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Supplemental Figure 1 

 
Figure S1. HDG collection for different RNA viruses, Related to Figure 2 
(A) The phylogenetic tree for interrogated RNA viruses was constructed with 
protein sequence of viral RNA polymerase RdRp gene using maximum 
parsimony method. 
(B) The venn diagrams of HDGs for indicated RNA virus families retrieved from 
different screening platforms. 
  



Supplemental Figure 2 

 
Figure S2. Re-analysis of CRISPR screening data for HDGs, Related to 
Figure 3 
(A) The heatmap clustering of corresponding gene’s β score calculated by 
MAGeCK-VISPR for multiple CRISPR screen studies related to HDG 
identification. HDG would have a high β score indicating a positive selection 
against corresponding virus challenge. 
(B) The protein-protein interaction network for all the HDGs identified from 
re-analyzed CRISPR screens. 
(C) Functional category enrichment analysis by KEGG for HDGs identified 
from re-analyzed CRISPR screens. 
  



Supplemental Figure 3 

 
Figure S3. Comparative analysis and characterization of HDGs for 
indicated RNA virus families, Related to Figure 3 
(A) The landscape of all the collected HDGs for indicated RNA viruses. The 
occurrence frequency of each HDG across studies was indicated by color 
legend.  
(B) KEGG enrichment analysis of HDGs for the three indicated virus families. 
The size of the dot indicates the number of HDGs in the corresponding terms. 
The color of the dot represents the value of Benjamini and Hochberg FDR–
adjusted p-value. 
(C) The protein-protein interaction network of HDGs for Flaviviridae and 
Orthomyxoviridae virus families. Each HDG is presented as a node. The edge 



between two nodes indicates a protein-protein interaction. The druggable 
HGDs with targeted drug candidates predicted in this study were highlighted. 
  



Supplemental Figure 4 

 
Figure S4. Molecular docking analysis for indicated drug-target pairs, 
Related to Figure 4 
Molecular docking analysis showing the potential binding pockets between the 
repurposed drug Baricitinib and natural compound Solanocapsine with their 
corresponding targeted host factors. 
  



Supplemental Tables 
 
Table S1. Compendium of host dependency genes for multiple RNA 
viruses, Related to Figure 1 (attached dataset) 

Table S2. Sequence sources for phylogenetic analysis, Related to Figure 
2 (attached dataset) 

Table S3. Re-analysis of CRISPR screening data, Related to Figure 3 
(attached dataset) 

Table S4. Functional gene enrichment analysis of host dependency 
genes, Related to Figure 3 (attached dataset) 

Table S5. List of drug-target interactions and repurposed drug 
candidates, Related to Figure 4 (attached dataset) 

Table S6. Summary of host dependency genes with repurposed drugs or 
natural compounds, Related to Figure 4 

 

  



Table S7. Joint P-score ranking: the top ten repurposed FDA-approved 
drugs against Flaviviridae viruses, Related to Table 1 

 

Table S8. Joint PN-score ranking: the top ten repurposed FDA-approved 
drugs against Flaviviridae viruses, Related to Table 2 

  



Table S9. DeepCPI P-score ranking: the top ten repurposed natural 
compounds against Flaviviridae viruses, Related to Table 3 

 

Table S10. DeepCPI PN-score ranking: the top ten repurposed natural 
compounds against Flaviviridae viruses, Related to Table 4 

  



Table S11. Joint P-score ranking: the top ten repurposed FDA-approved 
drugs against Orthomyxoviridae viruses, Related to Table 1 

 

Table S12. Joint PN-score ranking: the top ten repurposed 
FDA-approved drugs against Orthomyxoviridae viruses, Related to Table 
2 

 

  



Table S13. DeepCPI P-score ranking: the top ten repurposed natural 
compounds against Orthomyxoviridae viruses, Related to Table 3 

 

Table S14. DeepCPI PN-score ranking: the top ten repurposed natural 
compounds against Orthomyxoviridae viruses, Related to Table 4 

  



Table S15. Key parameters of molecular docking analysis, Related to 
Figure 4 

 

 
Table S16. 2D structures of the top drug candidates, Related to Tables 
1-4 (attached dataset) 
  



