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SUMMARY
Macrophages are critical effector cells of the immune system, and understanding genes involved in their
viability and function is essential for gaining insights into immune system dysregulation during disease. We
use a high-throughput, pooled-based CRISPR-Cas screening approach to identify essential genes required
for macrophage viability. In addition, we target 30 UTRs to gain insights into previously unidentified cis-regula-
tory regions that control these essential genes. Next, using our recently generated nuclear factor kB (NF-kB)
reporter line, we perform a fluorescence-activated cell sorting (FACS)-based high-throughput genetic screen
and discover a number of previously unidentified positive and negative regulators of the NF-kB pathway. We
unravel complexities of the TNF signaling cascade, showing that it can function in an autocrinemanner inmac-
rophages to negatively regulate the pathway. Utilizing a single complex library design, we are capable of inter-
rogating various aspects of macrophage biology, thus generating a resource for future studies.
INTRODUCTION

Macrophages are critical cells of the innate immune system

providing one of the first lines of defense against invading mi-

crobes. Macrophages arise from precursor monocyte cells that

constitute ~10%–20% of the immune cells found in the blood

(Kleiveland, 2015). Upon encountering a danger signal, mono-

cytes differentiate into macrophages and rapidly move to the

site of infection. Important aspects of macrophage function

include their ability to proliferate and migrate, as well as their

ability to induce the inflammatory program to aid in clearing in-

fections and initiate tissue repair to maintain homeostasis

(Wynn et al., 2013). While much work has been performed to un-

derstand the contribution of individual proteins to the processes

that control macrophage biology, there has been no systematic

approach adopted to study genes involved in macrophage

viability and function simultaneously in a high-throughput

manner.

Clustered regularly interspaced short palindromic repeat

(CRISPR) technology has revolutionized the field of functional

genomics, providing an easy-to-use method for disrupting spe-
C
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cific genes (Knott and Doudna, 2018). The coupling of CRISPR

technology with pooled single-guide RNA (sgRNA) screening al-

lows simultaneous knockout of thousands of individual genes in

a large population of cells (Shalem et al., 2014; Wang et al.,

2014), enabling unbiased reconstruction of biological pathways.

Numerous CRISPR screens have probed pathways ranging from

cell viability (Tzelepis et al., 2016; Wang et al., 2015) to virus

infection (Han et al., 2018; Park et al., 2017), supporting the

use of this system for exploring a wide-range of biology. More

recently, in macrophages, CRISPR screens have been per-

formed to identify novel regulators of infection and inflammation.

Schmid-Burgk et al. (2016) carried out a genome-wide CRISPR

screen to uncover previously unidentified regulators of the

NLRP3 inflammasome. They found that knockout of NEK7

rescued macrophages from lethality and was associated with

activation of the NLRP3 inflammasome. Yeung et al. (2019) per-

formed a screen in macrophages to identify regulators of Salmo-

nella infection. They identified NHLRC2, showing that it can play

a role both in Salmonella infection as well as macrophage differ-

entiation. Interestingly, many of the hits identified in their screen

are within pathways with known chemical inhibitors providing
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avenues for future therapeutic targeting. Finally, a recent screen

was conducted to identify regulators of Shigella infection in mac-

rophages (Lai et al., 2020). Lai et al. identified host factors modu-

lated byShigella flexniri infection. They could show that inhibiting

acetyl-coenzyme A (CoA) production caused by the infection is

beneficial to the function of macrophages and limits the infec-

tion. In addition, knockout of the TLR1/2 pathway reduced

inflammation, enhanced macrophage survival, and limited infec-

tion (Lai et al., 2020).

Whereas these screens that have been performed, to date, in

macrophages are focused on a single readout, we have utilized

pooled screening to address three questions simultaneously: (1)

What genes are required for macrophage survival and prolifera-

tion? (2) How are those genes regulated? (3) What genes

contribute to the downstream inflammatory signaling

processes?

Our screens provide a resource that identifies genes essential

to macrophage viability and provide insights into potential cis-el-

ements within the 30 UTRs of these genes that may reveal impor-

tant means of regulation. Lastly, we identify previously unidenti-

fied positive and negative regulators of nuclear factor kB (NF-kB)

inflammatory signaling. Unexpectedly, our screen uncovers a

role for tumor necrosis factor (TNF) as a negative regulator of

NF-kB and shows that this is functioning in an autocrine manner

in macrophages. In a single screen, we bring together decades

of literature on the complex regulation of TNF. Here, we demon-

strate the power of CRISPR pooled screening to identify a

plethora of genes with varied and critical roles in macrophage

biology.

RESULTS

Pooled CRISPR Screen Identifies Macrophage-Specific
Genes Involved in Viability
To define all genes essential for macrophage survival, immortal-

ized bone-marrow-derived macrophage (iBMDM)-Cas9 cells

were transduced (MOI = 0.3) with pooled lentivirus generated

from our custom whole-genome sgRNA library containing

~270K individual sgRNAs targeting all RefSeq annotated coding

genes and ~500 microRNAs (miRNAs; 12 guides per gene),

along with ~5K non-targeting controls (Figures 1A and S1A; Ta-

bles S1 and S2). Cells were maintained at >1,000 cells per

sgRNA throughout the screen. Cells were cultured for 21 days

collecting genomic DNA from cells at day 0 and day 21 (Fig-

ure 1A). The libraries were prepared as described previously

(Boettcher et al., 2019). Using the Mann-Whitney (MW) U test,

we compared the sgRNA repertoire from day 21 to that from

day 0 and identified significant genes (Figure 1B; Tables S3

and S4). We identified expected viability-related genes with roles

in spliceosome, proteasome, and cell-cycle functions (Fig-

ure 1C). Themajority of the top significant hits were genes essen-

tial for viability, while only 1% of genes were growth suppressors

(Figure 1D), consistent with previous findings (Gilbert et al.,

2014). We also analyzed the data using the model-based anal-

ysis of genome-wide CRISPR-Cas9 knockout (MAGeCK) anal-

ysis pipeline (Tables S5 and S6). We obtained a strong overlap

(88% of genes) using both MW and MAGeCK analyses and no

significant difference in the identified top hits (Figure S1B); how-
2 Cell Reports 33, 108541, December 29, 2020
ever, the MW U test identifies a much larger set of hits, possibly

due to its sensitivity and, therefore, identifying more true

positives.

Our library also contains within it random barcode sequences

associated with each sgRNA (as described in Boettcher et al.,

2019). Each sgRNA is associated with ~50 different barcodes.

