Supplementary Information

Coupled nitrification and N₂ gas production as a cryptic process in oxic riverbeds

Ouyang et al.

Supplementary Note 1 | **Derivation of equations.** To derive equations 8 and 9 in the main text in order to define the solution space (Figure 4) where both ra (by convention the relative contribution from anammox to total N₂ production¹) and F_{N2} fall between >0<1.

Let *D28*, *D29*, and *D30* represent the rates of ${}^{28}N_2$, ${}^{29}N_2$, and ${}^{30}N_2$ production (here in nmol N g⁻¹ dry sediment h⁻¹) by denitrification, *D*, respectively. From denitrification, N₂ is generated through random isotope pairing. Thus, with *F_N* being the fraction of the total porewater nitrite pool labelled with ${}^{15}N$ (or the overall NO_x⁻ pool, NO₂⁻ + NO₃⁻):

$$D30 = D \times F_N^2$$

$$D29 = D \times 2 \times F_N \times (1 - F_N)$$

$$D28 = D \times (1 - F_N)^2 \tag{3}$$

If denitrification is the only source of N₂, then the fraction of 15 N in the N₂ gas produced is the same as in the porewater nitrite source pool and, combining *1* and *2*, is given by:

$$F_{N2-denitrification} = F_N = \frac{1}{1 + \frac{D_{29}}{2 \times D_{30}}}$$

N₂ from anammox (e.g. nmol N g⁻¹ dry sediment h⁻¹) is generated by a 1:1 pairing between N from ammonia and nitrite. Thus, if *A28*, *A29*, and *A30* represent the production of ${}^{28}N_2$, ${}^{29}N_2$, and ${}^{30}N_2$ from anammox, *A*, and with *F*_A being the fraction of the total porewater ammonia pool labelled with ${}^{15}N$:

$$A30 = A \times F_A \times F_N \tag{5}$$

$$A29 = A \times [F_A \times (1 - F_N) + F_N \times (1 - F_A)]$$
6

$$A28 = A \times (1 - F_A) \times (1 - F_N)$$

and the degree of ¹⁵N labelling in the N₂ produced through anammox is given by:

$$F_{N2\text{-}anammox} = \frac{2 \times A30 + A29}{2 \times (A30 + A29 + A28)}$$
8

Inserting equations 5 to 7 in 8 and cancelling out *A*:

$$F_{N2-anammox} = 0.5 \times (F_A + F_N)$$

Let *ra* represent the relative contribution of anammox to N₂ production:

$$ra = \frac{A}{A+D}$$
 10

then:

$$F_{N2} = ra \times F_{N2-anammox} + (1 - ra) \times F_{N2-denitrification}$$
11

and inserting 4 and 9 in 11:

$$F_{N2} = ra \times 0.5 \times (F_A + F_N) + (1 - ra) \times F_N = ra \times 0.5 \times (F_A - F_N) + F_N$$
 12

With both F_{N2} and ra unknown, this cannot be solved. Instead, as shown in² we can determine ra from the ratio, R, of ²⁹N₂ and ³⁰N₂ production:

$$ra = \frac{(R+2) \times F_N^2 - 2 \times F_N}{(F_N - F_A) \times [(R+2) \times F_N - 1]}$$
13

and inserting in 12 we derive F_{N2} solely from F_N and R:

$$F_{N2} = F_N - \frac{R \times F_N + 2 \times (F_N - 1)}{2 \times (R + 2 - \frac{1}{F_N})}$$
 14

Note that F_A is no longer required.

Supplementary Figure 1. Approximate locations of the 12 rivers in the south east of England, UK. See Supplementary Table 1 for each latitude and longitude and some sediment characteristics at each site.

Supplementary Figure 2. Example of an oxic incubation with ¹⁵NH₄⁺ both with and without ATU (allylthiourea) for a gravel-dominated sediment from the River Darent. **a**, Production of ¹⁵N-N₂ (\bullet –ATU, ∇ + ATU) and dissolved oxygen concentrations throughout the incubation (**a**) and **b**, parallel production of ¹⁵N-NO₃⁻ (same symbols as **a**). Data are mean values ± standard error (n = 5) and the maintenance of oxic conditions throughout agrees with what we reported previously³.

Supplementary Figure 3. In a typical ¹⁵N isotope pairing experiment ¹⁵N-labelled nitrite or nitrate could be added at purities from 5% to 99.2% (¹⁵N atom %) to give a range of F_N where $F_N = {}^{15}$ N atom % / 100. If the resulting ¹⁵N-labelled N₂ gases were simply produced by denitrification, then the ratio between ²⁹N₂ and ³⁰N₂ (*R*) would increase as an inverse function of ¹⁵N (atom %). **a**, Original, linear data and **b**, after log₁₀ transformation as for the *x*-axis in Figure 4 in the main text.