Transparent Methods 

Host dependency gene collection and literature mining 
By systematically searching the literature to date, studies performing genetic 
screening for human-specific HDGs corresponding to RNA viruses were 
collected. Screens for DNA viruses or in non-human cells were not included 
with an exception for SARS-CoV-2 virus-related screens. We collected all the 
recently published viral resistance CRISPR screens against SARS-CoV-2 
virus, with 5 studies in human cells and 1 study in Vero-E6 cells (Table S1). 
Under this criteria, data from 63 studies with different genetic perturbation 
techniques (CRISPR knockout, RNAi and haploid gene-trap mutagenesis) 
were collected. These studies identified virus-specific HDGs for 29 RNA 
viruses spanning 10 RNA virus families. Due to the high interest for 
Coronaviridae virus family, we collected additional 34 individual gene-focused 
non-screening studies to include as many Coronaviridae HDGs as possible. A 
gene is defined as a HDG when it meets any of the following criteria: 1) Its 
loss-of-function impedes or reduces viral infection or activity by experimental 
evidence in non-screen studies; 2) It has been clearly classified into HDG 
group in screen studies; 3) When HDG group is not specified in screen studies, 
we took the top ~5% of all the interrogated genes in the positive selection list 
as HDGs with a custom log fold change cutoff in CRISPR knockout or RNAi 
screens challenged by the corresponding virus. The detailed information 
concerning to these literatures and HDGs was summarized in Table S1. For 
Coronaviridae, Flaviridae and Orthomyxoviridae viruses, we only took a subset 
of HDGs that occurred more than once within its corresponding family as high 
confidence HDGs for further analysis. In general, around one hundred HDGs 
for each group of the above three virus families were used for molecular 
characterization and drug repurposing analysis (Table S6). 
 
Phylogenetic tree construction 
The sequences of nucleic acid and protein corresponding to viral 
RNA-dependent RNA polymerase (RdRp) gene for indicated RNA viruses 
were downloaded from online sources (https://www.ncbi.nlm.nih.gov) and 
were used for phylogenetic tree analysis (Table S2). The nucleic acid and 
protein sequences were analyzed by Multiple Sequence Alignment in Muscle 
calculation using MEGA X software. The phylogenetic tree was subsequently 
constructed based on neighbor-joining (NJ) method or maximum parsimony 
(MP) method using pairwise phylogenetic distance with 1000 bootstrap 
replicates. 
 
Re-analysis of CRISPR screening data 
Among the 25 CRISPR screening studies, we downloaded the raw sequencing 
or read count data from 7 studies wherever these raw data were available. We 
re-analyzed these CRISPR screening data to re-call the HDGs using the same 



MAGeCK-VISPR pipeline (Li et al., 2015). In total, 36 samples across the 9 
viruses are included in the analysis. The beta scores of each screening, 
generated by MAGeCK-VISPR, were combined together and normalized using 
quantile normalization. Next, we filtered the data using the following two 
thresholds: First, the maximum of the beta score of a gene across all the 
samples must be greater than 3. Second, the average beta score of a gene 
across all the samples must be greater than 1. After filtering, 261 genes were 
retained as positively selected HDG hits. Then hierarchical clustering and 
protein-protein interaction network was performed using StringDB. 
 
KEGG and GO enrichment analysis 
The high confidence HDGs for Coronaviridae, Flaviridae and 
Orthomyxoviridae viruses (166, 81 and 63, respectively) were used for this 
analysis (Table S6). KEGG and GO enrichment analysis were performed using 
clusterProfiler R package with a strict cutoff of p-value < 0.001 and false 
discovery rate (FDR) < 0.05 (Yu et al., 2012). Enrichment analyses were 
visualized using the R package clusterProfiler with default settings. 
 
Network analysis 
The input HDGs were uploaded to the STRING database (version 11.0, 
https://string-db.org) and high confidence protein-protein interactions (PPIs) 
were extracted with a minimum required interaction score ≥ 0.7. Next, the 
interactions were imported into Cytoscape 3.2.1 software to visualize PPI 
Network. The druggable HDG-encoding proteins with predicted drug 
candidates in this study and proteins classified into certain functional protein 
complexes or biological processes are highlighted. 
 
Drug candidate selection for repurposing  
FDA-approved drug information was extracted from DrugBank database 
(version 5.1.7, released 2020-07-02; https://www.drugbank.ca) corresponding 
to 2352 marketed drugs with InChI (the IUPAC International Chemical 
Identifier) key information. Natural compound information is downloaded from 
Traditional Chinese Medicine Systems Pharmacology (TCMSP) online 
database (version 2.3, released 2014-05-31; https://tcmspw.com/tcmsp.php) 
which is a unique systems pharmacology platform of Chinese herbal 
medicines (Ru et al., 2014). To select the most favorable compound 
candidates, we filtered the pool of 1455 natural compounds by requiring each 
candidate passing the criteria of oral bioavailability (OB) ≥ 30.0 %, 
drug-likeness (DL) ≥ 0.18 and blood-brain barrier (BBB) ≥ -0.30, and finally 
ended up with 1062 selected natural compounds for the downstream DTI 
analysis. 
 
