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Supplementary Note 1: 

Anoxic methanogenesis has been the paradigm in methane research for generations; 

questions about the novel idea of oxic methane production are expected and welcomed. Our 

paper acknowledges dissenting opinions in the literature including Peeters et al. 2019.  

Peeters and Hofmann cited Peeters et al. as what they consider as a more valid mass balance 

analysis of methane dynamics in Lake Hallwil. However, Peeters et al.’s mass balance model 

“considers as source of CH4 diffusive fluxes from the sediments, loss of CH4 due to diffusive 

emissions from the water surface to the atmosphere, ...and lateral transport of CH4 by turbulent 

mixing within the surface mixed layer”; hence, their mass balance excludes open-water 

biogeochemical processes such as methane oxidation, and is therefore inadequate (e.g. 

systematic discount of oxic methane production (OMP)). Likewise, Peeters’ and Hofmann’s 

interpretation of isotope data in Donis et al. 2017 is inadequate without proper consideration 

of isotopic shifts caused by physical (emission phase change) and biological processes 

(oxidation and OMP). Note that we did not use the isotope data for our mass balance analysis 

(see further discussion in Supplementary Note 5). 

 

 
Supplementary Figure 1. Epilimnetic methane mass balance. The mass balance approach 

compares physical methane transport (lateral, vertical) and output fluxes (surface emission, 

oxidation) in epilimnetic waters. The difference between input and output fluxes is attributed 

to oxic methane production. 

 

Supplementary Note 2: 

Peeters and Hofmann alleged that Donis et al. 2017 and thence Günthel et al. 2019 

overestimated surface emissions in Lake Hallwil. The emissions reported in Donis et al. were 

measured directly with flux chamber (see McGinnis et al. 2015) and therefore it was not 

necessary to calculate gas transfer constants (k600), as Peeters and Hofmann claimed. These 
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direct emission measurements were also excluded from Peeters’ and Hofmann’s re-analysis. 

Supplementary Table 1 exemplarily displays the conversion of flux chamber readings to 

methane emission values which are listed by Supplementary Table 2 (mean±SD 0.7±0.4 mmol 

m-2 d-1). 

 

 

Supplementary Table 1. Exemplary conversion of flux chamber readings to methane surface emission. 

Air 
Pressure 

Water 
Temperature 

MEAN 

Slope CH4 
(from LGR) 

Chamber 
Temperature 

MEAN 

Chamber 
volume 

Bottom 
area of 

chamber 

R-gas 
constant 

Chamber 
Temperature 

CH4 
Flux 

CH4 
Flux 

[atm] [°C] [ppm sˉ¹] [°C] [mL] [m2] 
[mL atm 
Kˉ¹molˉ¹] 

[K] 
[mol m-2 

d-1] 
[mmol m-

2 d-1] 

1 20.5 0.0013 28 16755.72 0.126 82.0562 301.15 0.00060 0.604 

1 20.5 0.0015 28 16755.72 0.126 82.0562 301.15 0.00070 0.697 

1 20.5 0.0011 28 16755.72 0.126 82.0562 301.15 0.00051 0.511 

 

 

 

Supplementary Table 2. Individual methane emission values retrieved from flux chamber 

measurements. 

 

Date 

 

Station 

CH4 Flux 

[mmol m-2 d-1] 

  

Date 

 

Station 

CH4 Flux 

[mmol m-2 d-1] 

11-Jun-15  Hallwil St 8b (wp 382)  0.604  25-Jun-16 Sta 8  0.404 

11-Jun-15  Hallwil St 8b (wp 382)  0.697  25-Jun-16 Sta 8  0.665 

11-Jun-15  Hallwil St 8b (wp 382)  0.604  25-Jun-16 Sta 8  0.656 

11-Jun-15  Hallwil St 8b (wp 382)  0.511  25-Jun-16 Sta HW1 0.778 

12-Aug-15 Diffuser 0.827  25-Jun-16 Sta HW1 0.780 

12-Aug-15 Diffuser 1.147  25-Jun-16 Sta HW1 1.216 

12-Aug-15 Diffuser 1.434  25-Jun-16 Sta HW1 0.902 

14-Apr-15 Sta 8  0.519  06-Jul-16 Sta HW 8 0.909 

14-Apr-15 Sta 8  0.649  06-Jul-16 Sta HW 8 1.011 

14-Apr-15 Sta HW1 0.386  06-Jul-16 Sta HW 8 0.883 

14-Apr-15 Sta HW1 0.643  06-Jul-16 St HW 483 (north) 1.412 

15-May-15 Sta 8  0.028  06-Jul-16 St HW 483 (north) 1.072 

15-May-15 Sta 8  0.032  06-Jul-16 St HW 483 (north) 0.839 

15-May-15 Sta 8  0.030  06-Jul-16 Sta HW1 (south) 1.248 

15-May-15 Sta 8  0.029  06-Jul-16 Sta HW1 (south) 0.761 

15-May-15 Sta HW1 0.297  06-Jul-16 Sta HW1 (south) 1.262 

15-May-15 Sta HW1 0.220  06-Jul-16 Sta HW8 0.433 

15-May-15 Sta HW1 0.287  06-Jul-16 Sta HW8 0.264 

15-May-15 Sta HW1 0.343  06-Jul-16 Sta HW8 0.674 

25-Jun-16 Sta 8  0.280     
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Supplementary Note 3: 