By analyzing the data with the barcodes, it enabled us to

generate in-sample replicates providing greater statistical power

to identify significant hits (Figure S1C; Tables S7 and S8). The

barcodes were assigned to four bins, providing four in-sample

replicates that were then used as the input into MAGeCK anal-

ysis. Figure S1C compares the single-sample analysis that iden-

tified 417 hits (false discovery rate [FDR] < 0.05) to the in-sample

replicate analysis that identified 609 hits (FDR < 0.05), showing

the power of utilizing the binning approach to increase statistical

power.

We compared our viability screen hits to the GenomeCRISPR

(http://genomecrispr.dkfz.de/) database, which includes a

collection of ~500 CRISPR viability screens performed in ~421

cell types. Over 93% of genes from our screen overlapped those

from the database (shown in gray, Figure 1E), suggesting that

these are genes critical for a variety of biological processes com-

mon to all cell types. Interestingly, ~6% of genes identified

showed the opposite MW Z-score phenotype in our screen

compared to the database, suggesting that these genes have

unique cell-type-specific functions in macrophages (shown in

yellow, Figure 1E). Furthermore, these macrophage-specific

essential hits included genes involved in NF-kB signaling (Fig-

ure S2), suggesting that these genes evolved functions involving

not only survival but also inflammatory activation, a critical

component of macrophage function. We individually cloned six

candidate macrophage-specific essential guides and validated

the phenotype using a mix-cell proliferation assay (Figure 1F).

The mix-cell assay involved combining cherry-positive cells

(containing sgRNAs) with cherry-negative cells at a 1:1 ratio

and monitoring cell growth over time as assessed by changes

in the ratio of cherry-positive to cherry-negative cells. As shown

in Figure 1F, we confirmed four of the six selected candidate

genes. We showed that tyrosine-protein kinase (Syk), Interferon

regulatory factor 8 (Irf8), and myotubularin-related protein 9

(Mtmr9) are macrophage-specific essential genes, as targeting

the coding sequence of these genes resulted in decreased

fitness. While PC-esterase domain containing 1B (Pced1b) is a

growth suppressor in macrophages, knocking it out resulted in

increased fitness of the cells.

CRISPR TARGETING OF THE 30 UTRs OF ESSENTIAL
GENES IDENTIFIES CIS-REGULATORY ELEMENTS

Untranslated regions (UTRs) offer a critical source of regulation

for messages through specific cis-elements, which can bind

miRNAs and/or proteins to regulate pathways including RNA

decay and translation (Mayr, 2019). To probe for novel cis-ele-

ments within 30 UTRs, we specifically targeted the 30 UTR within

known essential genes. For these essential genes, we expected

that guides targeting coding exons would cause a decrease in

fitness. In contrast, guides targeting 30 UTR cis-elements that

result in an increase in fitness will represent regions containing

http://genomecrispr.dkfz.de/


Figure 1. Screen Identifies Macrophage-Specific Genes Involved in Viability

(A) Cas9-expressing iBMDM cells were infected with a whole-genome library targeting all RefSeq annotated coding genes (Table S1). Two days post-infection,

cells were harvested for an initial day-0 time point and then again after 21 days in culture.

(B) TheMWU test was performed comparing 12 sgRNAs targeting each gene to the nontargeting controls for samples collected at both day 21 and day 0 . Genes

are displayed ranked by significance.

(C) GO-term analysis was performed on the top 1,000 significant hits using STRINGdb.

(D)We determined the number of essential genes (negative MW Z score) and total number of growth suppressor genes (positive MW Z score) and plotted them as

a fraction of the total (total = 1,000 genes).

(E) Viability screen hits from our screen were compared to those from GenomeCRISPR, a collection of ~500 CRISPR screens (http://genomecrispr.dkfz.de/).

Genes ‘‘in common’’ as well as genes showing ‘‘opposite/macrophage-specific’’ phenotypes are displayed.

(F) Cas9-expressing iBMDM cells were infected with sgRNAs targeting selected macrophage-specific viability genes. We combined cherry-positive cells

(containing sgRNAs) with unedited cherry-negative cells at a 1:1 ratio andmonitored growth of sgRNA-infected cells (cherry) relative to uninfected reference cells

in a mix-cell growth assay for 21 days. Experiment was repeated 2 times, and a representative experiment is displayed.
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regulatory cis-elements with negative roles on gene expression

(miRNA binding sites, adenylate-uridylate-rich elements [AU-

rich elements] affecting stability, etc.). We assessed the pheno-

types of 30 UTR-targeting sgRNAs and found an overall neutral

average phenotype for these guides (Figure 2A), suggesting

that the majority of the sites we targeted did not contain any

cis-regulatory elements. However, a subset of these 30 UTR-tar-
geting guides demonstrated phenotypes of >3-fold change in

both directions, suggestive of sites that contain regulatory ele-

ments that could improve or decrease fitness of the cells (Figures

2B–2D; Table S9). We focused on 30 UTR guides that showed

positive (>3-fold) enrichment for genes whose coding-targeting

guides demonstrated significant negative enrichment (Figures

2B–2D, red stars). We reasoned that these 30 UTR-targeting
Cell Reports 33, 108541, December 29, 2020 3
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Figure 2. Targeting of the 30 UTRs of Essential Genes to Probe for Previously Unidentified cis-Regulatory Elements
(A) Average phenotypes for all 30 UTR-targeting guides was plotted. Error bars represent standard deviation of all sgRNAs.

(B–D) We summarize the phenotypes for coding-targeting guides (gray) and 30 UTR-targeting guides (pink) for select genes: Sdad1, Foxp1, and Cdk13.

(E) Scatterplot. The x-coordinates represent the number of unique barcodes associated with each random sgRNA at day 0. The y-coordinates represent the

number of unique barcodes associated with each random sgRNA at day 21 (R2 = 0.814).

(legend continued on next page)
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guides may disrupt significant cis-elements that help explain the

opposing phenotype we observed (Figures 2B–2D, red stars).

One possible concern with this analysis is that it is limited to a

single sgRNA targeting the sites within the 30 UTR (compared

to 10–12 within the screen for each coding gene target), which

could lead to false positives. To mitigate this, we made use of

the internal barcodes associated with each individual sgRNA.

Identifying a sgRNA hit associated with multiple individual barc-

odes reduces the possibility of the hit being a false positive. In

one example, the viability phenotype could be caused by inte-

gration-specific effects of an sgRNA on neighboring genes. As

a control, we analyzed all barcodes associated with all random

control sgRNAs, comparing the day-0 to day-21 viability

screens, and can show high correlation, with an R2 of 0.814.

This shows that the distribution of reads for barcodes of random

control genes do not change across the course of the experi-

ment, making counting barcodes a valid approach (Figure 2E).

