Supplementary Information for

Water enables mild oxidation of methane to methanol on gold single-atom catalysts

Laihao Luo¹, Jie Luo¹, Hongliang Li¹, Fangning Ren¹, Yifei Zhang¹, Andong Liu¹, Wei-Xue Li¹, Jie Zeng^1

¹Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

†These authors contributed equally to this work.

*Corresponding author. E-mail: lihl@ustc.edu.cn (H.L.); wxli70@ustc.edu.cn (W.L.); zengj@ustc.edu.cn (J.Z.).

Supplementary Figure 1 | Morphology of BP and Au1/BP nanosheets. (**a**) TEM image of BP nanosheets. (**b**) TEM image of Au₁/BP nanosheets.

Supplementary Figure 2 | Morphology of BP and Au1/BP nanosheets. (**a**) AFM image and (**b**) height profile of BP nanosheets. (c) AFM image and (d) height profile of Au₁/BP nanosheets.

Supplementary Figure 3 | HAADF-STEM images of Au1/BP nanosheets.

Supplementary Figure 4 | Characterizations of Au NPs/BP nanosheets. (**a**) TEM image of Au NPs/BP nanosheets. (**b**) HAADF-STEM image of Au NPs/BP nanosheets. (**c**) HAADF-STEM image of an individual Au nanoparticle. (**d**) Size distribution diagram of Au NPs/BP nanosheets.

Supplementary Figure 5 | XRD patterns of BP and Au1/BP nanosheets.

Supplementary Figure 6 | Raman spectra of BP and Au1/BP nanosheets.

Sample	$Au-P$		Au-Au			
	$R(\AA)$	CN	$R(\AA)$	CN	D.W.	ΔE_0 (eV)
Au foil			2.86 ± 0.01	12.0	0.008 ± 0.001	4.0 ± 0.5
$Au1/BP$ nanosheets	2.33 ± 0.01	2.0 ± 0.1			0.008 (Au) 0.003(P)	6.8 ± 1.7
$Au1/BP$ nanosheets after 10 <i>in-situ</i> cycles	2.44 ± 0.02	2.6 ± 0.3				17.4 ± 2.8

Supplementary Table 1 | EXAFS fitting results of Au1/BP nanosheets before and after catalytic tests.

R, distance between absorber and backscatter atoms; *CN*, coordination number; *D. W.*, Debye-Waller factor; ΔE_0 , inner potential correction to account for the difference in the inner potential between the sample and the reference compound.

Supplementary Figure 7 | High-resolution Cl 2*p* **XPS spectrum of Au1/BP nanosheets.**

Supplementary Figure 8 | Band structures of BP and Au1/BP nanosheets. (**a**) UV-vis-NIR absorption spectra and (**b**) the corresponding Tauc plots of BP and Au1/BP nanosheets. (**c**) Mott-Schottky plots of BP and Au₁/BP nanosheets. (**d**) Valence XPS spectra of BP and Au₁/BP nanosheets. (**e**) Band structures of BP and Au₁/BP nanosheets.

Supplementary Figure 9 | Characterizations of Pt1/BP, Rh1/BP, and Pd1/BP nanosheets. TEM images of (**a**) Pt₁/BP, (**b**) Rh₁/BP, and (**c**) Pd₁/BP nanosheets. HAADF-STEM images of (**d**) Pt₁/BP, (e) Rh₁/BP, and (f) Pd₁/BP nanosheets. Magnified HAADF-STEM images of (g) Pt₁/BP, (**h**) Rh1/BP, and (**i**) Pd1/BP nanosheets.

Supplementary Figure 10 | Characterizations of Pt NPs/BP, Rh NPs/BP, and Pd NPs/BP nanosheets. TEM images of (**a**) Pt NPs/BP, (**b**) Rh NPs/BP, and (**c**) Pd NPs/BP nanosheets. Particle size distribution diagrams of (**d**) Pt NPs/BP, (**e**) Rh NPs/BP, and (**f**) Pd NPs/BP nanosheets.