We used both mesocosm data sets when estimating the littoral sediment flux, as indicated 

by the mean value and standard deviation in Günthel et al. 2019. The result was in fact 50% 

higher than the more recent direct sediment-core measurement (Hartmann et al. 2020), meaning 

we may have overestimated the littoral methane contribution. While Peeters and Hofmann 

question the comparison to Hartmann et al.’s measurements (e.g. “It seems unrealistic that 

such low sediment fluxes are representative for the average CH4 flux from littoral sediments in 

the South Basin of Lake Stechlin.”), there are independent studies indicating generally low 

methanogenesis activity in Lake Stechlin (Casper et al. 2003, Casper et al. 2005, Conrad et al. 

2007), and that the majority happens below 20 cm of depth (Casper 1996), potentially 

explaining the low fluxes at the sediment-water interphase reported by Hartmann et al. (note, 

methane oxidation can efficiently remove the majority of methane). 

Further, the mean and standard deviation of our littoral sediment flux estimate were 

incorporated in the Monte Carlo simulation to account for data uncertainties when computing 

OMP rates. When claiming that we underestimated the littoral sediment flux Peeters and 

Hofmann rely on the relationship between energy dissipation (ε) and the gas transfer constant 

(k600). While parameterising this relation as k600 ~ ε1/4, Peeters and Hofmann missed to mention 

that the parameterisation of this relation is subject to ongoing research and that currently, there 

is no consensus which parameterisation produces more accurate values. Further, we did not 

deploy an outdated approach to deduce Kρ from shear microstructure (e.g. Gregg et al. 2018) 

which we additionally refined by implementation of the law-of-the-wall in the unstratified 

epilimnion following Kirillin et al. 2012. 

Peeters and Hofmann implied that we assumed sediment methane flux in Lake Stechlin was 

independent of temperature. Incorporating a temperature dependency of the littoral methane 

flux was unnecessary because we quantified the littoral methane flux in August at the same 

water temperature as it was in June and July (20°C) (see Supplementary Fig. 3 in Günthel et 

al. 2019). By applying the same value to May (<20°C), we likely had overestimated the littoral 

methane input. Note, we referenced the temperature dependency in the method section of our 

original study Günthel et al. 2019. 

Instead of presenting relevant data or analysis for Lake Stechlin, Peeters and Hofmann 

simply mentioned the paper by Yvon-Durocher et al. Below is Fig. 2a from Yvon-Durocher et 

al. 2014 showing “temperature dependence of CH4 emissions at the ecosystem level”:  
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Figure 2a from Yvon-Durocher et al. 2014; red 

arrows are added by us to illustrate the data 

variability around the regression line at 20°C 

(approx. littoral temperature in Lake Stechlin). Note 

the y-variable is not the actual emission, but the 

difference between emission at absolute temperatures 

and emission at some average temperatures.  

 

 

 

 

 

 

 

While methane emission is temperature dependent, there is a large amount of scatter around 

the general trend line in both x and y directions (red arrows added by us). Lake Stechlin surface 

mixed water temperature above the littoral was ca. 20°C (Supplementary Fig. 3 in Günthel et 

al. 2019). According to Yvon-Durocher et al. 2014 Fig. 2a, the corresponding y-value varies 

between 2.2 and -1.8 on a natural log scale, which translates to a >50-fold difference between 

the actual upper and lower values. Likewise, the same y-value could correspond to a 

temperature between 13°C and 30°C. We also refer readers to the Extended Data Figure 2 in 

Yvon-Durocher et al. “Correlations of average site temperatures with average CH4 emissions 

and CH4 emissions at fixed temperature for globally distributed ecosystems” which shows that 

temperature explains only 12% of the variance for CH4 emissions in aquatic systems.  

 

Supplementary Note 4: 

Peeters and Hofmann speculated that the mesocosms may approach smaller CH4 

concentrations after a longer time period—We would welcome data to verify this speculation. 

Peeters and Hofmann also commented the central mesocosm was close to atmospheric 

saturation showing no indication of significant CH4 production—This is consistent with what 

we discussed in the paper. Oxic methane production is a biological process that depends on 

certain set of environmental conditions, including nutrients and the relevant organisms. When 

nutrients and the related biological activities became severely limited in the central mesocosm, 

oxic methane production would become negligible as expected. 
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Supplementary Note 5: 

We first explain why Peeters’ and Hofmann’s equation and their alternative oxic methane 

contribution to emission (OMC) estimations are incorrect, then we further clarify how we 

analysed DelSontro et al. 2018’s data. 