Supplementary Figure 4. Solution spaces for low (0.1) and high (0.9) values for F_A and combinations of equations 8 and 9 where both F_{N2} and ra fall between >0<1. Note the shift in the position of the gap, where $F_A=F_N$, from *R* of between ~ 1.0 and 1.5, to *R* of between ~ -0.6 to -0.7 for the low and high values of F_A , respectively.

			Grainsize (%) ^a		Organic C	Ν	C: N	
River	Latitude	Longitude	gravel	sand	mud	$(\mu mol g^{-1})^{b}$	$(\mu mol g^{-1})^{b}$	(molar ratio) ^b
Pant	52.0044	0.316916	84.4	15	0.6	155±6	22±0.8	7 ± 0
Broadstone ^d	51.08326	0.05549	82.2	15.9	1.9	255±46	17 ± 1.8	15 ± 1.1
Wylye	51.14248	-2.20331	74.5	23.6	1.9	555±26	49±10.7	12±1.9
Rib	51.83917	-0.02936	67.7	31.6	0.7	282±23	35±3.1	8±0.1
Lambourn*	51.44089	-1.38661	66.1	32.9	1	222±23	21±0.4	11±1
Darent*	51.35043	0.188336	53.1	44	2.8	801±59	61±6.3	13±0.4
Marden*	51.31829	-1.86	39.2	59.7	1	293±23	32±3	9±0.2
Stour $(1)^{c}$	51.15604	0.828219	26.0	73	1	151±16	13±1.3	11 ± 0.1
Stour $(2)^{c}$	51.22574	0.957806	16.4	82.5	1.1	96±10	7 ± 0.7	13±0.6
Nadder	51.04385	-2.11182	9.9	87.4	2.7	287±114	15±6.5	22±4.3
Hammer*	51.14607	0.610196	0.0	98.9	1.1	66±2	6±0.4	12±1.1
Medway	51.26798	0.518439	0.0	97.4	2.6	244±79	14 ± 2.4	17±2.6

Supplementary Table 1. Site locations for the 12 rivers sampled and their sediment characteristics in rank order of gravel content (%).

*The first four rivers chosen for sediment collection.

^a Data are mean values (n=3).

^b Organic C, N and C: N data are mean values ± 1 standard error (n = 3).

^c The rivers Stour (1) and Stour (2) are on the chalk, with predominantly gravel-dominated riverbeds but the sediments collected from sand dominated stretches. ^d The River Broadstone is an acidic river on a sand-based geology. **Supplementary Table 2.** Contrast tables for the effects of both ATU (all 12 rivers) and addition of ${}^{14}NO_{2}^{-}$ (first 4 rivers) on the rates of both ${}^{29}N_{2}$ and ${}^{30}N_{2}$ production during the first 10h of oxic incubations with ${}^{15}N-NH_{4}^{+}$. Mixed-effects models were fitted using the lme4 package in R⁴ and contrasts, parameter (marginal mean) estimates and standard errors derived using emtrends with Kenwood-Roger degrees of freedom and Tukey correction where appropriate.

a, production of $^{29}N_2$ over time

Treatment	Obs.	Parameter ²⁹ N ₂	Contrast	Estimate	t	Р
(code)	(Rivers)	$(nmol g^{-1} h^{-1})$		(s.e.)		
$^{15}\mathrm{NH_4^+}(2)$	400 (4)	0.9997				
$^{15}\text{NH4}^{+} + \text{ATU}(1)$	400 (4)	0.0875	1 - 2	-0.9122 (0.1469)	6.211	< 0.001
$^{15}\text{NH}_4^+ + {}^{14}\text{NO}_2^-(4)$	400 (4)	1.1392	4 - 2	0.1395 (0.0966)	1.445	0.473
$^{15}\text{NH4}^{+} + ^{14}\text{NO2}^{-} + \text{ATU}(3)$	400 (4)	0.0910	4-3	-1.0482 (0.1469)	7.137	< 0.001
$^{15}\mathrm{NH_{4}^{+}}\left(2\right)$	760 (12)	0.742				
$^{15}\text{NH4}^{+} + \text{ATU}(1)$	760 (12)	0.139	1 - 2	-0.603 (0.051)	11.882	< 0.001