Therefore, we counted all unique barcodes associated with

sgRNAs in selected genes or random controls and compared

the reads associated with these genes on day 21 to those on

day 0. As expected, there is no difference in the read count

from day 21 to day 0 for the random controls (shown in gray, Fig-

ure 2F). In contrast, we see positive enrichment for genes (shown

in black, Figure 2F) whose coding-targeting guides demon-

strated the opposite effect, which confirmed our previous obser-

vations in Figures 2B–2D.

We individually cloned selected candidate 30 UTR guides and

validated the phenotype using a mix-cell proliferation assay as

described previously (Figure 2G). In all the selected hits we could

validate, we confirmed that elements targeted within 30 UTRs re-
sulted in an increase in fitness, while those targeting within the

coding sequence resulted in a decrease in fitness. The pheno-

types for these 30 UTR-targeting guides provide a resource of

potentially important cis-elements involved in mRNA stability,

and further work could involve interrogating whether these sites

are miRNA targets or targets of other proteins involved in RNA

decay or translation processes.

FACS-Based Reporter Screen Identifies Positive and
Negative Regulators of NF-kB
Macrophages are critical effectors of the inflammatory response,

which involves transcription factors including NF-kB (Liu et al.,

2017). We had previously developed NF-kB reporter iBMDMs,

adding 5 3 NF-kB-binding motifs (GGGAATTTCC) upstream of

the minimal cytomegalovirus (CMV) promoter-driving green

flourescent protein (GFP) and demonstrated lipopolysaccharide

(LPS)-dependent activation of GFP fluorescence (Covarrubias

et al., 2017). We lentivirally introduced Cas9 into these cells

and confirmed its activity (iBMDM-NF-kB-Cas) (Covarrubias

et al., 2017). Here, we performed a fluorescence-activated cell

sorting (FACS)-based sorting screen using iBMDM-NF-kB-Cas

cells and infected with the same library as outlined in Figure 1A.

After the library was established in the cells for 7 days, we stim-
(F) Unique barcode counts were obtained for the indicated genes, including random

(G). We selected 30 UTR-targeting guides that demonstrated positive enrichment,

validated select guides bymonitoring growth of sgRNA-infected cells (cherry) relat

standard deviation of three technical replicates.
ulated with LPS for 24 h (Figures 3A, S3A, and S3B; Table S10).

We sorted the top/bottom 20% of GFP-expressing cells and

collected approximately 100 cells per sgRNA (~27 million cells

for each top/bottom sort), with the aim of identifying both posi-

tive (bottom 20%) and negative (top 20%) regulators of the

pathway (Figures S3A and S3B; Table S11). Due to the inherently

noisy nature of pooled screening, we chose to perform a MW U

test to identify significant genes, comparing GFP-low to GFP-

high sorted samples, and significant genes were ranked by p <

0.01 (Figure 3B) (Kampmann et al., 2013). As expected, we found

several positive controls, including EGFP and known regulators

myeloid differentiation primary response 88 (Myd88) and Rela

(NF-kB/p65) in our top hits (Figure 3C). We performed Gene

Ontology (GO)-term enrichment analysis for the top 150 signifi-

cant positive regulators and found enrichment for pathways

that included ‘‘NF-kappaB signaling’’ (Figure 3D). Within the

top 150 genes, we identified numerous genes known to be

involved in the Toll-like receptor (TLR)/NF-kB signaling pathway,

which include Tlr4 (LPS receptor) and Rela (NF-kB/p65) (Fig-

ure 3E; Table S12), confirming that the screen was a success.

We plotted the average phenotypes (top 3 guides) for our top

40 candidates, which showed that the average sgRNA enrich-

ments were significant (Figure 3F). Top candidates were local-

ized throughout the cell (Figure 3G; Table S13), including in the

extracellular compartment. Numerous positive and negative reg-

ulators of NF-kB have been identified by their differential expres-

sion upon NF-kB activation (Bhatt and Ghosh, 2014). Using pre-

viously published data (Zhang et al., 2017), we examined the top

50 negative and positive regulators and found that the majority

were not differentially expressed during LPS stimulation and,

therefore, could have been missed by previous approaches as

regulators of the pathway (Figure S3C). NF-kB has been demon-

strated to activate genes that function in positive- or negative-

feedback regulation of the pathway (Oeckinghaus and Ghosh,

2009). We assessed whether NF-kB (p65) bound to the pro-

moters of our top candidates using published p65 chromatin

immunoprecipitation sequencing (ChIP-seq) data (Lam et al.,

2013) (Figures S3D and S3E). We found that p65 bound 42%

and 54%of the top positive and negative regulators, respectively

(Figures S3D and S3E), further supporting the idea that a signif-

icant number of regulators of NF-kB can, themselves, be regu-

lated by NF-kB. We validated our top candidates by re-cloning

the top two performing sgRNAs per candidate, generating indi-

vidual cell lines for each sgRNA, followed by lentiviral infection,

selection, and LPS stimulation for 6 h (Figure 3H; Table S14).

The readout for our secondary validation experiments involved

measuring Il6 by qPCR. Il6 is a well-known downstream target

of NF-kB and a crucial gene in controlling inflammation (Fig-

ure 3H). As expected, ablation of our negative regulators resulted

in increased Il6 expression, while targeting of positive regulators

led to decreased levels of Il6 relative to non-targeting controls

(Figure 3H). In summary, we performed a genome-wide screen

and identified 50 previously unidentified positive and 65 negative
controls. The fold change of these counts from day 0 to day 21 was calculated.

opposite to their coding-targeting guides, which had negative enrichment. We

ive to uninfected reference cells in amix-cell growth assay. Error bars represent

Cell Reports 33, 108541, December 29, 2020 5
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regulators of NF-kB signaling. To date, there are 120 known reg-

ulators of NF-kB, and our screen has added 115 additional reg-

ulators (p < 0.01) to the pathway. These will provide a rich source

of information going forward to better understand the complex

pathways that control inflammation.

MEMBRANE-BOUND TNF ALPHA (TNF-a) ACTS AS A
STRONG NEGATIVE REGULATOR OF THE NF-kB
PATHWAY

TNF-a is a well-known pro-inflammatory cytokine with estab-

lished roles in driving NF-kB-related inflammation (Bradley,

2008). Furthermore, anti-TNF therapy is a proven method for the

treatment of various inflammatory-related diseases (Ma and Xu,

2013). Given its established role as a soluble protein functioning

as a positive regulator of NF-kB, it was surprising to discover

that our pooled-based screen approach identified TNF as a strong

negative regulator of inflammation (Figures 3F and 3H). We

confirmed TNF editing by stimulating control or anti-TNF edited

cells with LPS for 24 h before collecting supernatant and analyzing

TNF protein via ELISA.We found that TNFwas undetectable in the

supernatant after LPS stimulation (Figure 4A). We also confirmed

near-complete ablationof TNF via intracellular staining (Figure4B).

