
Reviewer #1 (Remarks to the Author): 

Report on the manuscript entitled "Percolation of heterogeneous flows uncovers the bottlenecks of 

infrastructure networks" by Homayoun Hamedmoghadam et al. 

The authors propose a variant of a percolation-based transportation network analysis that accounts for 

public traffic flow heterogeneity. The authors argue that their approach is superior to conventional 

percolation-based approaches to traffic analysis. As an application of the percolation of heterogeneous 

flows the authors suggest the identification of transportation bottlenecks scheme. 

The development and support of efficient, resilient and sustainable transportation infrastructure is on 

the top of the agenda in most developed and developing nations, making the subject of this study 

definitely worth the investigation, and well within the scope of Nature Communications. 

The manuscript is well written, adequately explained and presented at the level accessible not only to 

specialists but also to general readership of the journal. While the presented material is certainly 

novel, I have certain concerns about the potential impact of the findings and the conclusions made in 

the manuscript. 

1. On the conceptual level, the authors propose a demand-serving reliability index \alpha as the area 

under the unaffected demand (UD) curve. While the proposed index indeed characterizes traffic 

reliability, there are multiple possible ways to define it. One alternative way, for instance is to define 

\alpha as the area under the curve of the UD^{\tau}, where \tau>0 could be any constant exponent. 

In case of homogeneous flows and \tau = 1/2 the proposed measure would correspond to the 

proposed in earlier works size of the giant connected component. 

I am wondering if it is possible to argue that the proposed definition of \alpha is the only one or the 

best one to characterize traffic reliability. 

2. Bases on the quality attribute index the authors derive the link criticality score to highlight critical 

transportation links in the Melbourne’s bus and tram Public Transportation (PT) network. Both as a 

reader and a reviewer I am wondering if it is possible to assess the accuracy of link criticality score in 

a direct way? 

Is there a ground-truth data for the most critical transportation links? 

Can authors argue that the improvement of transportation links according to the link criticality score is 

more efficient than that according to alternative measures, say, betweenness centrality? 

On the technical level: 

3. The quality attribute q_ij depends on travel times along link ij, which are determined by congestion 

levels and should strongly depend on the network structure. 

When one performs percolation, network links are removed and travel time along each surviving link 

should be updated. Since quality attribute values are functions of these 

times, should not quality attributes be updated at each step of the percolation procedure? 

I invite authors to clarify this aspect in the main text. In case, this question has already been 

answered in previous studies, I invite the authors to provide relevant references. 

4. I invite authors to extend the analysis to cities other than Melbourne. In the current form, the 

manuscript is only analyzing traffic in one city and it is not clear how general the findings are. Tests on 

synthetic random geometric graphs only partially resolve the problem due to the uniform traffic 

patterns. 



5. When modeling random geometric graphs, the authors set the connectivity parameter of r_0 to 1.5. 

How is this parameter selected? 

In summary, the present manuscript contains interesting findings that might have significant impact 

on our understanding of transportation efficiency. Since this impact is not sufficiently well established, 

I cannot recommend the publication of the manuscript in Nature Communications in its present form. 

A careful revision of the manuscript according to my comments might make the manuscript 

publishable in the future. My recommendation stands as “revise and resubmit”. 

Reviewer #2 (Remarks to the Author): 

This study represents a very good interdisciplinary research of transportation science and network 

science. The match between traffic demand and network percolation is of great concern for traffic 

management. However, considering the complexity of large transportation networks, the lack of 

effective theories and techniques is the “pain point”. Based on real smart-card data, the authors 

applied a percolation-based method to analyze the public transportation reliability of a typical 

infrastructure network – the public transportation system in Melbourne. The authors introduced a 

demand-serving reliability (i.e., based on Unaffected Demand) which is the combination of flow 

demand and traffic percolation. Within this framework, the road affecting much the flow demand can 

be viewed as the “bottleneck”. Furthermore, the authors uncovered how the identified bottlenecks can 

improve the whole traffic. 

Percolation theory has recently been widely applied to analyze the properties of the traffic network. 

However, to the best of my knowledge, this work is original and interesting to apply in the real flow 

demand in traffic percolation. The authors’ definition of demand-serving reliability is very insightful 

and practical for traffic management. 

Based on their framework, they build up a tie between the microscopic link importance (bottlenecks) 

and the macroscopic system performance (reliability) in a simple but effective way as manifested by 

Eq. (5), which is one of their key results. Indeed, improvement of a few bottlenecks identified by their 

methods can significantly influence the global network performance, which is demonstrated by real 

data testing. It is an inteesting perspective to consider the relationship between flow distribution and 

its traffic percolation process. With implications in both model networks and real-world networks, the 

authors have demonstrated that the uniformly distributed flow network shows similar percolation 

properties to the classic percolation model. This finding can shed light on future traffic management 

strategies – like by adjusting the locations of city functional regions to generate more OD paths with 

short distance and large flow. 

Considering its novel and noteworthy findings, as well as the significant contributions it makes to the 

related fields, I believe that this paper fits perfectly the publication standard required by Nature 

Communications. 

Before publication, I would like to ask the authors to clarify some of the following points: 

(1) The authors discuss well the percolation of public transportation. In this sense, I wonder if the 

multiple paths identified by the authors between the same pair can be compared in time scale. This 



could of course influence the travel experience of each user. 

(2) Following the above question, when a given path is destroyed, can the alternative paths between 

the same OD pair match the amount of total traffic demand? Will some paths left influence the 

cascading failure effect? 

(3) In Fig. 2, authors claim that at percolation critical point, the unaffected demand is still 80%. Is this 

calculation consider the flow capacity of the giant component? 

(4) The traffic reliability alpha is found larger in weekdays than in weekends as shown in FIG. 2e. The 

authors argue that this may be due to the impact “by lower-quality links during weekends compared 

to weekdays” . Can the authors give some examples of specific roads? Because when comparing the 

spatial distribution of critical links (as shown in FIG. S8A), it looks very similar between weekdays and 

weekends to readers. 

(4) In line 70-71, the authors tell us the total flow demand of on-road PT in weekdays and weekends, 

where a big volume gap exists (470,000 - 210,000 = 260,000 > 210,000). Generally, if the flow 

demand increases so much, the network reliability culd have hard time to stay in a higher level. 

However, the results show that in weekends the network reliability is much lower than in weekdays. 

The effectiveness of the reliability measure may depend on how much the PT takes up in the whole 

on-road transportation system. Can the authors discuss and clarify this issue? 



Reviewer #1 (Remarks to the Author): 

 

Report on the manuscript entitled "Percolation of heterogeneous flows uncovers the 

bottlenecks of infrastructure networks" by Homayoun Hamedmoghadam et al. 