b, production of ³⁰N₂ over time

Treatment	Obs.	Parameter ³⁰ N ₂	Contrast	Estimate	t	Р
(code)	(Rivers)	$(nmol g^{-1} h^{-1})$		(s.e.)		
$^{15}\text{NH4}^{+}(2)$	400 (4)	0.5792				
$^{15}\text{NH}_4^+ + \text{ATU}(1)$	400 (4)	0.0026	1 - 2	-0.5766 (0.0810)	7.117	< 0.001
$^{15}\text{NH4}^{+} + {}^{14}\text{NO2}^{-}(4)$	400 (4)	0.5386	4 - 2	0.0406 (0.0533)	0.761	0.872
$^{15}\text{NH}_4^+ + {}^{14}\text{NO}_2^- + \text{ATU}(3)$	400 (4)	-0.0133	4 - 3	-0.5518 (0.0810)	6.812	< 0.001
$^{15}\text{NH4}^{+}(2)$	760 (12)	0.4649				
$^{15}\text{NH}_4^+ + \text{ATU}(1)$	760 (12)	0.0484	1 - 2	-0.416 (0.029)	14.382	< 0.001

Supplementary Table 3. a, Overall mean values, confidence intervals and median values for the fraction of ¹⁵N labelling in the porewater NO₂⁻ and NO_x⁻ pools (F_N) and ammonia pool (F_A) for treatments 2 and 4 in the first 4 set of rivers and just treatment 2 in the second set of 12 rivers. **b**, Overall predicted *R* values as for Table 2 in the main text but for F_N as either NO₂⁻ or NO_x⁻ where appropriate. Mixed-effects models were fitted using "lme4" in R⁴ and 95% confidence intervals derived using the emmeans package. Medians values were simply calculated using all observations in each treatment. Note that to estimate the means in both **a**, and **b**, incubation time was fitted as a random effect for the first set of 4 rivers but as a fixed effect for the 12 rivers.

a,												
Code,	Rivers		$F_N \operatorname{NO}$	2				$F_N \operatorname{NO}_x^-$			F_A	
Treatment		Mean	95% C	CI	Medi	an N	Iean	95% CI	Median	Mean	95% CI	Median
2, ¹⁵ NH ₄ ⁺	4	0.323	0.270-	0.377	0.278	3 0	.415	0.362-0.468	0.328	0.571	0.518-0.624	0.613
4 , ${}^{15}\text{NH}_4$ + ${}^{14}\text{NO}_2$	2 4	0.267	0.214-	0.320	0.138	8 0	.358	0.305-0.411	0.208	0.515	0.462-0.568	0.637
2, ¹⁵ NH ₄ ⁺	12	0.160	0.128-	0.192	0.111	. 0	.250	0.218-0.282	0.187	0.448	0.416-0.480	0.469
b,												
Code,	Rivers	Process	F_N	R		Lower	Upper					
Treatment	(replicates)			$(^{29}N_2 /$	³⁰ N ₂)	95%	95%					
						C.I.	C.I.					
				Predic	ted							
2, ¹⁵ NH ₄ ⁺	4 (5)	Denitrification	NO ₂ -	7.81 (1	.36)	5.1	10.5					
2, ¹⁵ NH ₄ ⁺	4 (5)		NO_x^-	7.78 (1	.36)	5.1	10.5					
$4, {}^{15}\mathrm{NH_4^+} + {}^{14}\mathrm{NO_2}$	4 (5)		NO_2^-	19.60 ((1.35)	16.9	22.3					
$4, {}^{15}\mathrm{NH_4^+} + {}^{14}\mathrm{NO_2}$	4 (5)		NOx	19.54 ((1.35)	16.9	22.2					
2, ¹⁵ NH ₄ ⁺	12 (5)	Denitrification	NO ₂ -	29.4 (2	2.28)	24.8	33.9					
2, ¹⁵ NH ₄ ⁺	12 (5)	Denitrification	NO_x^-	22.2 (2	2.28)	17.6	26.7					
2, ¹⁵ NH ₄ ⁺	12 (5)	Anammox	NO_2^-	19.3 (2	2.28)	14.8	23.9					
2, ¹⁵ NH ₄ ⁺	12 (5)	Cryptic	NO ₂ -	9.3 (2.2	28)	4.76	13.8					

Supplementary References

- Risgaard-Petersen, N., Nielsen, L. P., Rysgaard, S., Dalsgaard, T. & Meyer, R.
 L. Application of the isotope pairing technique in sediments where anammox and denitrification coexist. *Limnol. Oceanogr. Methods* 1, 63 - 73 (2003).
- Song, G. D., Liu, S. M., Kuypers, M. M. M. & Lavik, G. Application of the isotope pairing technique in sediments where anammox, denitrification, and dissimilatory nitrate reduction to ammonium coexist. *Limnol. Oceanogr. Meth.* 14, 801-815 (2016).
- 3 Lansdown, K. *et al.* Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology. *Nature Geosci* **9**, 357-360 (2016).
- 4 R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria., 2014).