DTI retrieval from related databases 



Known drug-target interactions were extracted according to annotated 
information associated with related drugs, compounds or target genes from 
multiple databases including BindingDB (updated 2020-03-01), DGIdb3.0 
(version 3.0.2), DrugCentral (version 10.12) and Stitch (version 5.0) (Cotto et 
al., 2018; Gilson et al., 2016; Kuhn et al., 2010; Ursu et al., 2019). The high 
confidence HDGs for Coronaviridae, Flaviridae and Orthomyxoviridae viruses 
were used for the DTI analysis (Table S6). One HDG may be associated with 
multiple drugs or compounds. Only FDA-approved drugs and selected natural 
compounds were considered for compiling these known DTI information for 
drug repurposing. 
 
DTI prediction by DeepCPI 
The source code of DeepCPI can be downloaded from 
https://github.com/FangpingWan/DeepCPI. The binding activity score for each 
drug-target pair was predicted by providing the InChl key information of a drug 
or compound and the amino acid sequence of a protein target from UniProt 
database. We applied DeepCPI on 4,563 high confidence DTIs out of 
7,444,710 putative pairs (3,030 druggable proteins and 2,457 FDA-approved 
drugs) extracted from DGIdb3.0 database (version 3.0.2) as a benchmark 
analysis and determined an optimal threshold with a normalized z-score ≥ 
0.641 (sensitivity: 73%; specificity: 51.9%) by receiver operating 
characteristics (ROC) analysis. We then used this cutoff to filter confident DTI 
in our analysis for virus-related HDGs and FDA-approved drugs as well as 
selected natural compounds.  
 
DTI prediction by DTINet 
The source code of DTINet can be downloaded from 
https://github.com/luoyunan/DTINet. The drug-protein interactions and 
protein-protein interactions were extracted from UniProt database. The 
drug-disease associations and protein-disease associations were extracted 
from the Therapeutic Target Database (Wang et al., 2020). The drug-drug 
interactions were extracted from the BioSNAP Network database 
(http://snap.stanford.edu/biodata/). Then the Jaccard similarity for these 
interactions/associations was calculated to further augment the heterogeneity.  
A heterogeneous network (including three types of nodes and five types of 
edges) are constructed using these diverse drug-related and protein-related 
information for the prediction task. The informative, but low-dimensional 
feature vector was obtained by integrating the diverse information from the 
heterogeneous network by combining the network diffusion algorithm (random 
walk with restart, RWR) with a dimensionality reduction scheme (diffusion 
component analysis, DCA). The restart probability is set to 0.50 and the 
maximum number of iterations is set to 20. Intuitively, the low-dimensional 
feature vector is used to encode the relational properties (e.g., similarity), 
association information and topological context of each drug (or protein) node 



in the heterogeneous network. Finally, the score for each drug-protein pair was 
calculated based on the feature vectors by DTINet default parameters. Similar 
to DeepCPI analysis, we also applied DTINet on the benchmark datasets and 
determined an optimal threshold with a normalized z-score ≥ 0.973 (sensitivity: 
88.9%; specificity: 63.8%) by ROC analysis. We then use this cutoff to filter 
confident DTI in our analysis for virus-related HDGs and FDA-approved drugs. 
Due to the insufficient prior data for proper modeling, DTINet was not applied 
for natural compound DTI analysis. 
 
Prioritizing repurposed drug candidates 
The repurposed FDA-approved drugs were prioritized by both known DTI and 
predicted DTI with high confidence. The candidate drugs were ranked by 
predicted DTI scores with known DTI annotation accompanied to the drug if 
any. We adopted two ranking methods to prioritize these candidates. The first 
ranking method only considers the HDG target-associated DTIs. For 
FDA-approved drugs with both DeepCPI and DTINet DTI prediction, we 
extracted mutual confident DTIs by both prediction algorithms and the mean of 
normalized z-score by each prediction tool was calculated as a positive score 
(P-score). A joint P-score by the sum of DeepCPI and DTINet P-score was 
employed to rank the drug candidates. The second ranking method not only 
considers HDG targets, but also incorporates non-HDG targets and common 
essential gene targets to evaluate drug promiscuousness and cytotoxicity 
effects. In addition to P-score, we introduced a negative score for DTIs 
between a given drug and non-HDG (among 3,030 druggable proteins in 
DGIdb3.0 database) or essential gene targets (676 core essential 
gene-encoded proteins) (Wang et al., 2019). An arbitrary weight was set for 
positive score (1) and negative score (-0.333) for multiplexing to generate a 
PN-score. For FDA-approved drugs, a joint PN-score was reported by adding 
the DeepCPI and DTINet PN-score together, and used for ranking the drugs. 
For natural compounds, we also employed these two ranking methods using 
either DeepCPI P-score or DeepCPI PN-score.  
The detailed formula was as follows:  
For a given drug-target pair, we calculated the DTI score 𝑡!"# and 𝑡!"# by 
DeepCPI and DTINet, respectively. By collecting all the DTI scores, two score 
matrices 𝑇!"# and 𝑇!"# were defined to quantify the confidence of predicted 
DTIs: 

𝑇!"# ∈ ℝ!×!