The authors propose a variant of a percolation-based transportation network analysis that 

accounts for public traffic flow heterogeneity. The authors argue that their approach is superior 

to conventional percolation-based approaches to traffic analysis. As an application of the 

percolation of heterogeneous flows the authors suggest the identification of transportation 

bottlenecks scheme. 

The development and support of efficient, resilient and sustainable transportation 

infrastructure is on the top of the agenda in most developed and developing nations, making 

the subject of this study definitely worth the investigation, and well within the scope of Nature 

Communications. 

The manuscript is well written, adequately explained and presented at the level accessible not 

only to specialists but also to general readership of the journal. While the presented material 

is certainly novel, I have certain concerns about the potential impact of the findings and the 

conclusions made in the manuscript. 

Response: We thank the reviewer for these nice comments and useful suggestions which 

have led to overall improvement of the manuscript, and especially helped establishing the 

impact of the study.  

---------------------------------------------------------------------------------------------------------------------- 

1. On the conceptual level, the authors propose a demand-serving reliability index \alpha as 

the area under the unaffected demand (UD) curve. While the proposed index indeed 

characterizes traffic reliability, there are multiple possible ways to define it. One alternative 

way, for instance is to define \alpha as the area under the curve of the UD^{\tau}, where \tau>0 

could be any constant exponent. In case of homogeneous flows and \tau = 1/2 the proposed 

measure would correspond to the proposed in earlier works size of the giant connected 

component. 

I am wondering if it is possible to argue that the proposed definition of \alpha is the only one 

or the best one to characterize traffic reliability. 

Response:  The reviewer is correct that defining 𝛼 as the area under the curve of 𝑈𝐷𝜏 with 

𝜏 = 1, is not the only possible approach. Different choices for 𝜏 > 0 could be used for specific 

purposes. (The notation for the parameter 𝜏 is proposed by the reviewer in their comment, and 

we continue using it in this response, although it is used to denote travel time in the 

manuscript.) As noted and mentioned by the reviewer, in the manuscript we showed that using 

𝜏 = 1/2 the existing percolation paradigm becomes a special case of 𝑈𝐷𝜏 for the restricted 

scenario where flow-demand is homogeneous. The flexibility of UD comes from the idea of 

keeping track of “connected node pairs”, but the conventional percolation keeps track of 

“connected nodes,” which is why 𝜏 turns out to be equal to 1/2 (|𝑛𝑜𝑑𝑒𝑠| ∝ |𝑛𝑜𝑑𝑒 𝑝𝑎𝑖𝑟𝑠|1 2⁄ ) 

when relating the two approaches. However, to define 𝛼 from 𝑈𝐷𝜏, we believe that our original 

choice of 𝜏 = 1 in the manuscript is the natural choice as it preserves the association between 

𝛼 and “node pairs”. This is probably the best choice leading to logical and simple relationships 

between the different variables in our theoretical framework (e.g., what we found by Eq. (5)), 

whereas any other scaling makes the relationships very complex and hard to utilize.  



Below we provide more technical details on the above points, although the reviewer could skip 

this next section without loss of continuity:  

i) Reliability 𝛼 captures how the movement of each unit of flow demand is limited by a certain 

level of congestion on the network, and if 𝜏 = 1 (as we set it in the paper), then each unit of 

flow demand will have the same weight in determining 𝛼. However, if 0 < 𝜏 < 1 (or 𝜏 > 1) then 

a unit of demand affected by higher levels of congestion will have relatively more (or less) 

weight in the aggregation (i.e., reliability 𝛼) compared to those affected by lower levels of 

congestion. This is because 𝑈𝐷𝜏(𝜌) is a monotonically decreasing function of 𝜌 (representing 

congestion level), and by taking 0 < 𝜏 < 1 (or 𝜏 > 1), the decrease in 𝑈𝐷𝜏(𝜌) becomes 

understated (or exaggerated). We believe that 𝜏 = 1 is a logical choice so that 𝛼 represents 

the average congestion level limiting (or affecting) the movement of a unit of flow demand over 

the network. 

ii) Different levels of congestion represented by link quality 𝑞 (corresponding to 𝜌 in the 

percolation process) have a linear relationship with link travel time (or velocity). Reliability 𝛼 

defined based on 𝑈𝐷𝜏 preserves this linear relationship if 𝜏 is set to unity. And this allows for 

the mathematical conditions that lead to the simple relationship between link criticality scores, 

their quality, and network’s reliability, i.e., 𝛼 = ∑ 𝑞𝑖𝑗 . 𝑠𝑖𝑗𝑒𝑖𝑗∈𝐸  (Eq. (5) in the Main Text). If 𝜏 ≠ 1, 

then the simple formula of Eq. (5) does not hold anymore. The relationship represented by Eq. 

(5) is fundamental to our framework, as it states: (loosely speaking) increasing the quality of 

a link with higher criticality score (𝑠), leads to higher improvement on reliability of the network 

(𝛼).  

Action: We have stated in the revised text that other scalings of UD can also be used in the 

definition of reliability 𝛼 (see “Methods”). We have also highlighted that our choice of 𝜏 = 1 

makes the theoretical analysis far simpler than any other option.   

----------------------------------------------------------------------------------------------------------------------- 

2. Bases on the quality attribute index the authors derive the link criticality score to highlight 

critical transportation links in the Melbourne’s bus and tram Public Transportation (PT) 

network. 

2.1 Both as a reader and a reviewer I am wondering if it is possible to assess the accuracy of 

link criticality score in a direct way?  

Response: We thank the reviewer for this excellent question, which motivated us to design a 

direct analysis of our bottleneck identification accuracy. Before we present the new analysis 

(in the “Action” section below) added to the revised manuscript, we would like to point out an 

existing analysis in our original paper which was intended to demonstrate the accuracy of link 

criticality scores, in the section “Generality of the proposed framework.” Through a controlled 

experiment, we investigated whether or not the calculated link criticality scores are consistent 

with the apparent “ground truth.” For this purpose, we used RGG networks, where, loosely 

speaking, links can be categorized into those which lie inside well-connected local 

communities and those which bridge between the communities (light- vs. dark-colored links in 

Fig. 7a). We considered different demand distributions with either mostly short-range (the 

more proximate the nodes, the higher the demand between them) or mostly long-range 

(demand is higher between distant nodes) flows. Changing the demand-distribution from 

short-range to long-range, reduces the role of congested intra-community links and increases 

the role of congested inter-community links in slowing down network flows. We calculated the 

criticality score of links with different flow-demand scenarios and observed that altering the 

distribution of the demand, changes the link criticality scores as expected; this suggests that 

the criticality score index is consistent with the ground-truth (see Fig. 7c). 