Our screen suggested a localized function for TNF, which would

be incompatible with its soluble state. Interestingly, TNF can exist

as both soluble and membrane bound (Ardestani et al., 2013). We

confirmed the presence of membrane-bound TNF on the surface

of our iBMDMs and found maximal surface TNF at 6 h post-LPS

stimulation (Figure 4C). TNF mediates its inflammatory effect via

binding to its receptor Tnfrsf1a (p55) (Bradley, 2008). Our screen

confirmed Tnfrsf1a (p55) as a positive regulator of NF-kB in

contrast to what was found for Tnf (Figures 4D and 4E). However,

TNF can bind to two different receptors, Tnfrsf1a (p55) and

Tnfrsf1b (p75), which may have opposing functions (Peschon

et al., 1998). While the sgRNAs targeting p75 in our screen show

a trend toward it being a negative regulator similar to TNF, it

was not significant (Figure 4D). However, we were able to confirm

by qPCR that targeting p75 can result in an increase in Il6 (Fig-

ure 4F) similar to that observed when TNF is knocked down (Fig-

ures 4D and 4E). Interestingly, 6 h post-LPS stimulation, levels of

TNF and Tnfrsf1b (p75) increased 11-fold and 66-fold, respec-

tively, while the levels of Tnfrsf1a (p55) increased a moderate 4-
Figure 3. Screen Identifies Positive and Negative Regulators of NF-kB

(A) Overview of the NF-kB screen: sgRNA-library-infected iBMDM-NF-kB-Cas9

bottom 20% of GFP-expressing cells. Cells were collected and processed as de

(B) MWU test was performed comparing 12 sgRNAs targeting each gene to the n

genes are displayed, ranked by significance.

(C) Zoom-in of the top screen hits, displaying positive regulators (blue) and nega

signaling.

(D) GO-term analysis was assessed for the top 150 positive regulators using STR

(E) Connectivity was determined by STRINGdb for the top 150 positive-regulato

(F) Average sgRNA enrichment for the top 3 sgRNAs was calculated for the to

replicates.

(G) Predicted protein localization was determined for the top 40 most significan

jensenlab.org/Downloads).

(H) Selected candidates were infected with either control (random) or candidate

qPCR-based validation was performed by conducting qRT-PCR for Il6 RNA relativ

is displayed. Error bars represent standard deviation of three technical replicate
fold (Figure 4G). We evaluated whether the enhanced activation

of NF-kB in TNF-edited cells could be rescued by mixing these

cells with unedited (TNF-expressing) cells. We combined cherry-

positive cells (containing TNF guide RNAs) with unedited cherry-

negative cells at a 1:1 ratio. Mixed cells were LPS stimulated for

24 h before FACSanalysis tomeasure GFPmean fluorescence in-

tensity (MFI) (NF-kB activation) (Figure 4H). The enhanced NF-kB

activation in TNF-edited cells could not be rescued by mixing

these cells with unedited cells (even when we increased the cher-

ry-negative cells to >75%). These data suggest that TNF has au-

tocrine properties, acting within the cell fromwhich it is produced,

and neither soluble TNF production or membrane-bound TNF

from neighboring cells can reverse the increase in inflammatory

signaling (Figure 4I). The expression profiles of TNF, TNFRSF1A,

and TNFRSF1B were mirrored in the human THP1 monocytic

cell line stimulated with PAM3CSK4 (TLR1/2 agonist), suggesting

that this specific regulation of TNF is conserved (Figure S4). Here,

we confirm that, indeed, it is membrane bound TNF that is func-

tioning as a negative regulator of NF-kB, presumably through in-

teractionswith p75.Remarkably, our single screening assay could

provide insight into this complex signaling cascade and bring

together decades of different approaches to reveal the complexity

of TNF signaling in macrophages involving membrane-bound

forms of TNF in addition to the roles of the respective receptors.

DISCUSSION

Here, we utilize CRISPR-based pooled genetic screening to

reveal genes important for bothmacrophage viability and inflam-

mation. For the viability screen, we utilized both MW U test anal-

ysis as well as the MAGeCK analysis pipelines to identify signif-

icant hits. 88% of significant genes identified in the MAGeCK

analysis were also identified in theMWU test. A larger proportion

of significant hits were identified by MW test, which could repre-

sent true positives or that the more stringent MAGeCK pipeline

identifies fewer false positives. We identified macrophage-spe-

cific viability genes enriched in NF-kB signaling (Figures 1F and

S2). Additionally, we identified and validated viability phenotypes

for 30 UTR-targeting guides, which may reveal important cis-ele-

ments involved in mRNA stability (discussed further later). In a

separate screen, we utilized our NF-kB -reporter cells to perform

a FACS-based screen, resulting in the identification of positive
signaling

cells were stimulated with LPS (200 ng/mL) for 24 h before sorting the top and

scribed in STAR Methods.

on-targeting controls for GFP-low versus GFP-high sorted samples. Significant

tive regulators (red). Diagram depicts positive- and negative-regulation NF-kB

INGdb.

r candidates.

p 40 screen hits. Error bars represent standard deviation of three biological

t genes using UniProt’s COMPARTMENTS database (https://compartments.

-specific sgRNAs and were stimulated for 6 h with LPS, before RNA harvest.

e to Gapdh. Experiment was repeated 3 times, and a representative experiment

s.
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and negative regulators of NF-kBsignaling.We go on to describe

an unexpected role for TNF as a locally acting negative regulator

of NF-kB. Very few miRNAs were identified as hits in either

screen (Tables S3, S4, S9, S10, and S11). Although we targeted

~500miRNAs, it is possible that many of these are not expressed

inmacrophages or that the sgRNAs targeting themiRNAs did not

work.

Macrophage-Specific Genes Involved in Viability
Numerous viability screens have been performed in a wide range

of cell types and have demonstrated that the catalog of essential

genes can vary significantly among distinct cell types (Wang

et al., 2014, 2017). Cell-type-specific differences in viability can

be due to genetic differences that could render some pathways

inactive, forcing dependency on other pathways. Indeed, Wang

et al. (2017) compared essential genes across 14 acute myeloid

leukemia (AML) lines and found certain genes to be essential only

for a specific subset of the AML lines with certain genotypes.