Supplementary Figure 11 | DRIFTS spectra of different catalysts using CO as a probe molecule.

Supplementary Table 2 | Assignment of DRIFTS peaks in Supplementary Figure 10.

Supplementary Figure 12 | Spectrum of the incident light source.

Supplementary Figure 13 | Comparison of the catalytic performance of different BP nanosheets based catalysts. Reaction conditions: 200 mg catalyst, 30 bar CH₄, 3.0 bar O₂, 20 mL water, 90 °C, 2 h, light power 1.2 W, irradiation area 3.14 cm⁻².

Catalyst	Reaction conditions	Catalytic Activity	Methanol Selectivity	Reference
Au ₁ /BP	30 bar CH ₄ , 3 bar O ₂ 90 °C, Under irradiation	5.6 $molmethanol/molAu/h$	>99%	This work
0.33 _{metal} wt.% FeO _x /TiO ₂	Atmospheric CH ₄ H_2O_2 Room temperature Under irradiation	~5.95 mol _{methanol} /mol _{Fe} /h	$>90\%$	S ₅
0.10 wt% $Rh/ZSM-5$	50 bar CH ₄ , 10 bar CO, 8 bar O ₂ , 150 °C	2.71 molcнзон/mol _{Rh} /h		S6
0.6 wt% Rh/TiO ₂	20 bar $CH4$, 5 bar CO 2 bar O_2 , 150 °C	~1.31 $mol_{\rm methanol}/mol_{Rh}/h$	100%	S ₂
AuPd/ZSM-5- C_{16}	3.0 MPa 3.3% $H_2/6.6\%$ O ₂ /1.6% CH ₄ /61.7% Ar/26.8% He, 70° C	~13.9 $molCH3OH/molAuPd/h$	92%	S ₇
Au-Pd colloids	30 bar CH ₄ , 5 bar O ₂ , H ₂ O ₂ , 70 °C	2.303 $molCH3OH/molmetal/h$	92%	S8
$Cu-0.5/PCN$	Atmospheric CH ₄ No extra oxidant Room temperature Under irradiation	$~1$ -0.31 $mol_{\text{methanol}}/mol_{\text{Cu}}/h$		S9
UiO-66(2.5TFA)-Fe	3 MPa CH ₄ , H ₂ O ₂ , 50 °C	$\overline{0.65}$ mol _{CH3OH} /mol _{Fe} /h	$~5.4\%$	S10
Au $_{0.75}/ZnO$	15 bar CH ₄ , 5 bar $O2$ 30 °C Under irradiation	\sim 18.0 mol _{CH3OH} /mol _{Au} /h	99.1%	S11
FeN ₄ /GN-2.7	2 MPa CH ₄ H_2O_2 , 25 °C	~ 0.47 mol _{methanol} /mol _{Fe} /h		S12
0.13 wt % AuPd/Rutile TiO ₂ $(800 °C$ treated)	30.5 bar CH ₄ H_2O_2 , 70 °C	6.8 mol _{CH3OH} /mol _{metal} /h	9.3%	S13
0.3 wt% Rh/ZrO ₂	28.5 bar CH ₄ H_2O_2 , 70 °C	\sim 1.25 mol _{CH3OH} /mol _{Rh} /h	64.1%	S14
$BiVO_4-V_2O_5$	Atmospheric CH ₄ No extra oxidant ~70 °C Under irradiation	3.3 umolcнзон/gcat/h	100%	S15

Supplementary Table 3 | Comparison of catalytic performance reported in this work and representative results from published works.

Supplementary Figure 14 | Time courses for partial oxidation of methane over Au1/BP nanosheets at (a) 50 ^oC, (b) 60 ^oC, (c) 70 ^oC, (d) 80 ^oC, and (e) 90 ^oC. Reaction conditions: 200 mg catalyst, 30 bar CH₄, 3 bar O_2 , full spectrum light, irradiation area 3.14 cm⁻².