Action: We have now added a completely different and far superior accuracy-assessment 

analysis to the revised Main Text. The new analysis is performed on RGG networks with 

random link congestion and three different demand scenarios, as now explained in the section 

“Bottleneck identification.” For practicality of computations in this analysis we chose the size 

of RGG networks as 𝑛 = 100 with approximately 350 links. (For RGGs of size 𝑛 = 100 nodes 

spread over the [0, 𝐿]2 plane with 𝐿 = 10, we chose the neighborhood radius of 𝑟0 = 1.5 to 

ensure connectivity, and also have a large-enough set of links according to the RGGs’ 

expected average degree of (𝜋𝑟0
2𝑛)/𝐿2 ≈ 7.06 [arXiv:0706.1063v2].)  

In the first step, we found the “true ranking” of critical links by perturbing network links 

individually one by one, while determining each link’s effect on the network reliability. Let 𝛼 be 

the demand-serving reliability of the original network. Each time we picked a single link 𝑒𝑖𝑗 and 

after slightly increasing its quality by 𝑞𝑖𝑗 + 𝜀 (we used 𝜀 = 0.01), we calculated the resulting 

improvement 𝛼′ − 𝛼 as the true value of the link for the network’s reliability, where 𝛼′ is the 

reliability of the network after the perturbation in the link’s quality. The perturbed link quality 

was set back to its original value before calculating the improvement effect of the next link. 

Network links were then ranked in descending order of their improvement effect on network 

reliability 𝛼. We were then able to choose the 𝑘 top links in this ranking (where 𝑘 was specified 

in advance) to obtain the true network bottlenecks; we denote this bottleneck set by TR.  

To directly assess the accuracy of the proposed link “criticality score”, we compared the 

ranking of links based on Criticality Score (CS) with the true ranking (TR) of links. We also 

compared a randomly shuffled ranking (as baseline) and the ranking based on Edge 

Betweenness centrality (EB), with the true ranking. To compare each ranking with the true 

ranking, we took the set of 𝑘 top-ranked links in both rankings and counted the number of 

common links between the sets; we started by setting 𝑘 = 1 and then gradually increased it.  

Figure R1 (Fig. 4 in the revised manuscript) demonstrates the results of this experiment. Each 

curve is the result of 500 independent realizations of the RGG network with a particular 

random organization of link congestion and one of the three demand scenarios (i.e., short-

range, homogenous, and long-range flow-demand). The set of top CS bottlenecks was found 

to be almost exactly the same as the set of top true bottlenecks (TR) with 98-100% of the 

elements matching for different 𝑘 values; Fig. R1 shows the result for 𝑘 values up to 150 which 

is less than half of the network links. The EB index was unable to achieve a comparable 

accuracy to that of our proposed CS index.  

Note that the usefulness of the link criticality score index is that it can be calculated for all 

network links via efficient/scalable algorithms, e.g., our suggested modified Dijkstra’s 

algorithm (see SI Note 3). However, finding the true ranking of links is only achievable through 

impractical (especially for large networks) approaches such as the brute-force search used 

here (which requires permuting a single link’s quality by a predetermined value, calculating 

the network reliability, and repeating this for each single link on the network).  



 
Fig. R1. Accuracy assessment of link criticality score index. 

In summary, we assessed the accuracy of our proposed criticality score (𝑠) index, by 

comparing the ranking of links based on criticality scores with the true ranking. When we 

picked equal-sized sets of top links in both rankings, they matched almost exactly (98-100% 

of the elements were in common to both sets). These results are now reported in the revised 

manuscript (see the section “Bottleneck identification” and Fig. 4). 

2.2 Is there a ground-truth data for the most critical transportation links? 

Response: The best ground-truth data that we found, provide a list of the most critical red 

spots or congestion “pain points” in Melbourne’s urban road network 

[https://www.redspotsurvey.com.au/]. This data is compiled by the RACV (Royal Automotive 

Club of Victoria), which is a major public company in the Australian State of Victoria. The 

analysis is performed based on both traffic data and data from surveying users. They reported 

10 pain points (congested road locations significantly affecting traveling flows) in Melbourne’s 

network, but in fact half of these were not on a public transport corridor and thus could not be 

a part of our analysis. Among the remaining pain points, 4 out of 5 correspond to the links 

among the top 100 (<1%) bottlenecks found by our analysis.  

Action: We had mentioned the above RACV report only briefly, but we have now elaborated 

and highlighted this in the revised version of the manuscript (in section “Bottlenecks of real 

transportation networks”). 

2.3 Can authors argue that the improvement of transportation links according to the link 

criticality score is more efficient than that according to alternative measures, say, betweenness 

centrality? 

Response: In a nutshell: i) No existing index is as specialized or as comprehensive as the 

proposed link criticality score for the purpose of measuring the effect of link congestion on 

flows in demand-serving networks. The criticality score accounts for network structure, link 

congestion, and demand distribution, while others do not. Also, we have performed a good 

deal of experiments and ii) demonstrated the superior performance of criticality score for 

network improvement, both in terms of increasing the proposed network reliability 𝛼 and 

decreasing the passenger travel times. (See our section “Bottleneck amelioration” in the Main 

Text.) Finally, motivated by the reviewer’s comment we revised the manuscript and iii) directly 

showed with a new test that the criticality score index is able to accurately identify the true 

bottleneck links of networks (as presented in response to comment 2.1).  



The results in our original manuscript and the new direct assessment of accuracy, all confirm 

that improving the network through links identified by the “criticality score” is very effective and 

in particular, significantly more effective than doing so according to the well-established 

structural measure of edge betweenness centrality. 

Action: The new test (as explained in full detail in response to comment 2.1) and its results 

are now reported in the Main Text of the revised manuscript, which together with our pre-

existing tests demonstrate the superior effectiveness of the proposed bottleneck links for 

network reliability. 

----------------------------------------------------------------------------------------------------------------------- 

On the technical level: 

3. The quality attribute q_ij depends on travel times along link ij, which are determined by 

congestion levels and should strongly depend on the network structure. When one performs 

percolation, network links are removed and travel time along each surviving link should be 

updated. Since quality attribute values are functions of these times, should not quality 

attributes be updated at each step of the percolation procedure? 

I invite authors to clarify this aspect in the main text. In case, this question has already been 

answered in previous studies, I invite the authors to provide relevant references. 

We thank the reviewer for bringing this important potential source of confusion to our attention. 

We were always conscious about explaining this carefully, but now have made sure this is 

completely clarified in the revised manuscript. 

Firstly, it is important to note that in the case of on-road Public Transportation (PT) networks, 

the link quality 𝑞𝑖𝑗 on any link 𝑒𝑖𝑗 is independent of the rest of the PT network’s structure and 

the passenger flow demand and it is only determined by the level of congestion on “road 

segments” connecting node 𝑖 to node 𝑗. Nevertheless, below we explain why quality attributes 

are not updated at each step of the percolation by clarifying our usage of percolation model 

with references to previous studies, as the reviewer has asked. 