Moreover, a typical cell expresses approximately two thirds of

its genes (Hart et al., 2013). Therefore, whether a gene or set of

genes is essential can be context specific, varying upon different

growth conditions or treatments, etc. (Hart et al., 2015; Viswana-

tha et al., 2018). In our screen, we identified 61 genes with

distinct essentiality in macrophages compared to a database

collection of ~421 cell-line CRISPR screens (Figure 1E). We

selected 6 of the top candidates that acted as either essential

genes or growth suppressors and could validate 4. Not surpris-

ingly, we identified and validated the myeloid-specific transcrip-

tion factor Irf8 as a macrophage-specific essential gene (Fig-

ure 1F). Interestingly, Irf8 has roles in both myeloid cell viability

and inflammatory response (Langlais et al., 2016). Additionally,

the macrophage-specific essential genes included ones

involved in NF-kB signaling, suggesting that this pathway, similar

to Irf8, may be important for both viability and inflammatory acti-

vation (Figure S2). Indeed, a significant fraction of them (~10 pro-

teins)—including Syk and Mtmr9, which we validated (Fig-

ure 1F)—are predicted to physically interact supporting a

macrophage-specific regulation of protein complexes that con-

trol cell viability. In summary, understanding the pathways that

control viability in macrophages is essential for development of

novel gene targets to control macrophage proliferation in sce-

narios where the inflammatory response is not properly

controlled.
Figure 4. Screening Identifies Negative-Feedback Regulatory Loop Us
(A) ELISAwas performed in control or TNF-edited iBMDMs stimulated with LPS fo

represent standard deviation of three biological replicates.

(B) Control or TNF-edited iBMDMs were stimulated with LPS followed by brefeldi

(C) iBMDMs were stimulated for the indicated time points (LPS for 0, 6, and 24 h

(D) Average sgRNA enrichment for the top 2 sgRNAs was calculated for TNF an

biological replicates.

(E and F) qRT-PCR was performed for Il6 RNA in iBMDMs edited with either cont

represent standard deviation of three biological replicates.

(G) Mean fragments per kilobase of transcript per millionmapped reads (FPKM) va

both un-stimulated (‘‘no-stim’’) or LPS-stimulated (24 h) cells. Error bars represe

(H) We combined cherry-positive cells (containing Tnf sgRNAs) with unedited che

before FACS analysis tomeasure GFPmean fluorescence intensity (MFI) as proxy

replicates.

(I) Model of localized TNF negative regulation of NF-kB signaling.
30 UTR-Targeting Guides and Identification of Potential
cis-Elements
UTRs of messages are important for regulating stability, transla-

tion, and localization (Mayr, 2019). Sequences within the UTRs

(cis-elements) can function in miRNA binding, structure, and/or

protein binding (Mayr, 2017). Furthermore, cell-type-specific

expression differences in miRNAs and RNA binding proteins

(RBPs) allow for specificity in regulating mRNAs (Erson-Bensan,

2016). Given the rich source of regulation that occurs within the

30 UTR, we built into our library design sgRNAs targeting 30 UTRs
within known essential genes with the goal of systematically

identifying cis-elements that contribute to the regulation of

essential genes. For these genes, sgRNAs targeting coding se-

quences resulted in decreased fitness, as expected. Within

these genes, we focused on 30 UTR-sgRNAs that resulted in

increased fitness, which could represent the disruption of desta-

bilizing cis-elements, such as miRNA binding sites, sites of inter-

action with RBPs or AU-rich elements, etc. CRISPR targeting of

these destabilizing cis-elements may result in stabilization of the

mRNA. We determined whether there were any overlapping

miRNA target sites using TargetScan, but we did not find any

with significant overlap, suggesting that there are other mecha-

nisms of regulation at play besides miRNA targeting. However,

Cdk13-utr3-g1 and Pias1-utr3-g1 (Figure 2G) did target regions

near (<50–80 bp) themiRNAbinding sites formir-124 andmir-10,

respectively, which could potentially disrupt secondary struc-

ture, mir binding, or both (Table S9). Another 30 UTR-targeting
guide 1 for Arcn1, is predicted to target near a mushashi

element, which is known to negatively regulate RNA stability

(Bennett et al., 2016). Given that themajority of our 30 UTR target-

ing guides resulted in no phenotype, an alternative method to try

in future studies would be to use 2 sgRNAs to create larger de-

letions (Zhao et al., 2017). In summary, we have functionally vali-

dated potential 30 UTR cis-elements and provided a rich

resource for future work aimed at dissecting how these elements

contribute to gene expression.

Dissection of the Complex Biology of TNF
We utilized the MW U analysis to identify hits from our FACS-

based NF-kB reporter screen. Sorting screens are inherently

noisier than viability screens, due to the fact that significant hits

are going to be proportional to the sgRNA enrichment, and with

our single (LPS) treatment of cells, there is no ability to enrich
ed by the Tumor Necrosis Factor (TNF) to Regulate Inflammation
r 24 h. Supernatant was harvested, and levels of TNFwere quantified. Error bars

n A treatment and stained to assess intracellular TNF levels by flow cytometry.

), and cell surface expression of TNF was measured by flow cytometry.

d its receptors: p55 and p75. Error bars represent standard deviation of two

rol, TNF, p55 (E), or p75 (F) sgRNAs and stimulated with LPS for 6 h. Error bars

lues (4 biological replicates) are plotted for genes Tnf, Tnfrsf1a, and Tnfrsf1b for

nt standard deviation of four biological replicates.

rry-negative cells at a 1:1 ratio. Mixed cells were stimulated with LPS for 24 h

for NF-kB activation. Error bars represent standard deviation of three biological
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over time. Here, we activated the NF-kB iBMDM reporter cells for

24 h with LPS and then sorted for the GFP low and high hits (top

and bottom 20%) that represent positive and negative regulators

of the pathway.Newer tools are beginning to bedeveloped to help

with the analysis of these complex pooled sorting-based screens.

Recently, de Boer et al. (2020) published a tool, ‘‘MAUDE,’’ that is

specifically designed for sorting screens, which could be benefi-

cial for future studies of these complex assays. Nevertheless,

we could show, using MW analysis, that the GO terms for the

top 150 hits included ‘‘NF-kappaB signaling,’’ and we confirmed

16 additional NF-kB regulators using individually cloned lines

measuring Il6 production as a secondary readout.

One of the surprising findings from our NF-kB screen was the

identification of TNF as a negative regulator of NF-kB (anti-in-

flammatory). We were surprised for two reasons: (1) TNF is

an extensively studied pro-inflammatory cytokine with estab-

lished roles in driving NF-kB-related inflammation (Bradley,

2008). (2) TNF is a secreted protein; therefore, a pooled

CRISPR screen would not be expected to capture its biology.

