drugs in 
the truth table were considered as input signals whereas 
the output is defined as the values of activation and 
inactivation of the proteins describing the phenotype (as 
retrieved from the BED). Each node of the protein network 
receives as input the output of the connected nodes in 
the direction flow from targets to effectors, weighted by 
each link weight (Supplementary Figure 1). The sum of 
inputs is transformed by a hyperbolic tangent function to 
generate the score of the node (neuron), which becomes 
the ‘output signal’ of the current node towards the 
nodes. The weight parameters are obtained by Stochastic 
Optimization Method based on Simulated Annealing 
[123], which uses probabilistic measures derived from the 
biological evidence to adjust network interaction types and 
strengths. Since the number of entries in the truth table 
is always smaller than the number of parameters (link 
weights) required by the algorithm, any process modelled 
by TPMS considers a population of different solutions. 

Mechanisms of action elucidation

The MoAs obtained with the TPMS simulates 
potential interactions between drug targets and protein 
effectors associated to prototype-ALK+ NSCLC patients. 
In order to validate this approach, the intensity of the 
model’s response, divided in TSignal and number of 
protein effectors activated, was used to understand 
the relationships between all potential mechanisms 
and compare sets of MoAs from different views 
(Supplementary Figure 1) [60].

Intensity of the response 

We defined the “intensity” of the response as 
follows: 1) the quantity of protein effectors (#) that reach 
an expected signal sign; and 2) the strength or amount 
of the output signal reaching the effectors (i.e., a global 
measure of the output signal, named TSignal). 

Given a protein effector “i”, which reaches a signal 
value yi, and vi being the effector sign according to the 

BED (active or inactive) and n is the total number of 
effectors described for a phenotype, it was determined:  

Number of effectors achieving the expected sign

Assuming that a drug may be able to activate/
inactivate protein effectors reverting a disease/indication 
model phenotype. Using Dirac’s δ (i.e. δ(0) = 1, and zero 
otherwise), the equation to calculate number of effectors 
achieving the expected sign for drug indications was 
defined as:

#indication = i

n

i
i

i

v y
y=

∑ +





1

  δ
	 [Equation 1]

TSignal

The average output values of the protein effectors. 
For each effector, it was counted as positive signal if 
the sign is correct, and negative otherwise. When a drug 
affects a disease phenotype, vi and yi have opposite sign 
and it is necessary to change the sign in the corresponding 
equation: 
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Sobol sensitivity analysis

An adapted methodology for ensembles of high 
dimensional algorithms was applied following the 
definition of Sobol Sensitive Analysis [117]. According to 
the Sobol terminology, TPMS models can be redefined as 
follows:

TSignal = TPMS (X) for X = {X1, X 2… Xn}	
[Equation 3A and 3B]

Where xi is each of the parameters used in the 
TPMS models. Then, the variation of TSignal for each xi 
parameter can be expressed as:
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Consequently, the variation of the simultaneous 
parameters xi and xj can be estimated as:
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	 [Equation 4B]

Using the previous equation descriptions, we 
measured the impact of varying random parameters over 
output TSignal in two different approaches, those being 
local analysis and global analysis [117].



Local sensitivity analysis

Local sensitivity analysis evaluates changes in the 
model outputs (TSignal) with respect to variations in 
a single model parameter. This effect was measured in 
the TPMS-models for both alectinib and brigatinib MoA 
models (Supplementary Figure 2).

Global sensitivity analysis

In the global sensitivity analysis, all parameters are 
varied simultaneously over the entire parameter space 
to measure the effects of their interactions on the model 
output. Given the high dimensionality of the TPMS 
ensemble models, this measure has been estimated by 
a MonteCarlo experiment to introduce random values 
(noise) in sets of 1200 candidate parameters. These final 
TSignal effects were measured by altering combinations 
of parameters in subsets of 1, 2, 3, 4, 5, 10, 15, 20 and 30 
parameters simultaneously, from the candidate parameters 
list (Supplementary Figure 3). 

