
Reviewers' comments:

Reviewer #1 (Remarks to the Author): 

The present manuscript by Wang et al. developed a single-cell multiomics sequencing technology 

(scNOMeRe-seq) that enables profiling of genome-wide chromatin accessibility, DNA methylation 

and RNA expression in the same individual cell. By applying this method, the authors studied the 

global dynamics of different molecular layers and their associations in mouse preimplantation 

embryos. Based on a comprehensive amount of data and detailed analysis, this paper deciphers a 

single-cell triple-omics map of chromatin accessibility, DNA methylation and RNA expression 

during mouse preimplantation development and provides many specific and novel insights into the 

understanding of epigenetic regulation in early embryos. The dataset would be of interest to others 

in the community, whereas, its weak points are the lack of finding the specific TFs/CREs/Met and 

the largely confirmatory nature of the results. It will substantially improve the manuscript if more 

analysis results of the datasets and validation work can be presented. Below please find my 

specific points that I feel should be addressed prior to publication. 

1. This manuscript reported the method “scNOMeRe-seq” which combined scNOMe-seq and MATQ-

seq, the authors should demonstrate the strength of this method compared with other similar 

method e.g., scNMT-seq (doi: 10.1038/s41467-018-03149-4). Besides, more evaluation and 

comparison including chromatin accessibility and methylation should be presented to support this 

method a valid and reproducible approach. For example, methylation coverage, whether the 

accessibility data affected by endogenous GpC methylation, Met and Acc profiles at DNase 

hypersensitive sites etc. 

2. Extended Data Fig. 1d showed better gene body coverage of scNOMeRe-seq data than smart-

seq/smart-seq2, does it benefit this early embryo study? Could the authors please show some 

cases? 

3. Line 84-88, the authors reported the DNA data of scNOMeRe-seq showed better genome 

coverages than those in scCOOL-seq, is there any normalization? There are several parameters 

impacting the genome coverage e.g., sequencing depth. 

4. It is not surprising that PG blastomeres showed delayed development. It should be investigated 

further e.g., what the differences between PG embryos and normal embryos with integrative 

information e.g., specific region of Acc, Met and differential regulators. 

5. About Acc clustering (Line 111-129, Extended Data Fig. 3), have the authors tried K-nearest 

neighbor (KNN) based clustering? The authors state that the cluster_2 (higher Acc level) probably 

linked to DNA duplication, can the authors exclude this results reflect an enzyme-, PCR- or 

sequencing-derived artefact? Besides the NDRs, it would be more convincing to check whether 

RNA and Met data in cluster_2 also showed evidences to support this point since this is an 

integrated data with multi-omics layers. 

6. It is unclear to me why the Acc clustering was quite well-organized with the respective to the 

cell stage whereas Met and RNA clustering showed relatively mixed (Fig. 1d and Extended Data 

Fig. 2g). 

7. How about the open chromatin accessible regions gained during development, and what about 

those lost ones? What is the correlation among these gained and lost Acc with Met and RNA data? 

8. It is good to see the reconstruction of genetic lineages in mouse early embryos using single-cell 

Met datasets referred to a published method, however, besides the corrections and patterns, it 

would be also interesting to see the distinct molecular features (each layer) of daughter cells 

originated from different mother cell. Moreover, it would be more convincing to have more 

blastomeres to validate. 

9. The statement “Moreover, the correlations between blastomeres from the same grandmother 

cells were higher than those of blastomeres from different grandmother cells in 8-cell embryos 

(Fig. 2h).” is not supported by Fig. 2h, at least as presented. 

10. The statement in line 263 “Considering the global decreases in Acc during the ZGA process”, 

are there any figures to support this? It has been reported distinct regulatory patterns during ZGA 

(DOI: 10.1038/s41467-018-08244-0), the authors should double check this statement. 

11. It has been reported that many TFs important in mouse preimplantation embryos, for 

example, Hippo/Yap1, Nr5a2 and Rarg are important in the lineage segregation of the ICM and the 

TE in the mouse. The authors should investigate more putative TFs based on this multi-omics 



dataset, and also further check whether their binding motifs enriched in any accessible regions 

which showed high correlation with other omics layers. Besides mouse, there are also many 

human early embryo studies, what kind of species differences in this important development 

process need further investigation based on this interesting dataset. 

12. In Fig. 5i, several important TFs e.g., Klf5, Klf6 in group IV stated as showing no difference in 

activity but higher expression level in ICM cells, however, this statement was not supported by Fig. 