Numerous studies spanning decades of research have revealed

that TNF biology is much more complex. TNF can exist as both

soluble (17 kDa) and membrane-bound (26 kDa) forms, and

multiple groups have shown that membrane-bound TNF func-

tions as a negative regulator of inflammation in contrast to its

soluble form (Alexopoulou et al., 2006; Ardestani et al., 2013).

The dual functions of TNF can also be explained, in part, by

its binding to two receptors: Tnfrsf1a (p55) and Tnfrsf1b

(p75), which have opposing effects on inflammation (Peschon

et al., 1998). Interestingly, the membrane-bound form of TNF

has been shown to preferably bind to the inhibitory receptor,

p75, allowing for localized regulation of inflammation (Grell

et al., 1995). Here, we reveal the complex regulatory biology

of TNF, providing evidence that membrane-bound TNF func-

tions as a negative regulator of NF-kB likely through its binding

to p75 in macrophages. Our results also support a model in

which membrane-bound TNF can function in an autocrine

manner, acting within the cell that produces it. In this study,

we bring together decades of research on TNF biology and

its role in inflammation using this single-screening approach.

Anti-TNF therapy remains one of the most effective methods

for the treatment of various autoimmune diseases, including

rheumatoid arthritis (RA) and irritable bowel disease (IBD) (Hy-

rich et al., 2009; Peyrin-Biroulet, 2010), yet as many as 20%–

40% of patients do not respond to treatment (Lopetuso et al.,

2017). Our findings show that editing of TNF resulted in

elevated Il6 levels, which is another important pro-inflammatory

cytokine and might explain the lack of response to anti-TNF

therapy. Yimin and Kohanawa (2006) demonstrated that a

TNF�/� knockout mouse showed elevated levels of Il6, which

is consistent with our findings. More importantly, they pre-

sented data showing that production of TNF and IL6 can be

negatively regulated by each other (Yimin and Kohanawa,

2006). Therefore, the targeting of TNF could lead to elevated

levels of Il6, which may result in elevated inflammation in pa-

tients. Our data showed that editing p55 inhibits NF-kB-driven

Il6 production (Figures 4D and 4E), while editing p75 caused an

increase in Il6 (Figure 4F). Blocking p55 (via antibody or small

molecule) could be an alternative that could block the pro-in-
10 Cell Reports 33, 108541, December 29, 2020
flammatory effects of p55 while allowing Tnf to, instead, bind

to p75 to promote anti-inflammatory signaling (Yang et al.,

2018). In summary, with one pooled CRISPR screen, we have

revealed interesting complexities of TNF regulation and have

presented evidence for alternative therapeutic strategies.

Future Directions
Here, we have demonstrated the power of CRISPR screening in

revealing important macrophage biology probing both viability

and inflammatory pathways. Macrophages are critical cells of

the innate immune system providing one of the first lines of de-

fense against invading microbes. The ability for macrophages to

function optimally requires their ability to proliferate and migrate

to reach the site of infection and appropriately engage their inflam-

matory program.Here, we found 60macrophage-specific viability

genes and uncovered 115 additional regulators of NF-kB. The

future characterization of these genes will likely yield novel regula-

tory insights into the complex regulation of viability and inflamma-

tory pathways. From a therapeutic point of view, it would be inter-

esting to explore whether there are drugs that may target some or

any of our screen candidates (Wishart et al., 2018). In conclusion,

we have revealed important biology insights related to macro-

phage function and believe that this work represents a significant

resource for the macrophage research community.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PEcy7 anti-mouse Tnf-alpha ThermoFisher Cat# 25-7321-82; RRID:AB_11042728

Isotype control Biolegend Cat#400416; RRID:AB_326522

Fc block BD PharMingen Cat#553142; RRID:AB_394657

Chemicals, Peptides, and Recombinant Proteins

E.coli LPS InvivoGen Cat#tlrl-3pelps

Lipofectamine 2000 ThermoFisher Cat#11668019

iScript Reverse Transcription Supermix Biorad Cat#1708841

iQ SYBR Green Supermix Biorad Cat#1725122

Critical Commercial Assays

Mouse TNF-alpha DuoSet ELISA R&D Systems Cat#DY410

Direct-zol RNA MiniPrep Kit Zymo Cat#R2072

TruSeq Stranded Total RNA Library Prep kit Illumina Cat#20020597

Deposited Data

Raw and analyzed data This paper GEO: GSE138786

Raw and analyzed data This paper GEO: GSE138788

Experimental Models: Cell Lines

immortalized bone-marrow-derived macrophages with an NFKB

reporter and Cas9 (iBMDM-NFKB-Cas9)

Covarrubias et al., 2017 PMID: 29051223

THP-1 cells ATCC ATCC TIB202

Oligonucleotides

sgRNA sequences, see Table S1 This paper N/A

Custom sequencing primer:

50GAGACTATAAGTATCCCTTGGAGAACCACCTTGTTGG-30
This paper N/A

Il6 qRT-PCR primer F: AACGATGATGCACTTGCAGA IDT N/A

Il6 qRT-PCR primer R: GAGCATTGGAAATTGGGGTA IDT N/A

Gapdh qRT-PCR primer F: CCAATGTGTCCGTCGTGGATCT IDT N/A

Gapdh qRT-PCR primer R: GTTGAAGTCGCAGGAGACAACC IDT N/A

Hprt qRT-PCR primer F: TGCTCGAGATGTCATGAAGG IDT N/A

Hprt qRT-PCR primer R: TATGTCCCCCGTTGACTGAT IDT N/A

Recombinant DNA

Plasmid: psPAX2 Addgene Addgene Plasmid #12260; RRID:Addgene_12260

Plasmid: pMD2.G Addgene Addgene Plasmid #12259; RRID:Addgene_12259

Software and Algorithms

FlowJo BD https://www.flowjo.com/

MAGeCK Li et al., 2014 PMID: 25476604

gRNA_Tool https://github.com/quasiben/gRNA_Tool

Mann-Whitney U test Gilbert et al., 2014 PMID: 25307932

TopHat Kim et al., 2013 PMID: 23618408

DESeq2 R package Love et al., 2014 PMID: 25516281
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Susan

Carpenter (sucarpen@ucsc.edu).
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Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
All sequencing data generated fromCRISPR screens and RNA-seq reported in this paper have been deposited to GEO under acces-

sion codes GSE138786 and GSE138788.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male immortalized bone-marrow-derived macrophages (iBMDMs) with the NF-kB reporter and Cas9 (iBMDM-NFKB-Cas9) cells

(previously described in Covarrubias et al., 2017). Cas9 activity was validated via GFP kd (~75% kd) prior to beginning the screen.

