Supplementary Information for:

Human USP18 is regulated by miRNAs *via* the 3'UTR, a sequence duplicated in lincRNA genes residing in chr22q11.21

Erminia Rubino^{1,2}, Melania Cruciani¹, Nicolas Tchitchek^{2,3}, Anna Le Tortorec⁴, Antoine D. Rolland⁴, Önay Veli¹, Leslie Vallet¹, Giulia Gaggi¹, Frédérique Michel¹, Nathalie Dejucq-Rainsford⁴, Sandra Pellegrini^{1*}

 ¹ Unit of Cytokine Signaling, Institut Pasteur, INSERM U1221, Paris, France
² École Doctorale Physiologie, Physiopathologie et Thérapeutique, ED394, Sorbonne Université, Paris, France
³ i3 research unit, Hôpital Pitié-Salpêtrière-Sorbonne Université, Paris, France
⁴ UMR_S1085, Irset (Institut de recherche en santé, environnement et travail), EHESP, Inserm, Univ Rennes, F-35000 Rennes, France.

*Corresponding author : Sandra Pellegrini Email: sandra.pellegrini@pasteur.fr

This PDF file includes:

Supplementary Tables S1 and S2 Supplementary Figures S1 to S9 Supplementary Sequences Supplementary Table S1. Copies of the sequences annotated as exon 1 of FAM247A-

D and *linc-UR-B1*.

	1	
Coordinates ^a	Strand ^b	Identity % (score) ^c
FAM247A-D		
chr22:18769207-18769785 ^d	-	100 (578/578)
chr22:18349936-18350514	+	100 (578/578)
chr22:21203454-21204032	-	99.9 (576/578)
chr22:18511886-18512464	+	99.9 (576/578)
chr20:23980580-23981153	-	96.2 (536/578)
chr13:18248901-18249486	-	96.6 (533/578)
chr22:22651789-22652345	+	96.6 (531/578)
chr22:24632871-24633427	+	96.6 (525/578)
chr22:24244569-24245122	-	96.6 (490/578)
linc-UR-B1		
chr22:18861451-18861733	+	100 (283/283)
chr22:21297396-21297678	+	100 (283/283)
chr22:21112840-21113122	-	99.7 (281/283)
chr6:162068502-162068656	-	82.6 (101/283)

^a Blat was performed on human genome using *FAM247D* or *linc-UR-B1* annotated exon1 sequence as input. ^b Refers to the genomic DNA strand ^c Hits with identity > 80% and length > 100bp are shown. ^d In bold coordinates referred to *FAM247A-D*.

