

Supporting Information

Embedding of Molecular Structure Using Molecular Hypergraph Variational Autoencoder with Metric Learning

Daiki Koge, Naoaki Ono,* Ming Huang, Md. Altaf-Ul-Amin, and Shigehiko Kanaya©2020 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Supporting information for

Embedding of Molecular Structure Using Molecular Hypergraph Variational Autoencoder with Metric Learning

Daiki Koge, Naoaki Ono*, Ming Huang, Md. Altaf-UI-Amin and Shigehiko Kanaya Corresponding author e-mail : <u>nono@is.naist.jp</u>

Section 1. All 83 properties of RDKit descriptors.

MaxEStateIndex MinEStateIndex MaxAbsEStateIndex **MinAbsEStateIndex** qed MolWt **HeavyAtomMolWt** ExactMolWt MaxPartialCharge **MinPartialCharge** MaxAbsPartialCharge **MinAbsPartialCharge** FpDensityMorgan1 FpDensityMorgan2 FpDensityMorgan3 BalabanJ **BertzCT** Chi0 Chi0n Chi0v Chi1 Chi1n Chi1v Chi2n Chi2v Chi3n

Chi3v Chi4n Chi4v HallKierAlpha lpc Kappa1 Kappa2 Kappa3 LabuteASA PEOE_VSA1 PEOE_VSA10 PEOE_VSA11 PEOE_VSA12 PEOE_VSA13 PEOE_VSA14 PEOE_VSA2 PEOE_VSA3 PEOE_VSA4 PEOE_VSA5 PEOE_VSA6 PEOE_VSA7 PEOE_VSA8 PEOE_VSA9 SMR_VSA1 SMR_VSA10 SMR_VSA2 SMR_VSA3 SMR_VSA4 SMR_VSA5 SMR_VSA6 SMR_VSA7 SMR_VSA9 SlogP_VSA1 SlogP_VSA10 SlogP_VSA11 SlogP_VSA2

SlogP_VSA3 SlogP_VSA4 SlogP_VSA5 SlogP_VSA6 SlogP_VSA8 TPSA EState_VSA1 EState_VSA10 EState_VSA2 EState_VSA3 EState_VSA4 EState_VSA5 EState_VSA6 EState_VSA7 EState_VSA8 EState_VSA9 VSA_EState8 VSA_EState9 FractionCSP3 MolLogP MoIMR

Section 2. RMSD, MAE or R2 prediction powers for each of the calculated properties.

For QM9 properties.

Table S1. Comparison of MSE with the models for QM9 data sets. The numbers highlighted in bold show that the model is better. The label indicates the physical property used for embedding learning. Joint and Metric represent the existing and proposed methods, respectively

Label	Model	μ	α	HOMO	LUMO	$\Delta \mathcal{E}$	ZPVE	\mathbb{R}^2	U_0	C_{v}
U ₀	Joint	1.679×10 ⁰	1.611×10 ¹	2.477×10 ⁻⁴	4.159×10 ⁻⁴	6.713×10 ⁻⁴	1.067×10^{-4}	9.564×10^{3}	1.534×10^{2}	2.769×10^{0}
	Metric	1.851×10^{0}	7.661×10 ⁰	2.005×10 ⁻⁴	4.822×10^{-4}	7.293×10^{-4}	9.334×10 ⁻⁵	8.328×10 ³	6.581×10 ¹	1.747×10^{0}
C_v	Joint	1.838×10^{0}	9.846×10^{0}	2.023×10 ⁻⁴	3.461×10 ⁻⁴	5.455×10^{-4}	9.458×10 ⁻⁵	7.096×10 ³	1.934×10^{2}	1.255×10 ⁰
	Metric	1.850×10^{0}	8.495×10 ⁰	2.263×10^{-4}	2.708×10 ⁻⁴	4.638×10 ⁻⁴	6.743×10 ⁻⁵	8.446×10^{3}	1.815×10 ²	1.340×10^{0}
НОМО	Joint	1.939×10^{0}	1.086×10^{1}	1.746×10 ⁻⁴	3.523×10 ⁻⁴	4.266×10 ⁻⁴	9.416×10 ⁻⁵	7.022×10 ³	2.242×10^{2}	1.780×10^{0}
	Metric	1.277×10 ⁰	1.034×10^{1}	1.131×10 ⁻⁴	2.563×10 ⁻⁴	3.620×10 ⁻⁴	9.273×10 ⁻⁵	8.216×10 ³	1.633×10 ²	1.274×10^{0}