In short, the percolation process (the whole process of link removal) is applied at each 

snapshot in time to unpack and characterize the organization of different levels of congestion 

on the network, and monitor this as it changes over a day. For each snapshot, the link qualities 

correspond to a particular time 𝑡 and remain fixed during the percolation procedure. 

To clarify our percolation analysis, we may divide the common percolation-based approaches 

for analysis of physical networks into two distinct classes, based on what the percolation 

process represents/studies. The first class of percolation processes, which we briefly mention 

in the “Introduction” section, simulate node/link failure and broadly speaking, aim at studying 

network “resilience” (or “robustness”). In this class of analyses, removed links (randomly or 

according to link attributes) are deemed to have undergone complete failure, and with each 

failure occurring indeed the network has changed and this often motivates updating the state 

of surviving links for the next percolation step (which may trigger more failures); e.g., [Sci. Adv. 

2017: 3 (12) e1701079]. However, our approach belongs to the second class, where given the 

network and the state (i.e., quality) of its links at a single snapshot in time, we study the 

congestion on the network through a percolation analysis. Each link’s quality 𝑞𝑖𝑗 remains fixed 

during the whole percolation process at any snapshot in time. (Note though, over a day the 

quality of each link can vary between different snapshots in time.) Percolation process 

corresponds to the threshold 𝜌 varying in [0,1], and the process is monitored by 𝑈𝐷𝜌 which 

characterizes the way congestion is organized with respect to the distribution of flow-demand 

over a network snapshot. Comparing the network’s percolation properties, observed 



separately at different snapshots, reveals the evolution of network’s global properties over 

time (e.g., Fig. 5a,c according to the existing works and Fig. 5b,d using our proposed analysis). 

Highly respected research studies that use the same class of percolation analysis as ours, 

include [PNAS 2015: 112 (3) 669-672] and [PNAS 2019: 116 (1) 23-28], which both study 

transportation networks. Also, a study such as [PNAS 2012: 109 (8) 2825-2830] on brain 

networks is essentially studying the organization of link strength using percolation process on 

one snapshot of the brain network and belongs to this same category; the modular 

organization of link strength is being unpacked and there is no need for updating the remaining 

links when others are removed from the network.  

Action: We had already explained that we are interested in studying how the continuous 

degradation of links (e.g., due to congestion) affects network performance, as opposed to how 

complete failure of links breaks down the network. (The complete link failure is a simpler 

phenomenon, more studied in the past, and it rarely occurs in reality compared to variation in 

link congestion.) Now, we have emphasized this further and highlighted the difference 

between using the percolation to simulate link/node failures and our usage to unpack the 

structural and dynamical properties of the network at a single snapshot in time. Recent major 

works in the literature that use the same percolation paradigm as ours, are directly pointed out 

in our explanations and we explicitly mentioned why link qualities remain fixed during the 

percolation process on one network snapshot. (Important revisions regarding this comment 

appear in the “Introduction” and “Unaffected demand and network reliability” sections of the 

revised manuscript.) 

----------------------------------------------------------------------------------------------------------------------- 

4. I invite authors to extend the analysis to cities other than Melbourne. In the current form, 

the manuscript is only analyzing traffic in one city and it is not clear how general the findings 

are. Tests on synthetic random geometric graphs only partially resolve the problem due to the 

uniform traffic patterns. 

Response: This is a valid point, and we have always been aware that adding results from 

other cities helps clarify the generality of our findings, but as pervasive detailed travel records 

can be considered sensitive information, it is of course very difficult to get access to such 

information. However, this comment motivated us to persist in seeking for data of other 

networks, and fortunately our colleagues at University of Queensland kindly helped us by 

running our codes on one month of smartcard data from the city of Brisbane, Australia. We 

thank the reviewer for motivating the addition of results from another city to our manuscript, 

which we believe have enhanced the impact of this study. 

Action: We have applied our proposed percolation-based analysis on the on-road (bus) public 

transportation (PT) network of Brisbane and added the results to the revised version of the 

manuscript. The network and its passenger flow demand are derived from detailed smartcard 

data (some 15 million transaction records) collected over one month (March 2013). Brisbane’s 

bus network has an average size of 1400 (650) nodes connected via 3400 (1500) links during 

different times of a regular weekday (weekday). The network is serving the demand for about 

250,000 (70,000) passenger Origin-Destination (O-D) trips over a weekday (weekend day). 

Figure R2a shows a snapshot of the network at 8:00 a.m. on a regular weekday, where link 

colors indicate the relative velocity of transport (link quality 𝑞). We calculated the network 

reliability indicators, namely, percolation criticality 𝜌𝑐 and demand-serving reliability 𝛼, at 

different times over one month of data; see Fig. R2b,c for daily evolution of these indices 

averaged over different days, separately for weekdays and weekends.  



In summary, the observations made in the results from Brisbane were consistent with the 

findings from application of our proposed framework to Melbourne’s network. The reliability 

measure 𝛼 captured a clear pattern in daily evolution of global network properties with 

indications such as reliability declining during peak hours, which suggest that the measure is 

reflecting the actuality. But the state-of-the-art measure 𝜌𝑐 had relatively large fluctuations 

over the day, and there appeared to be no repeating pattern on a day to day comparison (see 

Fig. R2b,c). This was the same conclusion we reached from studying the Melbourne network. 

In addition, 𝛼 successfully captured clear and distinctive patterns in global network dynamics 

during weekdays and weekends (Fig. R2c). (We have also discussed the differences between 

the reliability of the PT networks of Melbourne and Brisbane at the end of the section 

“Application to public transportation networks” of the Main Text.) 

Figure R3a depicts the spatial distribution of overall link criticality score (suggested by our 

study) on Brisbane’s PT network during weekdays. The network bottlenecks found by link 

criticality score were found around urban hotspots and important travel corridors in Brisbane. 

Similar to our experiments on Melbourne’s PT network, we have simulated the amelioration 

of 2% of bottleneck links identified by different measures, namely, percolation criticality (PC), 

edge betweenness centrality (EB), demand-weighted edge betweenness centrality (WEB), 

and the proposed link criticality score (CS). Amelioration of CS bottlenecks compared to 

other competing methods, resulted in a larger reliability improvement consistently at different 

times of the day for both weekdays and weekends (see Fig. R3b,c). We have shown the new 

results in Fig. 2b and Fig. 5c,d of the Main Text and Fig. S10 of the SI, and discussed them 

in the Main Text. 