Primers	Sequences 5'-3'
USP18_qPCR_FW	ACTCCTTGATTTGCGTTGAC
USP18_qPCR_RV	TTTCCCACGGGTCTTCTT
OAS1_qPCR_FW	TTGACTGGCGGCTATAAACC
OAS1_qPCR_RV	TGGGCTGTGTTGAAATGTGT
IRF7_qPCR_FW	GGGTGTGTCTTCCCTGGATA
IRF7_qPCR_RV	GCTCCATAAGGAAGCACTCG
IFIT1_qPCR_FW	TCTCAGAGGAGCCTGGCTAA
IFIT1_qPCR_RV	TCAGGCATTTCATCGTCATC
STAT2_qPCR_FW	TATCACAGCCAGTGCCAGAG
STAT2_qPCR_RV	CTGATTCCCATCCTTGGAGA
18S_qPCR_FW	CATGGCCGTTCTTAGTTGGT
18S_qPCR_RV	CGCTGAGCCAGTCAGTGTAG
ACTB_qPCR_FW	TACAGCTTCACCACGG
ACTB_qPCR_RV	TGCTCGAAGTCCAGGGCGA
USP183UTR_XhoI_FW	CGCGCTCGAGTGGAAATGCCCAAAACCTTC
USP183UTR_NotI_RV	GCGCGCGGCCGCTCATGACTGTGTTTATCAC
191-5P_BSmut_FW	AAGACTCCGTAGATCCAGGATGCCTAATGGAAAATGACAGCGTGTCAATCTCTG
191-5P_BSmut_RV	CAGAGATTGACACGCTGTCATTTCCATTAGGCATCCTGGATCTACGGAGTCTT
24-3P_BSmut_FW	GTTACATATTTTGATAATATCCCTAATTATAAATAAGCGAGTGTTATATAGTTTGAAAAACAATGCTTCTCCTCATTGCA
24-3P_BSmut_RV	$\label{eq:constraint} TGCAATGAGGAGAAGCATTGTTTTCAAACTATATAACACTCGCTTATTTAT$
423-5P_Bsmut_FW	TTATCAAAATATGTAACCATGAGGCGGGGGGGGGGGGGG
423-5P_Bsmut_RV	CATCCATTCTGACTGATCAGGACCTCTCCCGCCTCATGGTTACATATTTTGATAA
532-3P_BSmut_FW	CCAGTGGGGAGAGCAGTGGCAGTCCCTCGCATCTGGGGGGC
532-3P_BSmut_RV	GCCCCCAGATGCGAGGGACTGCCACTGCTCTCCCCACTGG
3UTR_GSP1	AGTTGTATAATACTGAAG
A_FW1	CTGTTGCTGCTGACTCCAAG
A_RV1	TCCGTAGATCCAGGAACGGAA
A_FW2	TGAGGCATGAGTTTGGCCAC
B_FW1	TGGCCCAGGCAAGATAAATA
B_RV1	TGGTGAAAGCATCCATTCTG
B_FW2	CATTGATTACGACTTCCCTTCACCAC
B_FW3	CTTCTAACCCAGAGAACACAGC
B_FW4	CCTGGTGTCCATGCTTTTGTGA
B_FW5	CTCAGTTTCTGGTTACATCTGA
B_FW6	GCTGGCACTGCGAGCAATATA
3UTR_RV	TGAGGGGCCTCATGGTTACA

Supplementary Table S2. Sequences of the primers used.

Supplementary Figure S1. USP18 is widely expressed in human tissues.

Expression of *USP18* in 20 human tissues (Human Immune System MTCTM Panel, Human MTCTM Panel I, Human MTCTM Panel II). Results shown as expression $(2^{-\Delta Ct})$ relative to *ACTB*, used as housekeeping gene. SEM is shown for tissues that are present in Human Immune System MTCTM Panel and Human MTCTM Panel I.

Supplementary Figure S2. *miR-191-5p*, *miR-24-3p* and *miR-532-3p* are enriched in immune cells and particularly in monocytes.

(A) Heat map visualization of the data in Figure 2A. Differential expression of *miR-191-5p*, *miR-24-3p*, *miR-361-3p*, *miR-381-3p* and *miR-532-3p* in 90 human cell types (immune and non-immune) is shown. Immune cells are delimited by a red box and zoomed. p-values and q-values (ANOVA FDR adjusted p-value) are shown on the right of the heat map for all significant miRNAs.

(B) Heat map visualization of the data in Figure 2B. Differential expression of *miR-191-5p*, *miR-24-3p*, *miR-361-3p* and *miR-532-3p* in circulating PBMCs is shown. p-values and q-values (ANOVA FDR adjusted p-value) are shown below the heat map for all significant miRNAs.

Supplementary Figure S3. USP18-targeting miRNAs in monocytes.

The expression of the indicated *USP18*-targeting miRNAs in monocytes was measured by miRNA qPCR-array. *miR-425-5p* was used as normalizer