Supplementary Figure 15 | Catalytic performance of supernate after one reaction cycle, HAuCl₄-H₃PO₄, and Au(OH)₃-H₃PO₄ aqueous solution. After a 2-h reaction over Au₁/BP nanonsheets, the catalysts were removed by centrifugation. After the centrifugation, we collected the supernate as the catalyst for an additional 2-h reaction under the same conditions. The HAuCl₄-H₃PO₄ and Au(OH)₃-H₃PO₄ experiments were conducted with a total amount of Au of 0.4 mg and P of 200 mg.

Supplementary Figure 16 | Wavelength-dependent apparent quantum yields (AQY) of methanol for Au1/BP nanosheets under the irradiation of various monochromatic lights. Error bars represent standard deviation from three independent measurements.

Supplementary Figure 17 | Influence of CH_4 and O_2 partial pressure. (a) Product yields over Au1/BP nanosheets under different CH⁴ pressures. Reaction conditions: 200 mg catalyst, 20 mL water, 3 bar O_2 , 90 °C, light power 1.2 W, irradiation area 3.14 cm⁻², 2 h. (b) Product yields over Au₁/BP nanosheets under different O₂ pressures. Reaction conditions: 200 mg catalyst, 20 mL water, 30 bar CH₄, 90 °C, light power 1.2 W, irradiation area 3.14 cm⁻², 2 h.

Supplementary Figure 18 | Influence of water amount and stirring rate. (a) Product yields over Au1/BP nanosheets under different water amount. Reaction conditions: 200 mg catalyst, 30 bar CH₄, 3 bar O₂, 90 °C, full spectrum light, light power 1.2 W, irradiation area 3.14 cm⁻², 2 h. (b) Product yields over Au₁/BP nanosheets under different stirring rate. Reaction conditions: 200 mg catalyst, 20 mL H₂O, 30 bar CH₄, 3 bar O₂, 90 °C, full spectrum light, light power 1.2 W, irradiation area 3.14 cm^{-2} , 2 h.

Supplementary Figure 19 | Characterization of Au1/BP nanosheets after 10 *in-situ* **cycles in comparison with the fresh catalyst.** (a) HAADF-STEM image of Au₁/BP nanosheets after 10 *in-situ* cycles. (**b**) XANES spectrum and (**c**) EXAFS spectrum of Au₁/BP nanosheets after 10 *in-situ* cycles. Au foil, Au_2O_3 , and fresh Au_1/BP nanosheets were used as the references. For each cycle, the catalytic reaction was operated under 33 bar (CH₄: $O_2 = 10:1$) at 90 °C for 2 h.

Surface	Calculated	Experimental	Literature	Reference	
species	wavenumber (cm^{-1})	wavenumber (cm^{-1})	value (cm^{-1})		
$P-O-P$	820	911	891	S16	
$P=O$	1183	1246	1286		
P-OH	3561, 3267	3350	3734	S17	
CH_4*	$\overline{}$	3015, 1304	3015, 1304	S9	
$CH3*$	1408	1456	1457	S8	

Supplementary Table 4 | Assignment of *in-situ* **DRIFTS peaks observed in this study.**

Supplementary Figure 20 | Isotope labeling DRIFTS spectra. (a) *In-situ* DRIFTS spectra of BP nanosheets purged by 1 bar of ${}^{16}O_2$ or ${}^{18}O_2$ at 90 °C under light irradiation. (b) *In-situ* DRIFTS spectra of BP nanosheets purged by 1 bar of ${}^{16}O_2/H_2{}^{18}O$, ${}^{18}O_2/H_2{}^{16}O$, or ${}^{18}O_2/H_2{}^{18}O$ at 90 °C under light irradiation. Background spectra were acquired after flowing under 1 bar of N_2 with the rate of 20 sccm at 150 \degree C for 0.5 h, followed by cooling to 90 \degree C.