 
Fig. R2. Reliability analysis of Brisbane’s on-road public transportation (PT) network. a One snapshot 

of Brisbane’s PT network, taken at 8:00 on 1 March 2013 (weekday), with color-coded link qualities 

(𝑞𝑖𝑗). b,c Daily evolution of percolation criticality 𝜌𝑐 (b) and demand-serving reliability 𝛼 (c) of the 

network over a day. Lines show the average over different days and the shaded areas indicate the 

standard deviation from the average calculated separately over weekdays and weekends. 



 
Fig. R3. Improving network reliability, through bottleneck amelioration. a Map of overall link criticality 

scores in Brisbane. b Average network reliability (𝛼) improvement over the day, by amelioration of 

different types of bottlenecks. c Comparison between different bottleneck identification methods, in 

terms of their improvement effect on network reliability. 

----------------------------------------------------------------------------------------------------------------------- 

5. When modeling random geometric graphs, the authors set the connectivity parameter of 

r_0 to 1.5. How is this parameter selected? 

Response: We are glad that the reviewer pointed this out, and unfortunately, it appears we 

made a minor mistake by not updating the text to the correct RGG settings that corresponded 

to our latest results. The presented experiments in the section “Generality of the proposed 

framework” are performed on RGG networks of size 𝑛 = 2500 spread over the space [0, 50]2, 

and links connecting any of nodes with distance less than 𝑟0, while we had set 𝑟0 = 1.6 to 

ensure connectivity in the resulting RGGs. (The parameter 𝑟0, sometimes called 

“neighborhood radius,” essentially determines the extent to which node-pairs should be 

connected via links when generating an RGG structure, thus it directly affects the connectivity 

and average degree of these networks.) It has been shown [M. Penrose 2003: random 

geometric graphs; arXiv:cs/0702074] that there exists a critical threshold for the radius 𝑟𝑐 ≈

𝐿. √ln(𝑛)/(𝜋𝑛) for which an RGG graph with 𝑟0 > 𝑟𝑐 is asymptotically almost surely connected.  

With network size 𝑛 = 2500 spread on a square of edge-length 𝐿 =  50, we have 𝑟𝑐 ≈ 1.57. 

Thus, we chose 𝑟0 = 1.6 which almost guarantees that the resulting RGGs are connected (we 

also checked if each generated network is connected) while not being too large so that the 

network loses its structural property of having ‘bridged local communities’. 

We have added a new experiment on RGG networks of size 𝑛 = 100 with nodes spread within 

[0,10], for which the connectivity threshold is at 𝑟𝑐 ≈ 1.21 but we chose 𝑟0 = 1.5 not only to 

ensure structural connectivity but also to have the desired number of links on the network.  

Note that our experiments on RGG networks make perfect sense only if the network is 

connected, and other than that 𝑟0 should be large enough not to allow isolated nodes or 



components (or maybe not too large so that the network would become a clique), the choice 

of 𝑟0 does not change the key conclusions reached from our experiments. 

Action: We have added a clear explanation with referencing, on how we chose the value of 

𝑟0 for constructing the RGG structures in the revised manuscript. 

----------------------------------------------------------------------------------------------------------------------- 

In summary, the present manuscript contains interesting findings that might have significant 

impact on our understanding of transportation efficiency. Since this impact is not sufficiently 

well established, I cannot recommend the publication of the manuscript in Nature 

Communications in its present form. A careful revision of the manuscript according to my 

comments might make the manuscript publishable in the future. My recommendation stands 

as “revise and resubmit”. 

We have carefully revised the manuscript according to each comment and hope that it has 

reached a satisfactory level of clarity. 

----------------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------------- 

Reviewer #2 (Remarks to the Author): 

This study represents a very good interdisciplinary research of transportation science and 

network science. The match between traffic demand and network percolation is of great 

concern for traffic management. However, considering the complexity of large transportation 

networks, the lack of effective theories and techniques is the “pain point”. Based on real smart-

card data, the authors applied a percolation-based method to analyze the public transportation 

reliability of a typical infrastructure network – the public transportation system in Melbourne. 

The authors introduced a demand-serving reliability (i.e., based on Unaffected Demand) which 

is the combination of flow demand and traffic percolation. Within this framework, the road 

affecting much the flow demand can be viewed as the “bottleneck”. Furthermore, the authors 

uncovered how the identified bottlenecks can improve the whole traffic. 

Percolation theory has recently been widely applied to analyze the properties of the traffic 

network. However, to the best of my knowledge, this work is original and interesting to apply 

in the real flow demand in traffic percolation. The authors’ definition of demand-serving 

reliability is very insightful and practical for traffic management. 

Based on their framework, they build up a tie between the microscopic link importance 

(bottlenecks) and the macroscopic system performance (reliability) in a simple but effective 

way as manifested by Eq. (5), which is one of their key results. Indeed, improvement of a few 

bottlenecks identified by their methods can significantly influence the global network 

performance, which is demonstrated by real data testing. It is an interesting perspective to 

consider the relationship between flow distribution and its traffic percolation process. With 

implications in both model networks and real-world networks, the authors have demonstrated 

that the uniformly distributed flow network shows similar percolation properties to the classic 

percolation model. This finding can shed light on future traffic management strategies – like 

by adjusting the locations of city functional regions to generate more OD paths with short 

distance and large flow. 

Considering its novel and noteworthy findings, as well as the significant contributions it makes 

to the related fields, I believe that this paper fits perfectly the publication standard required by 

Nature Communications. 



We thank the reviewer for the positive and useful comments, which have led to improvement 

of the presentation and clarification of our proposed analysis. 

----------------------------------------------------------------------------------------------------------------------- 

Before publication, I would like to ask the authors to clarify some of the following points: 

 

(1) The authors discuss well the percolation of public transportation. In this sense, I wonder if 

the multiple paths identified by the authors between the same pair can be compared in time 

scale. This could of course influence the travel experience of each user. 

Response:  Our proposed analysis works with the state-of-the-art traffic percolation (as in, 

e.g., [PNAS 2015: 112 (3) 669-672] and [PNAS 2019: 116 (1) 23-28]). Involving the path travel 

times is an interesting problem and we had thought of using it to compare multiple paths 

between each origin-destination (O-D) pair. Although traffic percolation is based on “link” travel 

times, working with “path” travel times proves to be very difficult within the percolation-based 

framework. This is because after removal of a link with a certain level of congestion, looking 

at the remaining paths does not show the effect of that link’s “congestion” on travel times, at 

least not in the present model. The model would have to be significantly extended to allow for 

this, and we believe the analysis would become unwieldy. Comparing multiple paths between 

each node-pair in time scale also requires to involve the passenger route choice behavior to 

the analysis. In many ways this falls outside the scope of this paper. 