Peeters and Hofmann derived their version of OMC termed NOMC by comparing sediment 

and lake surface methane fluxes as NOMC = (Fsurf,tot – Fsed,tot)/Fsurf,tot (combining their 

equations of NOM and NOMC). By doing so, Peeters and Hofmann ignore any internal 

biochemical process of the aquatic methane production-consumption balance (e.g. “This 

procedure neglects processes contributing to the mass balance…”). In their calculations for 

additional lake estimates, Peeters and Hofmann further inadequately substitute the flux data 

Fsurf,tot/Flitt,tot with RCH4 values (“Relative [CH4] decrease/increase due to 

oxidation/production”) taken from DelSontro et al. (Supplementary Table 8) resulting in the 

formula NOMC = (RCH4 – 1)/RCH4. DelSontro et al. calculated RCH4 as the total change in 

methane concentration over the gas residence time (DelSontro et al. Table S8) relative to the 

background methane level along the transect (DelSontro et al. Supplementary Table 5)—this 

background methane was a combination of anoxic and oxic methane—as influenced by 

oxidation vs. production. In other words, DelSontro et al.’s calculations gave an indication of 

the dynamics of epilimnetic methane as influenced by the opposing processes of oxidation and 

production. Note that DelSontro et al. did not equate the background methane level to ‘littoral 

methane’; to the contrary, their physical transport model predicts that littoral methane 

concentration decreases exponentially with distance from the shore due to dilution effect and 

emission loss, and in large lakes only negligible amounts of littoral methane (≤1.5 %) would 

reach the lake center. Actual measurements by DelSontro and colleagues showed that the 

concentration gradients largely deviated from this prediction (their Figs. 1, S4, S5, Table S5); 

accordingly, DelSontro et al. concluded that epilimnetic (oxic) methane production must be 

present. DelSontro et al. did not state that the observed concentrations (or background level) 

were due to littoral methane alone; yet, Peeters and Hofmann misrepresented the meaning of 

the “relative [CH4] decrease/increase” (RCH4) in DelSontro et al. and arbitrarily set a 100% 

baseline value for littoral methane, then expressed any relative change as NOMC (i.e. the ‘1’ 

part of their equation). Therefore, the NOMC presented by Peeters and Hofmann is misleading 

and unjustified. We refer readers to DelSontro et al. 2018 for details. Accordingly, Peeters’ and 

Hofmann’s NOMC cannot be compared to our OMC estimates. 

We would further clarify how we analysed DelSontro et al.’s data. In addition to 

concentration data, DelSontro et al. inferred epilimnetic methane production vs. oxidation from 
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methane carbon stable isotope data by assuming that methane δ13C values lower than -54 ‰ 

indicates epilimnetic production, whereas δ values higher than -54 ‰ indicates oxidation (their 

Fig. 3). This interpretation was inadequate because the precise biochemical pathways, hence 

the isotopic signatures of oxically produced methane were unknown. As new information 

emerges (post publication of Günthel et al. 2019, e.g. Bizic et al. 2020, Günthel et al. 2020, 

Hartmann et al. 2020, Klintzsch et al. 2020), we now know that OMP can be linked to 

phototrophic fixation of inorganic carbon, which would likely yield a higher (heavier) δ13C 

value than anoxically produced methane, thereby confounding isotopic signal of methane 

oxidation. To avoid uncertainties associated with the isotope data, we opted to estimate OMC 

based on methane concentrations along their sampling transect (data obtained via personal 

communications with Dr. DelSontro). 

Discrepancy between observed methane concentrations and predicted methane 

concentrations based on their physical transport model along the transect represents 

contribution from oxic methane production, the rest was anoxic methane. We then extrapolated 

the transect data to the entire lake surface area (equivalent radius from DelSontro et al.) to 

obtain system-wide contributions of oxic and anoxic methane—Note this is vastly different 

from DelSontro et al. and Peeters and Hofmann, who only considered ‘relative [CH4] 

decrease/increase’ along the transect measurements.  

To explore how OMC varied with lake morphometry such as surface mixed-layer volume 

(∀) and littoral sediment area (Ased), we calculated ∀ from data in DelSontro et al. (surface area, 

surface mixed layer depth), and we estimated Ased based on a littoral sediment slope of 45°. 

Even when we change the sediment slope from 45° to 5° as suggested by Peeters and Hofmann, 

giving higher littoral sediment areas, the overall relationship between OMC and Ased over ∀ 

only changes slightly (Fig. 1 in the main text). 

Further, we would like to point out that Peeters and Hofmann excluded the source signature 

of oxically produced methane from all of their isotope considerations. 
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