Supplementary Figure 21 | *Quasi-situ* **XPS studies of Au1/BP nanosheets.** *Quasi-situ* XPS spectra of (a) O 1*s* and (b) Au 4*f* for Au₁/BP nanosheets after the treatment with O_2/H_2O in the dark or under light irradiation (1.2 W) at 90 °C in comparison with those without any treatment.

Supplementary Figure 22 | ¹H solid NMR spectrum of Au1/BP nanosheets pre-treated with O₂/H₂O under light irradiation (1.2 W) at 90 °C. Au(OH)₃ was used as the references.

Supplementary Figure 23 | Adsorption configuration of two O atoms on Au1/BP nanosheets. Yellow, violet, pink, and red spheres represent Au, surface P, subsurface P, and O atoms, respectively.

Supplementary Figure 24 | (a) Configurations and (b) reaction path of oxygen activation under light irradiation. Violet, pink, red, and white spheres represent Au, surface P, subsurface P, O, and H atoms, respectively.

Supplementary Figure 25 | *In-situ* **DRIFTS spectra of pre-treated Au1/BP nanosheets purged by 1 bar of CH⁴ at 90 ^oC in the dark.** Pre-treatment: Catalysts were purged by 1 bar of O₂/H₂O at 90 °C for 0.5 h under light irradiation, followed by 1 bar of N₂ at 150 °C for 0.5 h. Afterwards, the catalysts were purged by 1 bar of CH₄ at 25 \degree C for 0.5 h to obtain background spectra.

Supplementary Figure 26 | CH4-TPSR studies of Au1/BP nanosheets. TPSR-MS profiles of Au1/BP nanosheets after the pre-treatment (**a, b**) in the dark and (**c, d**) under light irradiation. For pre-treatment, the catalyst was dispersed in $H_2^{18}O$ within a vial under O_2 at 90 °C for 0.5 h, followed by being dried in vacuum oven.

Supplementary Figure 27 | (a) Configurations and (b) reaction path for CH⁴ oxidation in the dark after O² activation in the dark. For each configuration, the top image shows the top view, while the bottom image shows the side view. Yellow, violet, pink, red, grey, and white spheres represent Au, surface P, subsurface P, O, C, and H atoms, respectively. In configuration II, the distance between the O atom in P-OH and the C atom in CH_3^* is 3.477 Å, while that between the O atom in P-OH and the Au atom is 3.147 Å.

Reaction	Reaction Energy
$CH_4 + 2P \rightarrow P-CH_3 + P-H$	2.08
$CH_4 + 2P=O \rightarrow P-O-CH_3 + P-OH$	2.28
$CH_4 + P=O + P \rightarrow P-O-CH_3 + P-H$	2.59
$CH_4 + P=O + P \rightarrow P-CH_3 + P-OH$	1.78
$CH_4 + P-OH \rightarrow P-CH_3 + H_2O$	0.31
$CH_4 + P-OH \rightarrow CH_3OH + HP$	1.26
$CH_4 + P=O \rightarrow CH_3OH + P$	0.96
$CH_4 + P=O + P-OH \rightarrow P-O-CH_3 + H_2O + P$	0.82
$CH_4 + Au + P \rightarrow Au-CH_3 + P-H$	0.62
$CH_4 + Au + P \rightarrow P-CH_3 + Au-H$	0.34
$CH_4 + Au + P=O \rightarrow Au-CH_3 + P-OH$	0.32
$CH_4 + Au + P=O \rightarrow P-O-CH_3 + Au-H$	0.84
$CH_4 + Au + P-OH \rightarrow Au-H + CH_3OH$	-0.48
$CH_4 + Au + P-OH \rightarrow Au-CH_3 + H_2O$	-1.14

Supplementary Table 5 | Reaction energy of CH⁴ activation over all possible active sites on Au/BP nanosheets.