Cells were cultured in DMEM, supplemented with 10% low-endotoxin fetal bovine serum (ThermoFisher) and 1X penicillin/strepto-

mycin and incubated at 37�C in 5% CO2.

THP-1 cells were cultured in RPMI 1640 supplemented with 10% low-endotoxin fetal bovine serum (ThermoFisher), 1X penicillin/

streptomycin and 2-mercaptoethanol (0.05 mM, Sigma-Aldrich, M6250), and incubated at 37�C in 5% CO2.

METHOD DETAILS

sgRNA library design and cloning
We created genome-scale sgRNA library consisting of over 270,000 total sgRNAs (12 sgRNAs per gene) targeting every RefSeq-an-

notated (mm9) coding gene, as well as all microRNAs and select 30UTRs. The library contains > 5,000 non-target control sequences

(NTC). The earliest possible ‘‘constitutive’’ exon of each transcript variant was targeted. The criteria for sgRNA selection and the clon-

ing strategy protocol have been previously described (Boettcher et al., 2018, 2019). All sgRNA sequences are shown in Table S1.

Lentiviral production
HEK293T cells were seeded at 6,000,000 cells per plate in 15 cm dishes in 20 mLmedia (DMEM, 10% FBS) and incubated overnight

at 37�C, 5% CO2. The next morning, 8 mg sgRNA library plasmid, 4 mg psPAX2 (Addgene #12260), 4 mg pMD2.G (Addgene #12259)

and 80 mL lipofectamine2000 (Invitrogen) were mixed into 1 mL serum-free OptiMEM (GIBCO), vortexed and incubated for 20 min at

RT and added to the cells. At 72 h post-transfection, supernatant was harvested, passed through 0.45 um filters (Millipore, Stericup)

and aliquots were stored at �80�C.

CRISPR Screen
iBMDM-NFKB-Cas9 cells were infected with the sgRNA genome-scale library at a at low multiplicity of infection (MOI = 0.3). Three

days post infection, cells were puromycin-selected (10 mg/ml) for 5 days to obtain cherry-positive (sgRNA) cells and were maintained

at > 1000X coverage at all times.

Growth screen
Prior to puro-selection, we collected a day 0 time point, consisting of 1000X coverage (270 million cells). We then collected a day 21

time point (also 1000X coverage). Cells from both time points were cryo-preserved in 90% FBS, 10% DMSO for later processing.

FACS screen
Library infected and selected iBMDM-NFKB-Cas9 cells were expanded to 2000X coverage. Cells were stimulated with 200 ng/ml of

LPS for 24 h to induce expression of GFP (NF-kB responsive). Prior to sorting, cells were collected in FACS buffer (1XPBS, 1%FBS,

5mM EDTA). Stimulated cells were analyzed by flow cytometry alongside unstimulated cells to ensure the mean fluorescence inten-

sity (MFI) of stimulated cells was > 10-fold compared to unstimulated cells. All flow cytometry experiments and screening were con-

ducted on a BD FACSAria II. GFP was excited using a 488-nm laser and detected using a 525/50-nm filter. Sorting was conducted

using 4-way purity into 2 tubes and a 100-mmnozzle. Cells were gated by forward (FSC-A) and side scatter (SSC-A) for live cells, then

for single cells using FSC-A/FSC-H. Lastly, we evaluated GFP expression (SSC versus GFP), FACS sorted and collected the top/bot-

tom 20% into separate tubes. At least 100 cells/sgRNA (100X coverage) for each sorted population were collected and cryo-pre-

served in 90% FBS, 10% DMSO for later processing.

sgDNA processing, PCR and sequencing. Genomic DNAwas collected from cell pellets (270millions cells, 1000X coverage) or (27

millions cells, 100X coverage for sorted cells) and was extracted by methods described previously (Boettcher et al., 2018, 2019). A

nested PCR strategy was used to 1) allow amplification sgRNA repertoire and 2) to add appropriate Illumina adapters for NGS

(detailed protocol is described in Boettcher et al. (2019). For the 100X coverage sorted samples, we scaled the gDNA extraction vol-

umes 1:5 (i.e., 2ml instead of 20ml). Quality and purity of the PCR product were assessed by bioanalyzer (Agilent), and sequencing

was performed on an Illumina HiSeq 2500 platform using paired end 50 kits with the custom sequencing primer 50-GAGACTATAAG-

TATCCCTTGGAGAACCACCTTGTTGG-30 for reading the sgRNA sequence. Data was submitted to GEO. All tables can be accessed

through Mendeley Reserved DOI: 10.17632/vtvxykv2cr.1.
e2 Cell Reports 33, 108541, December 29, 2020
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Macrophage specific viability genes and 30-UTR guide validation (Mix-cell growth assay)
sgRNA-infected cells (cherry-pos) weremixed with uninfected cells (cherry-neg) at a 1:1 ratio in triplicate. We used Flow cytometry to

monitor the ratio of cherry-pos to cherry-neg cells at 0- and 21-days post plating. All validation cytometry was performed on the At-

tune NxT Flow Cytometer.

NF-kB guide Validation (qRT-PCR)
iBMDM-NF-kB-Cas cells infected with indicated guide-expressing lentivirus and were stimulated with LPS (200 ng/ml) for 6 h prior to

harvesting for RNA. Total cellular RNA from BMDM cell lines was isolated using the Direct-zol RNA MiniPrep Kit (Zymo Research)

according to manufacturer’s instructions. RNA was quantified and controlled for purity with a nanodrop spectrometer. (Thermo

Fisher). For RT-qPCR, 500-1000 ng were reversely transcribed (iScript Reverse Transcription Supermix, Biorad) followed by RT-

PCR (iQ SYBRgreen Supermix, Biorad) using the cycling conditions as follows: 50C for 2 min, 95�C for 2 min followed by 40 cycles

of 95�C for 15 s, 60�C for 30 s and 72�C for 45 s. qRT-PCR primer sequences are list below.

ELISA Analysis
For the ELISA, iBMDMs were stimulated with LPS for 24 h and supernatant was collected from triplicate wells. Supernatant was

diluted 1:3 and Tnf-alpha levels were measured using the mouse TNF-alpha DuoSet ELISA (R&D Systems) kit following manufac-

turer’s protocol.