Α		B							
miRNA: miR-191-5p Human	C22CG22211CCC22223CC2C11G	Mouse	100						
Rhesus macaque	CAACGGAAUCCCAAAAGCAGCUG	Pig	46	100					
Mouse	CAACGGAAUCCCAAAAGCAGCUG	' '9	40	05	100				
miR-24-3p		Horse	49	65	100				
Human	UGGCUCAGUUCAGCAGGAACAG		43	61	68	100			
Rhesus macaque	UGGCUCAGUUCAGCAGGAACAG	Macaque							
Mouse	UGGCUCAGUUCAGCAGGAACAG	Green monkey	47	62	70	95	100		
miR-423-5p			46	62	71	89	90	100	
Human	UGAGGGGCAGAGAGCGAGACUUU	Chimpanzee	10	02		00	00	100	
Rhesus macaque	UGAGGGGCAGAGAGCGAGACUUU	Human	46	61	71	89	90	99	100
Mouse	UGAGGGGCAGAGAGCGAGACUUU	numan	é	ġ	ě	e	ý	e	E
miR-532-3p			Mous	٩	Hors	caqu	onke	anze	luma
Human	CCUCCCACACCCAAGGCUUGCA		-			Ма	E	imp	-
Rhesus macaque	CCUCCCACACCCAAGGCUUGCA						.eer	Ч	
Mouse	CCUCCCACACCCAAGGCUUGCA						Ū		
С									
BS: miR-	191-5p miR-24-3p	miR-423-5p		miR∙	-532-3	р			
Human TTC	CGTT AACTGAGCC GC	СССТС	- A	GTO	GGAGG				
Chimpanzee mmc		ссстс	_ D	GTG	CCACC				

				201
ICA GTG	GCCCC	AACTGAGCC	TTCCGTT	Human
ICA GTG	GCCCC	AACTGAGCC	TTCCGTT	Chimpanzee
ICA GTG	GGTCC	AACTAAGCC	TGGATCT	Green monkey
ICA GTG	GGTCC	AACTGAGCC	TGGATCT	Rhesus macaque
CA GTG	ACTGC	AATTAAACT	TTTTGTT	Horse
CA GGG	CTTGT(AATGAAACT	TT	Pig
ACACGGA GGG	TTTGTCTCCTGAAAGCTCAC	AATTAAGCC	CTTG	Mouse

Supplementary Figure S4. Conservation of USP18 3'UTR and miRNA binding sites.

(A) Conservation of *miR-191-5p*, *miR-24-3p*, *miR-423-5p* and *miR-532-3p* mature sequence in rhesus macaque (non-human primate) and mouse. Conserved nucleotides in black. Sequences retrieved from mirbase (<u>www.mirbase.org</u>).

(B) Identity matrix of *USP18* 3'UTR in mammals. Each number indicates the percentage of identity between two species. Shades of gray indicate level of conservation (low in light gray; high in dark gray). *USP18* 3'UTR sequences were downloaded from UCSC (<u>https://genome.ucsc.edu</u>). Sequences were aligned using Clustal Omega (<u>https://www.ebi.ac.uk/Tools/msa/clustalo</u>).

(C) Conservation of the seed-matched region of the binding site (BS) of *miR-191-5p*, *miR-24-3p*, *miR-423-5p* and *miR-532-3p* on the *USP18* 3'UTRs of mammals. Conserved nucleotides in black; non-conserved nucleotides in gray.

Supplementary Figure S5. *TCONS_00029754* is the *linc-UR-B1* isoform expressed in testis.

(A) Alignment of the exon-exon junction of *TCONS_00029754* and *TCONS_00029753* (putative *linc-UR-B1* isoforms). In the alignment, gaps are indicated with dashes. Note that an ATG codon in frame with the last 46 coding nucleotides of *USP18* is present only in *TCONS_00029754*.

(**B**) Expression of *TCONS_00029754*, here called *linc-UR-B1*, in 32 human tissues (RNA-seq data from <u>https://www.ebi.ac.uk/gxa/experiments/E-MTAB-2836/Results</u>), shown as unique counts. In bold the tissues in common with tissues in the panel analyzed by qPCR in Figure 4G. The other tissues are unique to this dataset. The number of donors is shown in brackets. *linc-UR-B1* detected only in testis (8 donors).

(C) Sequencing of the qPCR product obtained from testis cDNA in Figure 4G, revealed that the isoform of *linc-UR-B1* expressed in testis is *TCONS_00029754*.

(D) Expression of *linc-UR-B1* in testis fragments (7 donors), measured by qPCR. Expression is shown as relative $(2^{-\Delta Ct})$ to *ACTB*. The donor with the lowest expression of *linc-UR-B1* had impared spermatogenesis, while the other six donors

Supplementary Figure S6. The *NR_135922* pseudogene is uniquely expressed in testis. (A) PolyA+ RNA-seq (+ strand) track from testis provided by the ENCODE project (GSM2453457 and GSM2453458) were visualized using auto-scale mode in IGV browser (hg38 genome assembly). Genes are shown with their genomic orientation (> for + strand, < for – strand). *NR_135922* and the annotated intergenic region upstream of *linc-UR-B1* is covered by reads.