Label	Model	μ	α	HOMO	LUMO	$\Delta \mathcal{E}$	ZPVE	R ²	U_0	C_{v}
U ₀	Joint	1.296×10 ⁰	4.014×10^{0}	1.574×10 ⁻²	2.039×10 ⁻²	2.591×10 ⁻²	1.033×10 ⁻²	9.780×10^{1}	1.238×10^{1}	1.664×10^{0}
	Metric	1.361×10^{0}	2.768×10 ⁰	1.416×10 ⁻²	2.196×10^{-2}	2.701×10^{-2}	9.661×10 ⁻³	9.126×10 ¹	8.113×10 ⁰	1.322×10 ⁰
Cv	Joint	1.356×10 ⁰	3.138×10^{0}	1.422×10 ⁻²	1.860×10^{-2}	2.336×10 ⁻²	9.725×10 ⁻³	8.424×10 ¹	1.391×10^{1}	1.120×10 ⁰
	Metric	1.360×10^{0}	2.915×10 ⁰	1.504×10^{-2}	1.645×10 ⁻²	2.154×10 ⁻²	8.211×10 ⁻³	9.190×10^{1}	1.347×10 ¹	1.158×10^{0}
НОМО	Joint	1.393×10^{0}	3.296×10^{0}	1.321×10 ⁻²	1.877×10^{-2}	2.065×10 ⁻²	9.704×10 ⁻³	8.380×10 ¹	1.497×10^{1}	1.334×10^{0}
	Metric	1.130×10 ⁰	3.216×10 ⁰	1.064×10 ⁻²	1.601×10^{-2}	1.903×10 ⁻²	9.630×10 ⁻³	9.064×10^{1}	1.278×10^{1}	1.129×10 ⁰

Table S2. Comparison of MSE with the models for QM9 data sets.

Table S3. Comparison of R2 with the models for QM9 data sets.

Label	Model	μ	α	HOMO	LUMO	$\Delta \mathcal{E}$	ZPVE	\mathbb{R}^2	U_0	C_{v}
U ₀	Joint	6.173×10 ⁻²	7.303×10 ⁻¹	5.000×10 ⁻¹	7.675×10 ⁻¹	6.432×10 ⁻¹	8.816×10 ⁻¹	8.739×10 ⁻¹	8.991×10 ⁻¹	8.140×10^{-1}
	Metric	1.932×10^{-2}	8.647×10 ⁻¹	5.182×10 ⁻¹	7.346×10 ⁻¹	6.245×10 ⁻¹	8.893×10 ⁻¹	8.784×10 ⁻¹	9.555×10 ⁻¹	8.661×10 ⁻¹
Cv	Joint	1.241×10 ⁻¹	8.076×10 ⁻¹	5.453×10 ⁻¹	8.085×10 ⁻¹	7.335×10 ⁻¹	8.875×10 ⁻¹	8.875×10 ⁻¹	8.487×10 ⁻¹	9.083×10 ⁻¹
	Metric	6.907×10 ⁻²	8.466×10 ⁻¹	5.384×10 ⁻¹	8.496×10 ⁻¹	7.613×10 ⁻¹	9.265×10 ⁻¹	8.857×10^{-1}	8.615×10 ⁻¹	9.098×10 ⁻¹
НОМО	Joint	4.928×10 ⁻³	7.875×10 ⁻¹	5.764×10 ⁻¹	8.079×10 ⁻¹	7.737×10 ⁻¹	8.899×10 ⁻¹	9.005×10 ⁻¹	8.252×10 ⁻¹	8.695×10 ⁻¹
	Metric	2.674×10^{-1}	8.037×10 ⁻¹	7.425×10 ⁻¹	8.580×10 ⁻¹	8.031×10 ⁻¹	8.895×10 ⁻¹	8.804×10^{-1}	8.681×10 ⁻¹	9.010×10 ⁻¹

For RDKit Descriptors.

Figure S1. MSE score comparison of Joint and Metric VAEs (our proposed model) broken down by RDKit descriptors and embedding labels. Each dot represents RDKit descriptors, while each marker color represents a physical property value used in the embedding learning model.

Figure S2. RMSD score comparison of Joint and Metric VAEs (our proposed model) broken down by RDKit descriptors and embedding labels. Each dot represents RDKit descriptors, while each marker color represents a physical property value used in the embedding learning model.

Figure S3. R2 score comparison of Joint and Metric VAEs (our proposed model) broken down by RDKit descriptors and embedding labels. Each dot represents RDKit descriptors, while each marker color represents a physical property value used in the embedding learning model.

Section 3. Details on computer setup and CPU and GPU specifications and computational times.

• OS Ubuntu 16.04.6 LTS

 CPU product: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz vendor: Intel Corp.
size: 3599MHz capacity: 4GHz width: 64 bits

• GPU

product : GP104 [GeForce GTX 1080] vendor : NVIDIA Corporation

This code for this study was tested in Python 3.6.6 with Pytorch 0.4.1.

• Computational time with GPU

Mode	Sample size	Batch size	Epoch time	
Train	99968	64	3002.102 (sec)	
Validation (inference)	28928	64	578.184 (sec)	