Nevertheless, we explored path travel-time where we could, specifically in the section 

“Bottleneck amelioration” but from a different direction. In that section we considered the 

shortest travel-time path as the primary path chosen by passengers between each O-D pair 

and we demonstrated how ameliorating the congestion on our identified bottlenecks (which 

reduce the conflict between flows and congestion) leads to significant reduction in travel times 

over the network.  

Action: We had already discussed the path travel time with respect to amelioration of 

bottleneck links. In the “Conclusion” section of the revised manuscript we have indicated the 

complexity of the analysis when studying travel time and why it cannot be done via existing 

percolation models, and that there is much needed work to be done in this area.  

----------------------------------------------------------------------------------------------------------------------- 

(2) Following the above question, when a given path is destroyed, can the alternative paths 

between the same OD pair match the amount of total traffic demand? Will some paths left 

influence the cascading failure effect? 

Response: We thank the reviewer for bringing to our attention that we need to clarify this point 

better in the manuscript.  

Firstly, we did not directly take into account links’ passenger capacity for a number of reasons 

(which will become clear shortly) but followed the methods of existing seminal works in the 

literature. In the Appendix A at the end of this document (the reviewer may skip those details 

without loss of continuity) we show how our work is identical at the conceptual level to the 

state-of-the-art approaches, where capacity is also not considered an issue. 

Motivated by the reviewer’s comment, however, we calculated the capacity of the network 

under percolation to check whether it could match the amount of travel demand. Here we 

define capacity as the maximum proportion of the total passenger travel demand that can be 

moved between Origin-Destination (O-D) nodes over the network of a particular time. The 

method used for calculating capacity at any value of 𝜌 is described in Appendix B (of this 



response letter) and copied in the SI as well. The calculation is based on the maximum number 

of passengers that can be carried on network links according to the number of Public 

Transportation (PT) vehicles running on each link and the maximum capacity of these 

vehicles. We plot the capacity in red in Fig. R4; the figure shows the same percolation process 

as in Fig. 2d which is performed on a network snapshot at 8:00 a.m. on a weekday. All units 

are relative to the total flow-demand on the network when no link is deleted yet. (In other 

words, the reference total flow demand is the unaffected demand when 𝜌 = 0, i.e., 𝑈𝐷(0).) 

According to our scheme, when 𝜌 = 0, the unaffected demand on the network is 𝑈𝐷(0) = 1 

while the actual passenger capacity of the network (that we have calculated according to 

Appendix B) is 𝐶(0) = 2.75 larger and thus not at all limiting. Note that the total capacity (red) 

decreases with 𝜌 because there are less pathways to take passengers as links with quality 

below 𝜌 (as some have been deleted). 

The results in Fig.R4 show that the flow-capacity of real PT networks (Melbourne and 

Brisbane) during our percolation procedures always remains above the amount of flow that 

corresponds to the UD; the network under percolation can always handle 1.5 to 3 times the 

proportion 𝑈𝐷(𝜌) of the total demand on the network. This means that there is always sufficient 

capacity for carrying the volume of flows on alternative pathways between connected O-D 

pairs. The figure (Fig. R4) portrays the capacity of Melbourne’s PT network at the morning 

rush-hour on a weekday where the demand is at its maximum.  

 

 
Fig. R4. Percolation process on a snapshot of the Melbourne’s PT network monitored by 𝑈𝐷(𝜌) 

(same as in Fig. 2d of the Main Text), and additionally including the capacity 𝐶(𝜌)  plotted in red. 

See the SI Note 2 of the revised manuscript for description and the result of these calculations 

and discussion on the capacity of the links in reliability analysis.  

We would like to add an important point, as to why we believe that our proposed framework 

provides a valuable analysis without considering whether or not the remaining pathway can 

match the amount of flow between O-D pairs. In on-road public transportation networks which 

are the focus of our real-world analysis, link passenger capacities are determined by the 

capacity of the bus/tram vehicles and the number of services which are almost independent 

of level of congestion on network links. If a PT vehicle is upgraded to have more capacity or 

even if a new PT service is added to the network, the congestion on roads remains fixed (or 

barely changes) but this increases the passenger capacity of all the links that the vehicle runs 

through. So, our proposed UD can be used to pinpoint the issues on the network such as 

critical bottleneck links which if improved effectively minimize the conflict between passenger 

flows and congestion, but then if there are any shortcomings related to passenger capacity of 

links they can be attended completely in parallel or independently (as mentioned, for example, 

by adding a PT service to the link or upgrading the PT vehicles to have more capacity). 



On the cascade failure effect. The reviewer has asked about the cascade failure effect. Note 

that our percolation model is similar to the state-of-the-art traffic percolation framework (e.g., 

in [PNAS 2015: 112 (3) 669-672]), where the percolation process is performed on “a single 

network snapshot in time” to study the organization of congestion rather than simulating 

failures and the network’s reaction to failures over time. Nevertheless, in on-road public 

transportation networks, even if some links fail completely on the actual network, the addition 

of passengers to the functional links does not trigger new failures because even if passengers 

waiting for a service grow more than the capacity of a bus or tram, they will be carried by the 

next vehicle(s) or worst case will not be carried at all. (Unlike road traffic networks, additional 

load does not cause the remaining services/links in on-road PT networks to fail.)  

Action: We have reported the results presented in the above response, with more technical 

details on the capacity calculations in the SI Note 2 of the revised manuscript. The new section 

also describes a possible capacity-aware extension of our analysis and its implications.  

----------------------------------------------------------------------------------------------------------------------- 

(3) In Fig. 2, authors claim that at percolation critical point, the unaffected demand is still 

80%. Is this calculation consider the flow capacity of the giant component? 

Response: If this comment is concerned with capacity of the network links for unaffected 

demand (UD) at percolation critical point, the response to the previous comment and Fig. R4 

(where criticality is marked by a dashed gray line) covers this as well. However, we think that 

the reviewer is concerned with how flows on the giant component (GC) relate to that 80% of 

the total demand which remains unaffected after the percolation criticality. For simplicity, let 

us imagine a network for which the total demand is fully contained on the GC (thus UD=100%) 

with this going through no change until the percolation critical point. And at the percolation 

threshold 𝜌𝑐, the GC suddenly fragments into multiple isolated components and UD drops to 

80%. The UD tells us that 20% of the network demand was between origin-destination node 

pairs for which the two ends were placed on different isolated components (which emerged 

as a result of GC fragmentation). In other words, this 80% of the demand includes the flows 

which were on the GC right before the criticality and also can remain on the isolated 

components resulting from fragmentation of the GC, but the previous flows from one isolated 

component to another isolated component are not counted in this (80%) proportion of the 

demand.  