Supplementary Figure 28 | (a) Configurations and (b) reaction path for CH⁴ oxidation in the dark after O² activation under light irradiation. For each configuration, the top image shows the top view, while the bottom image shows the side view. Yellow, violet, pink, red, grey, and white spheres represent Au, surface P, subsurface P, O, C, and H atoms, respectively.

Supplementary Figure 29 | (a) Configurations and (b) reaction path for partial oxidation of methane by P=O species over Au₁/BP nanosheets. For each configuration, the top image shows the top view, while the bottom image shows the side view. Yellow, violet, pink, red, grey, and white spheres represent Au, surface P, subsurface P, O, C, and H atoms, respectively.

Reaction Coordinates

Supplementary Figure 30 | Reaction energy of methane dehydrogenation over Au1/BP nanosheets.

Supplementary Figure 31 | Calculated energy barriers for methanol oxidation. (**a**) Reaction path of methanol oxidation by P-OH and P=O species. (**b**) Configurations of intermediates during methanol oxidation by P-OH species. (**b**) Configurations of intermediates during methanol oxidation by P=O species. For each configuration, the top image shows the top view, while the bottom image shows the side view. Yellow, violet, pink, red, grey, and white spheres represent Au, surface P, subsurface P, O, C, and H atoms, respectively.

Supplementary References

- S1. Zhang, X. *et al.* Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. *Nature Commun.* **10**, 5812 (2019).
- S2.Shan, J., Li, M., Allard, L.F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. *Nature* **551**, 605-608 (2017).
- S3.Jiang, L. *et al.* Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. *Nature Nanotechnol.* **15**, 848-853 (2020).
- S4.Manrique, R. *et al.* The nature of the active sites of Pd-Ga catalysts in the hydrogenation of CO² to methanol. *Catal. Sci. Technol.* **10**, 6644-6658 (2020).
- S5.Xie,  J. *et al.* Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxidesupported iron species. *Nature Catal.* **1**, 889-896 (2018).
- S6.Tang, Y. *et al.* Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. *Nature Commun.* **9**, 1231 (2018).
- S7.Jin, Z. *et al.* Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. *Science* **367**, 193-197 (2020).
- S8.Sushikevich, V. L., Palagin, D., Ranocchiari, M. & Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. *Science* **358**, 223-227 (2017).
- S9.Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. *Nature Commun.* **10**, 506 (2019).
- S10.Zhao, W. *et al.* Fe-O clusters anchored on nodes of metal-organic frameworks for direct methane oxidation. *Angew. Chem. Int. Ed.* DOI: 10.1002/anie.202013807.
- S11.Zhou, W. *et al.* Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis. *J. Mater. Chem. A* **8**, 13277-13284 (2020).
- S12.Cui, X. *et al.* Room-temperature methane conversion by graphene-confined single iron atoms. *Chem* **4**, 1902-1910 (2018).
- S13.Williams, C., *et al.* Selective oxidation of methane to methanol using supported AuPd catalysts prepared by stabilizer-free sol-immobilization. *ACS Catal.* **8**, 2567-2576 (2018).
- S14.Kwon, Y., Kim, T. Y., Kwon, G., Yi, J., & Lee, H. et al. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. *J. Am. Chem. Soc.* **139**, 17694-17699 (2017).
- S15.Murcia-Lopez, S., Villa, K., Andreu, T. & Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. *ACS Catal.* **7**, 2878-2885 (2017).
- S16.Rao, K. S., Reddy, M. S., Kumar, V. R. & Veeraiah, N. Dielectric, magnetic and spectroscopic properties of Li2O-WO3-P2O⁵ glass system with Ag2O as additive. *Mater. Chem. Phys.* **111**, 283-292 (2008).
- S17.Diallo-Garcia, S., Osman, B. M., Krafft, J.-M., Boujday, S, Guylène. C. Discrimination of infrared fingerprints of bulk and surface POH and OH of hydroxyapatites. *Catal. Today* **226**, 81-88 (2014).