SUPPLEMENTAL TABLES:

Supplemental Table S1: Significant differences in metabolomics analyses of stored red blood cells from blood donors
with low (20.5£1.0 kg/m2) and high (44.145.1 kg/m2) body mass index (BMI). Data were analyzed by MetaboAnalyst
and normalized (mean-centered and divided by the standard of each variable) prior to one-way ANOVA.
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Supplemental Table S2: Interactions between testosterone replacement therapy (TRT), body mass index
(BMI), and day 42 hemolysis in 18 blood donors from Vitalant’s cohort.

Hemolysis ~ BMI + TRT + BMI*TRT
B TRT p value TRT B interaction p value interaction
Storage hemolysis -0.51 0.37 0.02 0.30
Osmotic hemolysis -7.56 0.84 -0.06 0.96
Oxidative hemolysis 8.51 0.81 -0.36 0.77

Supplemental Table S3: RBC posttransfusion recovery (percentage and standard deviation, SD) stratified by
blood donor body mass index (BMI). Human leukocyte-reduced RBCs from 14 blood donors were stored for 42
days and later transfused into NSG mice as described under Supplemental Methods.

BMI (kg/m?) <25 25-29.9 >30

Time after Mean (%) SD n | Mean (%) SD n Mean (%) SD n
transfusion

10 min 44.8 10.5 3 47.2 11.5 6 34.7 7.3 5
2-h 29.5 10.6 3 30.5 8.2 6 22.0 5.2 5
4-h 35.0 11.9 3 25.1 8.7 6 24.1 7.8 5
8-h 22.1 7.0 3 18.1 54 6 15.3 4.9 5
24-h 7.3 7.6 3 4.4 4.1 6 3.8 2.9 5

Supplemental Table S4 for Figure 2: Linear regression analysis of blood donor body mass index (BMI) with
each of the three day-42 hemolysis measures and ferritin. Data derived from 13,317 blood donors who participated
in the National Heart, Lung, and Blood Institute Red Blood Cell Omics (RBC-Omics) study between 2013-2015.
Parameter estimates represent the change in each variable per each BMI unit in male and female donors. p values
obtained by multivariable linear regression.

Males Females
Measure
. Parameter
Parameter estimate P . P
estimate
Storage hemolysis 0.0026 <0.001 0.00095 0.13
Osmotic hemolysis 0.27 <0.001 0.25 <0.001
All donors

Oxidative hemolysis 0.36 <0.001 0.30 <0.001

Ferritin 1.43 <0.001 0.60 <0.001
Oxidative hemolysis 0.34 <0.001 0.26 <0.001

First-time donors
Ferritin 3.67 <0.001 1.17 <0.001




Supplemental Table S5 for Figure 3: Demographic and hemolysis data for the 15 blood donors with low and
high BMI groups (20.5+1.0 kg/m? defined as low BMI versus 44.1+5.1 kg/m? defined as high BMI). p-values
were calculated for continuous variables using rank test.

BMI low group BMI high group p-value
Sex (Males/Females) 6/9 8/7
Age (Mean=SD) 50.7+15.2 52.2+14.4 0.42
Race (White/African
American/Asian/Hispanic) 12/012/1 813272
Storage hemolysis (Mean=SD) 0.40+0.61 0.42+0.31 0.13
Osmotic hemolysis (Mean+SD) 27.6=14.5 34.4£12.5 0.22
Oxidative hemolysis (Mean+SD) 18.2+9.3 37.1£9.7 <0.001
Ferritin hemolysis (Mean=SD) 18.9+10.2 92.5+103.5 <0.001

Supplemental Figure S1 for Figure 2: Distribution of blood donor body mass index (BMI) by sex in the RBC-
Omics cohort.
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SUPPLEMENTAL METHODS:

Hemolysis assays:
Hemolysis was determined on a weekly basis in Vitalant’s cohort and on day 39-42 in RBC-Omics. In
each testing day, two aliquots (ImL each) were collected from each bag. One aliquot was used for spontaneous

storage hemolysis and the other for the stress hemolysis assays. Hemoglobin levels were determined using the