𝑇!"# ∈ ℝ!×!           (1) 

 
Where, 𝑙 refers to the length of drug list and 𝑘 refers to the length of target 
list. 
To ensure them comparable, the score matrices 𝑇!"#  and 𝑇!"#  were 
normalized by Z-Score measurement: 



𝑍!"# =  !!"#! !!"#
!!"#

, 𝑥!"# ∈ 𝑇!"#

𝑍!"# =   !!"#! !!"#
!!"#

, 𝑥!"# ∈ 𝑇!"#
           (2) 

 
Where, 𝜇 is mean value of the scores and 𝜎 is standard deviation of the 
scores. 
We further applied an optimal threshold (as discussed above, 0.641 and 0.973 
were used for 𝑍!"# and 𝑍!"#, respectively) to filter the non-significant scores 
and only keep the confident DTI scores: 

𝑍!"#_!"# =
 𝑧, 𝑖𝑓 𝑧 ≥ 0.641
 0, 𝑖𝑓 𝑧 < 0.641     𝑧 ∈ 𝑍!"#           (3) 

𝑍!"#_!"# =
  𝑧, 𝑖𝑓 𝑧 ≥ 0.973
  0, 𝑖𝑓 𝑧 < 0.973     𝑧 ∈ 𝑍!"#           (4) 

For each FDA-approved drug, the mean value of the normalized z-scores was 
defined as its positive score: 

𝑃_𝑠𝑐𝑜𝑟𝑒!"# =  𝑧!!"#!
!!! /𝑘

𝑃_𝑠𝑐𝑜𝑟𝑒!"# =   𝑧!!"#!
!!! /𝑘

           (5) 

 
Similar as above, we defined negative scores 𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'(  and 
𝑁_𝑠𝑐𝑜𝑟𝑒!""!#$%&'()! for non-HDG and essential gene targets, respectively. The 
final negative was the sum of 𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'( and 𝑁_𝑠𝑐𝑜𝑟𝑒!""!#$%&'()!: 

𝑁_𝑠𝑐𝑜𝑟𝑒!"# =  𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'!!"# +  𝑁_𝑠𝑐𝑜𝑟𝑒!""#$%&'()*#_!"#
𝑁_𝑠𝑐𝑜𝑟𝑒!"# =  𝑁_𝑠𝑐𝑜𝑟𝑒!"#$$%&'!!"# +  𝑁_𝑠𝑐𝑜𝑟𝑒!""#$%&'()*#_!"#

     (6) 

 
The PN-score was the sum of weighted positive score and negative score: 

𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# = 1 ∗ 𝑃_𝑠𝑐𝑜𝑟𝑒!"# + (−0.333) ∗ 𝑁_𝑠𝑐𝑜𝑟𝑒!"#
𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# = 1 ∗ 𝑃_𝑠𝑐𝑜𝑟𝑒!"# + (−0.333) ∗ 𝑁_𝑠𝑐𝑜𝑟𝑒!!"

      (7) 

 
Here, we defined a joint P-score by the sum of 𝑃_𝑠𝑐𝑜𝑟𝑒!"# and 𝑃_𝑠𝑐𝑜𝑟𝑒!"# for 
each drug: 

𝐽𝑜𝑖𝑛𝑡_𝑃_𝑠𝑐𝑜𝑟𝑒 =  𝑃_𝑠𝑐𝑜𝑟𝑒!"# +  𝑃_𝑠𝑐𝑜𝑟𝑒!"#      (8) 
 
The joint PN-score was the sum of 𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# and 𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# for each 
drug: 

𝐽𝑜𝑖𝑛𝑡_𝑃𝑁_𝑠𝑐𝑜𝑟𝑒 =  𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"# +  𝑃𝑁_𝑠𝑐𝑜𝑟𝑒!"#      (9) 
 
Molecular Docking 
The structures of target protein were downloaded from PDB database 
(http://www.rcsb.org). The drug or compound structures were downloaded 
from TCMSP and PubChem database (https://pubchem.ncbi.nlm.nih.gov). The 
structures of proteins and compounds were imported into prime tool of Maestro 



(version 11.8.012) suite of Schrödinger software (released 2018-4). Next the 
preprocessing step was performed by adding hydrogens and missing atoms as 
well as removing water molecules for the proteins using the Protein 
Preparation tool. Ligand preprocessing was performed using default settings 
with Ligprep tool of Maestro software. Then, the top-ranked potential binding 
site was defined using Receptor Grid Generation tool. Glide tool was used to 
detect the interactions between ligands and proteins. The docking score ≤ -6 
was considered as a high confidence binding event between tested ligand and 
protein. The Glide energy for each docking pair was also shown in Table S15. 
The 2D structures of the top candidate drugs were presented in Table S16. 
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