(B) Expression of *NR_135922* in GTEx data, retrieved from UCSC. *NR_135922* gene is under the name AC008132.12 and is expressed only in testis.

Supplementary Figure S7. No or low expression of ISGs in germ cells.

Analysis of *IFIT1* and *OAS1* in testicular cell populations (cluster 1-13, 3 donors). These data were retrieved from the alignment of single cell RNA-seq reads provided by (19), filtered for unique reads and expressed as percentage expression (normalized expression in one population *vs* all populations analyzed). Cell populations expressing *linc-UR-B1* are highlighted in red.

Supplementary Figure S8. *USP18*-targeting miRNA are expressed in whole testis and germ cells.

The expression of *USP18*-targeting miRNAs in testis fragments (left panel) and on purified germ cells (right panel) was measured by miRNA qPCR-array. *miR-425-5p* was used as normalizer.

Α

В

AluSx3 L1PA16

	USP18	exon11	FAM230D
GGT-linked s	equence	A1	FAM230J
GGTLC	23	A2	FAM230A
GGT3	P	A3	FAM230E
GGT2	2	A4	FAM230B
NR_135	922	B1	FAM230F
POM121	L8P	B2	FAM230H

14

Supplementary Figure S9. *USP18* intron 10-exon 11 copies contain *Alu* elements at their breakpoints and are part of repeated gene blocks.

(A) Repeated elements present in the A and B copies (A1 and B1 are shown as representatives). The *Alu* sequences at the breakpoint of the A and B copies are shown in red. Exons are shown as boxes, intron as thick lines. Sequences identical to *USP18* exon 11 are in red.

(B) USP18 exon 11, A copies and B copies are shown in red. FAM230-linked sequences/genes are found downstream of A and B copies. GGT-linked sequences/genes are shown upstream of A copies. POM121-related sequences/genes (POM121L8P and NR_135922) are found upstream of the B copies. Genes/sequences are shown with their genomic orientation (> for + strand, < for – strand).

Supplementary sequences

A) Human USP18 3'UTR

The cDNA sequence of USP18 exon11 is shown in red. The 43 coding nt are in bold, the stop codon (TAA) is underlined, the rest of exon11 represents USP18 3'UTR. This sequence was downloaded from UCSC genome browser.

B) FAM247A, FAM247C, FAM247D

These transcripts have nearly identical sequence. The following cDNA sequence was obtained by sequencing two overlapping PCR products: the first obtained with A_FW1 primer and AUAP_RV and the second with the A_FW2 primer and the 3'UTR_RV primer (**Figure 5A**). Of note, the genes of FAM247A, C and D are annotated in the UCSC database as LOC105372935, LOC105377182 and LOC105372942 respectively, and the corresponding annotations for transcripts are XR_938017.2, XR_951239.1 and XR_951230.1.

TCTTCTTGTCCATCTGCCCACCCATCTGTCCCTCCATCTGCCCACCGGCCTCCCCTCTCTGGGCCG CAGAGCCATGGCCCAGGACTACGGAGCCATGGGTGACCTGGTCCTGCTGGGGCTGGGGCTGGGGCTGGCGC TGGCTGTCATTGTGCTGGCTGTGGTCCTCTCCGACACCAGGCCCCATTTGACCCCCGGCCTTTGCCCACACC **GCTGTTGCTGCTGCACCCAAGGTCTTCTCAAATATTGTACGGCAGGAAACTGCATATCTTCTGGTTTACAT GAAGATGGAGTGCTAA**TGGAAATGCCCAAAACCTTCAGAGATTGACACGCTGTCATTTTCCATTTCCGTTCC TGGATCTACGGAGTCTTCTAAGAGATTTTGCAATGAGGAGAAGCATTGTTTTCAAACTATAACTGAGCCTT CTTTCACCAGCAGACCCGGCCATGTGGCTGCTCGGTCCTGGGTGCTGCTGCTGCGAGACATTAGCCCTTT AGTTATGAGCCTGTGGGAACTTCAGGGGTTCCCAGTGGGGAGAGCAGTGGCAGTGGGAGGCATCTGGGGGGC CAAAGGTCAGTGGCGGGGGGGTATTTCAGTATTATACAACTGCTGTGACCAGACTTGTATACTGGCTGAATAT ${\sf CAGTGCTGTTTGTAATTTTTCACTTTGAGAACCAACATTAATTCCATATGAATCAAGTGTTTTGTAACTGCTAT}$ TCATTTATTCAGCAAATATTTATTGATCATCTCTTCTCCATAAGATAGTGTGATAAACACAGTCATGAATAAA GTTATTTTCCACAAAA