Sensitivity results

Although TPMS-models have about 5000 
parameters, only a small percentage of them showed a 
real impact on the output, which was less notorious in 
brigatinib than alectinib (Supplementary Figures 2 and 3). 
Nevertheless, the impact of some of the protein parameters 
are of great importance, meaning that TPMS models had 
to carefully adjust to all the restrictions defines in the 
truth table, while completing the drug-pathology model. 
We can see this as most protein parameters are actually 
part of the ALK+ NSCLC effectors (like P27361, P28482 
and P414921, among others), which will definitely have a 
huge effect on the final TSignal according to its definition 
in Equation 2.
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Supplementary Table 1: Pathophysiological processes (motives) and number of seeds proteins of 
ALK+ NSCLC

MOTIVE # Motive name # proteins
1 CELL GROWTH AND PROLIFERATION 46
2 SUSTAINED ANGIOGENESIS 20
3 EVADING APOPTOSIS 50
4 TISSUE INVASION AND METASTASIS 73
5 IMMUNE EVASION 16

Supplementary Table 2: List of proteins used for ALK+ NSCLC molecular characterization. Motive 
number and protein state (1 for activation, -1 inhibition, - unknown) are included. See Supplementary 
Table 2



Supplementary Table 3: Brigatinib and alectinib characterized protein targets
Drug name Uniprot 

ID
Gene 
Name

Effect DrugBank 
candidate

Stitch 
candidate

Supertarget 
candidate

References

Alectinib Q9UM73 ALK -1 yes yes no PMID: 28455243

Alectinib P07949 RET -1 no yes no PMID: 25349307

Brigatinib Q9UM73 ALK -1 yes yes no PMID: 2714483; 29075144

Brigatinib P00533 EGFR* -1 yes no no PMID: 29451020; 29075144; 28287083

Brigatinib P36888 FLT3 -1 yes no no PMID: 27144831; 29451020

Brigatinib P08922 ROS1 -1 no no no PMID: 28680831; 29451020

Brigatinib P16591 FER -1 no no no PMID: 29540831; FDA Multi-discipline review

Brigatinib P08069 IGF1R -1 yes no no PMID: 27144831; 29451020; 29075144; 29403310

*Highest affinity for EGFR (L858R) mutated form.

Supplementary Table 4: Bibliographical validation of interactions on the predicted mechanisms of 
action. See Supplementary Table 4

Supplementary Table 5: List of proteins/modifications tested as alectinib/brigatinib resistance.  
See Supplementary Table 5

Supplementary Table 6: Drugs tested for co-treatment interference. See Supplementary Table 6 

Supplementary Table 7: Summary of data used for model construction (Human Protein Network 
(HPN) and truth table)
Entry type # Entries 
In-house databases information

Considered Interactions 437.071
Considered Proteins 16.961
Characterized Drugs 5.414
Drug Targets 2,690
Characterized Clinical Conditions 253
Clinical Conditions Key Proteins Characterized 4.076

Truth table information
Curated drug-indications restrictions 180,264 (1,731 positive)
Drug-ADRs restrictions 30,096 (2,460 positive)
Drug-indications/ADRs protein correlations 2.175



Supplementary Figure 1: TPMS schematic representation of the input/output signals information over the Human 
Protein Network (HPN) using a Multilayer Perceptron-like and sampling method to predict the Mechanisms of Action 
(MoAs) of a drug.

Supplementary Figure 2: MoA models difference of TSignal measured for each individual parameters variation. (A and 
B) show the % of variation of the output TSignal for the 25 most sensible parameters in brigatinib and alectinib MoA models, respectivelty. 
(C and D) show the % of variation of the output TSignal for all parameters in brigatinib and alectinib MoA models, respectively. Parameters 
are ordered from the ones affecting the most to the models, to the ones affecting the less. For the sake of visual simplicity, the parameter 
names of C and D are not displayed in the x axis.



Supplementary Figure 3: MoA models TSignal measured for individual and multiple parameters variation. The output 
TSignal when variating 1 until 30 random parameters simultaneously in brigatinib and alectinib MoA models, respectively, is shown. The 
gray, dashed line represents the original TSignal values for each of the drugs MoA.