Antibody staining for FACS
For intracellular staining, iBMDMs were LPS-stimulated for 0 or 6 h and were treated with Brefeldin A for the last 5 hours of stimu-

lation. Cells were then collected, fixed with 4% PFA and permeabilized with perm buffer (3% BSA, 0.2% Triton-X, 1XPBS), followed

by antibody staining with PEcy7 anti-mouse Tnf-alpha (1:150, Thermofisher) or isotype control (1:150, Biolegend). For surface stain-

ing, iBMDMs were LPS-stimulated for 0, 6, 24 h. Cells were collected in sorting media (2% Fetal Calf Serum, 5mM EDTA, 1XPBS),

treated with Fc receptor block (1:250, BD PharMingen) and were then stained with same Tnf and isotype antibodies used above, all

done in sorting media.

RNA isolation and cDNA synthesis and RT-qPCR
Total cellular RNA from THP1 cell lines was isolated using the Direct-zol RNA MiniPrep Kit (Zymo Research) according to manufac-

turer’s instructions. RNAwas quantified and controlled for purity with a nanodrop spectrometer. (Thermo Fisher). For RT-qPCR, 500-

1000 ng were reversely transcribed (iScript Reverse Transcription Supermix, Biorad) followed by RT-PCR (iQ SYBRgreen Supermix,

Biorad) using the cycling conditions as follows: 50�C for 2min, 95�C for 2min followed by 40 cycles of 95�C for 15 s, 60�C for 30 s and

72�C for 45 s. The melting curve was graphically analyzed to control for nonspecific amplification reactions.

RNA-Sequencing
For generation of RNA-Sequencing libraries the human THP1 cells, RNA was isolated from control or Pam3CSK40-stimulated cells

as described above and the RNA integrity was tested with a BioAnalyzer (Agilent Technologies). For RNA-Sequencing target RIN

score of input RNA (500-1000ng) usually had a minimum RIN score of 8. RNA-Sequencing libraries were prepared with TruSeq

stranded RNA sample preparation kits (Illumina), depletion of ribosomal RNA was performed by positive selection of polyA+ RNA.

Sequencing was performed on Illumina HighSeq or NextSeq machines.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Sequencing
RNA-seq 50 bp readswere aligned to the human genome (assembly GRCh37/hg19) using TopHat. TheGencode V32 gtf was used as

the input annotation. Differential gene expression specific analyses were conducted with the DESeq R package. Specifically, DESeq

was used to normalize gene counts, calculate fold change in gene expression, estimate p values and adjusted p values for change in

gene expression values, and to perform a variance stabilized transformation on read counts to make them amenable to plotting.

Screen Analysis and generation of hit list
fastq.gz files were analyzed using the gRNA_tool: https://github.com/quasiben/gRNA_Tool. All guide RNA (sgRNA) + barcode

reads were collapsed to obtain raw sgRNA counts. Counts were normalized to the median and fold-changes were calculated

for each sgRNA. To identify significant genes for the growth screen, the Mann-Whitney U test was performed comparing fold-

changes for sgRNAs targeting each gene to non-targeting controls (described in Gilbert et al., 2014) or by following the MAGeCK

analysis pipeline (as described in Li et al., 2014). MAGeCK analysis was performed on the full dataset as well as on the data binned

into four separate samples (insample replicates) based on the 1st basepair of the random barcode (bins A,T,G, and C). The data

was then used as input into the MAGeCK analysis pipeline. For the growth screen, the Day 21 sample was compared to the Day

0 sample. To identify significant genes for the for the FACS screen, GFP low (bottom 20%) sorted cells were compared to GFP

high (top 20%) sorted cells.
Cell Reports 33, 108541, December 29, 2020 e3
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sgRNA selection for screen validation
For the macrophage specific viability genes, we selected 6 targets for validation out of possible 61 hits. We choose 5 essential genes

and one growth suppressor. We chose the candidates based on their rankings according to P value. For the 30utr-targeting guides,

we selected guides with > 3-fold positive enrichment (Day 21 versus Day 0) that targeted the 30utrs of essential genes with significant

negative enrichment. The criteria for our NF-kB candidate selection was as follows: 1) Most significant: We selected candidates with

the lowestMann-Whitney U test p value (using a p value cut off of < 0.01). 2) Novelty: We focused on genes, whichwere not previously

known to be involved in NF-kB signaling. We used several databases including KEGG, String-DB and Cell Signaling TLR-signaling

gene list to determine novelty of gene. 3) Expression: We evaluated expression and confirmed > 10 FPKM for either un-stimulated or

LPS-stimulation conditions. 4) Viability: We confirmed that our candidates did not have a significant viability phenotype. We targeted

a total of 18 coding genes selecting guides with the strongest enrichment (2 guides/gene). We targeted microRNAs that showed > 3-

fold positive enrichment for at least 2 gRNAs. For positive controls we used guides targeting Tlr4.
e4 Cell Reports 33, 108541, December 29, 2020
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Figure S1.

A. B.

C.

mouse sgRNA library composition

3'UTRs
microRNAs
refseq coding genes
non-targeting controls
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5,500
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Figure S1: Comparing analysis screening tools, related to Figure 1. A. Breakdown of all genes targeted by our 
custom mouse sgRNA library is displayed.. B. Venn diagram. Significant genes were determined by Mann-Whittney U-
test and MAGeCK analysis (FDR<0.05). 88% of significant genes identified in the MAGeCK analysis were also 
identified in the Mann-Whittney U-Test. C. Venn diagram. Significant genes were determined on unsplit and insamples 
replicates by MAGeCK analysis. 80% of the significant genes in the unsplit samples were also identified in the 
replicate samples. 
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Figure S2: Comparison of current screen to CRISPR screen database, related to Figure 1. Genes with 
opposite phenotypes in our screen compared to the GenomeCRISPR database are displayed visually using String-
DB. KEGG pathway Go-term enrichment is also shown.
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Figure S3: Expression and p65-binding of NF-kB screen hits, related to Figure 3. A-B. NF-κB FACS screen gating strategy 
for unstimulated cells (A) or 24 h LPS stimulated cells (B). C. Differentially expressed genes in 6 h LPS vs unstimulated BMDMs 
are displayed as log2 fold-change vs. adjusted p-value volcano plot from previously published data (Zhang et al., 2017). 
Expression of top 50 positive regulators (blue) and top 50 negative regulators (yellow) is shown. D-E. All p65 targets were 
determined using the ChIP-seq data from (Lam et al., 2013). Positive p65 binding was called if a p65 peak was greater than 10 
and was within 1kb of the annotated transcription start site (TSS). P65 promoter binding was then assessed for the top negative 
(D) and positive (E) regulators.
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Figure S4: Expression of TNF and TNF receptors in human cells , related to Figure 4. A. Differentially 
expressed genes were determined for 6h Pam3CSK4-stimulated or unstimulated THP1 (ATCC). Normalized 
counts +/- SD are displayed for TNF, TNFRSF1A and TNFRSF1B.
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