Action: We have now carefully revised the explanations regarding the calculation of UD 

(especially those directly related to the example in Fig. 2d) and have made sure of their clarity. 

----------------------------------------------------------------------------------------------------------------------- 

(4) The traffic reliability alpha is found larger in weekdays than in weekends as shown in FIG. 

2e. The authors argue that this may be due to the impact “by lower-quality links during 

weekends compared to weekdays”. Can the authors give some examples of specific roads? 

Because when comparing the spatial distribution of critical links (as shown in FIG. S8A), it 

looks very similar between weekdays and weekends to readers. 

Response: We have explained this from a different perspective which we believed has 

clarified the point in the revised manuscript, and below is our explanation in response to the 

comment. 

The on-road (bus/tram) PT system in Melbourne is planned differently for weekdays as 

compared to weekends. In particular, there are many more services during weekdays and as 

a result not only does the system have a much higher capacity, but the network representation 

of the system has many more links compared to the weekends’ network. The lower reliability 

of Melbourne’s network during weekends is thus mainly attributed to the network having much 



lower link density (weaker connectivity) due to the greatly reduced number of services, 

compared to weekdays (the network is fine-tuned for weekday demand). As seen in Fig. R5, 

the number of links increases fourfold from weekend to weekday.   

In the argument quoted in the comment, we are merely explaining how UD measurement 

views the difference between weekdays and weekends network. To describe the difference 

from UD’s point of view we had it written: “a larger proportion of the demand has to pass 

through lower-quality links during weekends compared to weekdays.” This means that if we 

take lower-quality links (highly congested links, say, 𝑞𝑖𝑗 < 0.3) on two networks, one from 

weekdays and another from weekends, the demand distribution on the two networks is such 

that a larger proportion of the flow-demand has to pass through the lower-quality links on the 

weekend networks. So, it was not meant that some specific links are doing worse over the 

weekend, but more about how the demand and congestion are distributed with respect to one 

another.  

As the reviewer asked for a specific example, we made a check on Melbourne’s network data 

and observed that: a larger proportion of the flow-demand is directed to the congested central 

business district (CBD) of Melbourne over the weekends. We can explain why this is 

consistent with what we are arguing about the difference between the weekdays and 

weekends. Melbourne is a monocentric city with almost a square-shaped (2 km2) CBD in the 

middle of the metropolitan area while congestion is concentrated inside and around this area 

most of the times. We approximated the CBD area by a circle with the radius of 1 km centered 

at a point in the middle of this CBD area. The proportion of the network flow-demand that 

originates from outside this circle and ends inside it is approximately 13% at weekday rush-

hour (8:00 AM) but this proportion is larger and between 18-19% at different times over a 

regular weekend.  

It is worth mentioning that in Fig. 8A the spatial distribution of critical links is shown for all links 

appearing on networks of weekdays and weekends at different times. As both weekdays’ and 

weekends’ maps show an immensely large number of links with concentration of critical links 

around the CBD area, it is difficult to differentiate the details, but a closer look shows i) the 

higher link density of the network on weekdays and ii) the higher criticality of links inside, north, 

and east of the CBD area on weekends. Both these factors along with the different demand 

distribution have a role in lowering the reliability of the Melbourne weekend network. Please 

also refer to the next response (for comment (5)) for further elaboration. 

Action: In the section “Application to public transportation networks” of the Main Text, using 

the above explanations, we have clarified that the network structures are very different 

between weekdays and weekends, and presented the main factors that lead to lower reliability 

of weekends’ networks.  

----------------------------------------------------------------------------------------------------------------------- 

(5) In line 70-71, the authors tell us the total flow demand of on-road PT in weekdays and 

weekends, where a big volume gap exists (470,000 - 210,000 = 260,000 > 210,000). 

Generally, if the flow demand increases so much, the network reliability could have hard time 

to stay in a higher level. However, the results show that in weekends the network reliability is 

much lower than in weekdays. The effectiveness of the reliability measure may depend on 

how much the PT takes up in the whole on-road transportation system. Can the authors 

discuss and clarify this issue? 

Response: We thank the reviewer again for the careful examination of the manuscript. The 

answer to this is actually straightforward. The difference between the passenger volume is of 

course true, but as previously mentioned, the on-road (bus/tram) PT system in Melbourne is 



planned extremely differently between weekdays and weekends. In particular, there are many 

more services during weekdays, and as a result not only does the system have a much higher 

capacity, but the network representation of the system has many more links compared to the 

weekends’ network. As seen in Fig. R5, the number of links increases fourfold from weekend 

to weekday. The explains why weekday networks can handle the increase in passenger 

volume (as the reviewer mentioned by 470,000 - 210,000 = 260,000 trips). (Of course, this 

suggests that the network planners had considered the discrepancy between the passenger 

volumes and allocated much more resources to run the network on weekdays.)  

Regarding the reliability of the network, as we have mentioned, weekday networks have much 

higher link density, making the structure of the network stronger from a connectivity point of 

view; see Fig. S7B in the SI showing the larger average degree of weekday networks. Higher 

link density on weekdays means the availability of more paths between nodes; this means that 

if a path is ruptured by highly congested links generally it is more likely that an alternative path 

exists. Lower link density of the network on weekends, and simultaneously a larger proportion 

of the passengers to travel to/from hotspot areas with more congestion, results in more conflict 

between flows and congestion (which is what our reliability index 𝛼 measures) and thus leads 

to a lower 𝛼. Note that the reliability 𝛼 can be useful to compare different networks. For 

example, lower overall reliability 𝛼 of Melbourne’s PT network during weekends shows that 

there is more room for improvement in weekends’ networks compared to weekdays’ by, say, 

separating bus lanes on weekends’ network bottleneck links. (It is worth mentioning that we 

added the same analysis on bus network of Brisbane to the paper, and there although the 

daily evolution of reliability 𝛼 differed between weekend and weekdays, yet unlike Melbourne, 

𝛼 was evolving within approximately the same range of values in both weekdays and 

weekends.)  

 
Fig. R5. Average number of links |𝐸| versus time 𝑡 in weekday and weekday networks in Melbourne. 

Action: We have added Fig. R5 as a subplot to Fig. S7 in the SI and discussed it in the Main 

Text to clarify the extremely different PT network design of weekdays versus weekends in 

Melbourne. We have now highlighted the extreme difference in link density (connectivity) and 

number of links (capacity) of Melbourne’s PT networks between weekdays and weekends, 

which allows the weekday network to contain the large passenger volume and even helping 

the reliability of the network by strengthening the structure from a connectivity perspective 

(see the section “Application to public transportation networks”). 