C) Partial linc-UR-B1

Linc-UR-B1 is a fusion of *NR_135922*, the genomic sequence between the annotated NR_135922 and *TCONS_00029754*, and *TCONS_00029754*. This partial sequence was obtained by sequencing two overlapping PCR products: the first obtained with B FW1

primer and AUAP_RV (**Figure 5B**) and the second with the B_FW6 primer (pairing to the exon6 of NR_{135922}) and the 3'UTR_RV primer (**Figure 5C**). The different parts of *linc-UR-B1* cDNA sequence are shown in different colours, depending on their origin: partial exon6 of NR_{135922} in grey (nt in white), intergenic region in white (nt in grey), the annotated exon1 of *TCONS_00029754* in black and the *USP18* exon11 in red. The ATG formed by the junction of *USP18* exon11 and the upstream exon is underlined, as well as the stop codon (TAA).

CTCAGTTTCTGGTTACATCTGATCTTTATTTTTTATATATCATCTAAGCTATAAAGTTATATTCCCTATTTGTGA TCTTAAAAGAAGGACTCCAGGAAAGTGTTCAAAATATTCATATATCTAAACTGGAACATATGTTTATATTTTTA AAAGTAGCCTGAGAGGTTGGCAACTAAAGTCATATGTTGAATGATCATTTCTCAAGAGTTTCATTTTATGGTC TTTCTCTTGTTCTGTAAAATGTGGGCATGGATAGATATAAAGTGCCTGGTGTCCATGCTTTTGTGAAATCCCT TCCTCTTCCATGTGAATGGGACCTGTGACTTTCTTAACCCAGAGAACACAGCAAAAATGATGTGATTTATC TGAGTCCATTGATGACATTGATTACGACTTCCCTTCACCACATTATTTAGGACTGCGTCGTAGGAGACT GGGACACATATCCACTTTGCTGGCTTGATGAAGTAAACTGCTAAGTTGAGGAAGCCCACATGGCAAGG AACTGTGGGCAGCCTTCAGCCAACAGGCAGCAAAAAGCTGAGCTCCTCGGAGCTACAGCCTCAAGGA **GCATGGCCCAGGCAAGATAAATAATGCAGGAAACTGCATATCTTCTGGTTTACATGAAGATGGAGTGC** TAATGGAAATGCCCAAAACCTTCAGAGATTGACACGCTGTCATTTTCCATTTCCATTCCTGGATCTACGGAGT ${\tt CCCGGCCATGTGGCTCGGTCCTGGGTGCTCGCTGCTGCGAGACATTAGCCCTTTAGTTATGAGCCTGT}$ GGGAACTTCAGGGGTTCCCAGTGGGGAGAGCAGTGGCAGTGGGAGGCATCTGGGGGGCCAAAGGTCAGTGGC AGGGGGTACTTCAGTATTATACAACTGCTGTGACCAGACTTGTATACTGGCCGAATATCAGTGCTGTTTGTAA TTTTTCACTTTGAGAACCAACATTAATTCCATATGAATCAAGTGTTTTGTAACTGCTATTCATTTATTCAGCAA ATATTTATTGATCATCTTCTCCATAAGATAGTGTGATAAACACAGTCATGAATAAAGTTATTTTCCACAAA A