(100-HCT)XHbsypernatant

Drabkin’s method.! Spontaneous storage hemolysis was determined by . HCT is the

Hb¢otal

sample hematocrit, Hbsupematant corresponds to the levels of free hemoglobin obtained after centrifugation (1500G,
10 minutes, 18°C) measured in the supernatant, and Hbyowal refers to the total amount of sample hemoglobin before
centrifugation. The other aliquot was washed three times with phosphate-buffered saline and packed RBCs were
subjected to osmotic and oxidative hemolysis as described before.?? In brief, osmotic stress was induced by
incubating RBCs in pink test buffer (a hypotonic solution containing 70mM Bis-Tris, 25mM sodium chloride,

and 135mM glycerol; pH 6.6) at room temperature for four hours and hemolysis was calculated using

% x100, where Hbosmotic €quals the level of free hemoglobin in the supernatant after centrifugation (1500G,
total

10 minutes, 18°C) and Hbotar is the total level of hemoglobin in the sample. Oxidative hemolysis was determined

by incubating a suspension of washed RBCs with 150mM AAPH at 37°C for three hours. Percent hemolysis was

Hbaapy—HDbcontrol
Hb¢otal

calculated using x100, where Hbaapu corresponds to the free hemoglobin in treated samples

after centrifugation (1500G, 10 minutes, 18°C), Hbcontrol refers to the free hemoglobin in untreated samples, and

Hbyotal corresponds to the total amount of hemoglobin in each sample.

Quantification of RBC posttransfusion recovery in NSG mice:

Male and female (5-12 weeks old) immunodeficient NOD.Cg-Prkdc'“ 112rg™!"i//Sz] (NSG) mice* (The
Jackson Laboratory) were bred, housed and maintained in a specific pathogen free vivarium under barrier
conditions at Vitalant Research Institute (San Francisco, CA). These mice have been used for engraftment of
human hematopoietic tissues as they lack murine lymphoid cells.* The data reported in this study were from 14
blood donors (Vitalant cohort), for whom we quantified RBC posttransfusion recovery over time after infusion
into 8-10 NSG mice per donor sample. In all cases, LR-RBCs stored for 39-42 days were acclimated to room
temperature for a minimum of 30 minutes and each sample hematocrit was adjusted to 60+6% with sterile PBS
prior to transfusion. NSG mice were gently warmed under heat lamps prior to intravenous lateral tail vein injection
of 200 puL of human RBCs. Blood was collected from mice pre-injection and at 10 minutes, 2, 4, 8, and 24 hours
post infusion by tail tip excision and collection into Sarstedt Minivette tubes coated with anticoagulant
ethylenediaminetetraacetic acid. A 5 pL aliquot of this collection was promptly aliquoted and resuspended in
sterile filtered PBS with 5% mouse serum, 0.01% sodium azide and 14% citrate phosphate dextrose adenine-1

solution for staining and flow cytometry. Quantification of RBC posttransfusion recovery was determined by



flow cytometric analysis using the human-specific marker for erythrocyte membrane glycophorin A (CD235a-
phycoerythrin; Biolegend, HI264).

RBC posttransfusion recovery was determined by staining murine whole blood samples with a human-
specific marker for erythrocyte membrane glycophorin A (CD235A-phycoerythrin; Biolegend, HI264). Samples
were incubated for 30 minutes at 4°C, washed in PBS, resuspended in a 1:500 dilution of propidium iodide and
run on a BD FACS LSR II (BD Biosciences) with acquisition by BD FACSDiva software. Analysis of cytometry
data was performed on FlowJo software version 10 (FlowJo, LLC). Data normalization was generated according
to the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs).?
Baseline mouse total blood volume was estimated by multiplying mouse weight by the practical blood sample
volume value of 58.5 mL/kg. Total mouse recipient RBCs prior to transfusion was estimated by multiplying the
estimated total blood volume by the mouse pre-transfusion RBC count. The estimated expected total recovery of
human RBCs from mouse recipients after transfusion was calculated by dividing the total number of human RBCs
used for transfusion by the estimated total mouse recipient RBCs. This was set as the maximum human RBC
recovery value and the flow cytometry readings of human RBC recovery at the subsequent timepoints was a
fraction thereof. Analysis and plots were generated on Prism version 7 (GraphPad Software, San Diego, CA)
using matched two-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison post-test to

compare each group to every other group. Additional information is referenced below.6
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