 

 

 



Appendix  

A. Similarity of our approach to well-known traffic percolation analyses in terms of 

independence from capacity. Our approach is similar to that found in state-of-the-art traffic 

percolation analyses, e.g., [PNAS 2015: 112 (3) 669-672] and [PNAS 2019: 116 (1) 23-28], 

firstly, in the sense that the whole process (of the percolation simulation) is performed on the 

network at a single “snapshot” in time with all links being actually functional but at different 

congestion levels. Here, percolation can be viewed as a “hypothetical” link removal process 

which unpacks the organization of congestion on network structure. Secondly, this type of 

analysis does not pay attention to the load and capacity of links, and as a result the analysis 

does not conclude anything about the problems with capacity in the network. Loosely 

speaking, following the above principles the existing traffic percolation ([PNAS 2015: 112 (3) 

669-672]) studies the relative speed (inverse of congestion level) at which “an individual 

passenger” can travel most (giant component) of the network. At a fundamental level, our 

framework follows all the above principles, but in addition, considers that “an individual 

passenger” is more likely to travel between Origin-Destination (O-D) points with higher 

demand; the likelihood of a trip between different O-D points is in proportion to the distribution 

of the demand over the network. So, in short, both our proposed framework and the well-

established traffic percolation analyses (referenced above) unpack the organization of 

congestion on one network snapshot and do not check for capacity problems. They both do 

not conclude anything about capacity issues but can pinpoint the problems with organization 

of congestion over the network structure. 

B. Calculating the maximum flow-capacity of a demand-serving network. Using the 

notation of the manuscript, We assumed a maximum capacity of 50 passengers per bus/tram 

(conservative choice) to assign a flow-capacity to each network link, and then at each 

threshold 𝜌 in the percolation process we approximated the capacity of the subnetwork 𝐺𝜌 by 

solving a “maximum concurrent multicommodity flow” problem using Fleischer’s algorithm 

[SIAM J. Discrete Math 2000: 13 (4) 505-520]. To explain in short how the capacity is 

calculated here, note that the important implication of the above the problem is considering 

the relative amount of demand between each pair of nodes and that they should be served 

concurrently. Now, take a very small 𝜆 (close to zero) so that the network has the capacity for 

concurrent movement of 𝜆. 𝑟𝑜𝑑
𝜌

. 𝑓𝑜𝑑 passengers between all (𝑜, 𝑑) node-pairs. For any 

subnetwork 𝐺𝜌 (𝜌 > 0) during the percolation, Fleischer’s algorithm gradually increases 𝜆 to 

find the largest possible 𝜆 for which simultaneous movement of 𝜆. 𝑟𝑜𝑑
𝜌

. 𝑓𝑜𝑑 units of flow between 

all (𝑜, 𝑑) pairs is possible considering the capacity of network links; let us denote the maximum 

value of 𝜆 found by the algorithm as 𝜆𝑚𝑎𝑥(𝜌). If 𝜆𝑚𝑎𝑥(𝜌) ≥ 1 it means that the network at 

threshold 𝜌 has the capacity for the demand between all pairs that are still reachable, 

otherwise the network can accommodate the proportion 𝜆𝑚𝑎𝑥(𝜌) of that demand. Maximum 

concurrent flow-capacity of a subnetwork 𝐺𝜌, normalized by the total demand on the actual 

network 𝐺0 can be calculated as 𝐶(𝜌) = 𝜆𝑚𝑎𝑥(𝜌). 𝑈𝐷(𝜌). 

If a demand-serving network functions close to its flow-capacity and one wants to study the 

problems with capacity of the network in addition to the conflict between flows and congestion, 

then, our definition of 𝑈𝐷 can be extended to 𝑈𝐷𝑐(𝜌) = 𝑚𝑖𝑛{1, 𝜆𝑚𝑎𝑥(𝜌)}. 𝑈𝐷(𝜌). The new 

capacity-aware unaffected demand 𝑈𝐷𝑐(𝜌), monitors the proportion of the total demand that 

can be “accommodated” between O-D pairs only on links with quality above the threshold 𝜌; 

during the percolation always 𝑈𝐷𝑐(𝜌) ≤ 𝑈𝐷(𝜌), and 𝑈𝐷𝑐(𝜌) < 𝑈𝐷(𝜌) if O-D paths on 𝐺𝜌 

cannot match the remaining demand over the subnetwork. Accordingly, the reliability measure 

𝛼 can be extended to capacity-aware reliability 𝛼𝑐 defined as the area under the curve of 

𝑈𝐷𝑐(𝜌) over 𝜌 ∈ [0,1]. 



Reviewer #1 (Remarks to the Author): 

My concerns were addressed in full in the revised version of the manuscript and now I can 

conditionally recommend the manuscript for publication. 

I note that the manuscript has undergone substantial changes, one which is related to the inclusion of 

a new city into the analysis. As a result, some changes were made in the main text, figures, and figure 

captions. I invite authors to carefully check the consistency of the manuscript wrt to these changes. In 

particular, the inclusion of Brisbane led to the addition of panel b into Fig.2. The caption of Fig.2, 

however, was not properly updated, some references to figure panels from the legend were not 

updated. Also, it is not clear which city panels (c) and (d) correspond to. 

Reviewer #2 (Remarks to the Author): 

I read carefully the authors' response letter to my comments and their revised manuscript and I highly 

believe that the authors answered all my concerns and the current version of the manuscript is 

suitable for publishing in Nature Communication.



Reviewer #1 (Remarks to the Author): 

My concerns were addressed in full in the revised version of the manuscript and now I can 

conditionally recommend the manuscript for publication. 

I note that the manuscript has undergone substantial changes, one which is related to the inclusion 

of a new city into the analysis. As a result, some changes were made in the main text, figures, and 

figure captions. I invite authors to carefully check the consistency of the manuscript wrt to these 

changes. In particular, the inclusion of Brisbane led to the addition of panel b into Fig.2. The caption 

of Fig.2, however, was not properly updated, some references to figure panels from the legend were 

not updated. Also, it is not clear which city panels (c) and (d) correspond to. 

Authors’ response: We thank the reviewer for their careful examination of the manuscript. We have 

fixed the typo in the caption of Fig. 2 (at some point subfigure b was called instead of subfigure c). 

Also, we revised the caption of Fig. 2 to make it clearer and directly mentioned that Fig. 2c,d 

correspond to the Melbourne’s network visualized in Fig. 2a. We have carefully checked and made 

sure of the consistency of the manuscript with respect to the changes made during revision. 

----------------------------------------------------------------------------------------------------------------------------------- 

Reviewer #2 (Remarks to the Author): 

I read carefully the authors' response letter to my comments and their revised manuscript and I 

highly believe that the authors answered all my concerns and the current version of the manuscript 

is suitable for publishing in Nature Communication. 

Authors’ response: We are pleased that all reviewer’s concerns are addressed. 