5i, at least as presented. There is a typo in the y-axis label in Fig. 5i. 

13. Will these triple layers of omics data help provide more accurate descriptions/definitions of 

“single-cell state”? 

Reviewer #2 (Remarks to the Author): 

The authors reported a single-cell multi-omics technology (scNOMeRe-seq) that enabled profiling 

of mouse preimplantation embryo cells for genome-wide chromatin accessibility, DNA methylation 

and RNA expression. They applied this new platform and analyzed the global dynamics of 

epigenetic molecular layers. The authors constructed a zygotic genome activation (ZGA)-

associated regulatory network and revealed coordination among multiple epigenetic layers, 

transcription factors (TFs) and repeat elements that instruct the proper ZGA process. The analysis 

also revealed the partial ZGA and abnormal development of PG embryos, the parental specific 

allelic gene expression and epigenetic profiles, and enabled reconstruction of genetic lineages that 

reveals the source of heterogeneity in early embryos. Finally, they investigated the candidate TFs 

responsible for the establishment of differential regulatory networks in the ICM and the TE 

lineages. 

In summary, this work is expected to further facilitate the single cell genomics and multi-omics 

research field and to improve the fundamental understanding of epigenetic regulation in early 

embryos. 

Minor points: 

1. Various single-cell epigenomic methods have been developed in the past several years to profile 

epigenetic molecular layers, providing opportunities to explore the associations among molecular 

regulatory layers. 

What are the major advantages and disadvantages of scNOMeRe-seq compared with the author's 

previous technologies including the one mentioned in the manuscript – scCOOL-seq, and with 

other single-cell multi-omics sequencing technologies (eg. scTrio-seq, scNMT-seq, scNOMe-seq, 

etc.)? 

2. Fig. 2h: The manuscript states that "the correlations in Met levels between blastomeres from 

the same mother cells were higher in 8-cell embryos than in 4-cell and late 4-cell embryos". The 

authors need to provide proper statistics of these analyses including p-value. 

3. Fig. 3c /3h. More details about determining paternal alleles and maternal alleles are needed, 

assuming that these embryos are from several crosses. 

4. Fig. 3h. The authors state that "the correlations between maternal Met and Expr at gene body 

regions were clearly weaker in nonmaternal genes than in maternal genes". The authors should 

provide p-value and proper statistics. 

5. Fig. 4f. "Klf4, Nkx3-2, Nr5a2 and Rarg showed high TF activity and high expression levels in 2-

cell embryos compared to zygotes". It seems that the expression of Klf4, Nkx3-2, Nr5a2 in 2C-

cells is similar to in the zygotes. It may be better to use Z-score, instead of TPM. 

6. Fig. 5c/d: “Notably, all of the known enhancers for three key ICM/TE TFs (Pou5f1, Nanog, and 

Cdx2) that we analyzed were revealed to be present in preimplantation embryos or in embryonic 

stem cells, confirming that the CREs identified by our correlation analysis could cover known active 



enhancers ". The correlation coefficient(r) of the expression level of Pou5f1 and chromatin 

accessibility of positive-correlated CREs labelled in (c) is low(0.35)? 

7. The authors discover that Klf4 could be a maternal factor and have important functions in ZGA. 

They can design experiments to verify it. Similarly, for the newly identified TFs that affect the 

ICM/TE separation, the author can also do experimental verification. These validation results will 

provide further supports to using the cNOMeRe-seq. 

Reviewer #3 (Remarks to the Author): 

This manuscript is entitled "Single-cell multiomics sequencing reveals the functional regulatory 

landscape of early embryos." The manuscript describes a series of experiments to reveal the 

profiles of genome-wide chromatin accessibility, DNA methylation and RNA expression in the same 

individual cells of the embryo through to blastocyst stage. Several comments are generated by 

review of the manuscript: 

1) The manuscript would benefit from an introductory figure either in the main text or 

supplementary data that depicts the experimental design, embryo numbers and progression of 

experiments. 

2) Embryo numbers for different experiments should be clearly indicated in both the experimental 

methods/design and the figure legends. 

3) A figure depicting a model that derives from the data as a summary figure would enhance the 

manuscript greatly. 

Overall, the manuscript is well written and the data are intriguing. It is notable, however, that the 

testing of the findings via use of inhibitors or loss-of-function or gain-of-function genetics has not 

been incorporated into the manuscript to provide causation proof. Thus, the manuscript largely 

correlates molecular changes with development and does not provide further substantiation. 

Nonetheless, the experiments are illuminating and provide a foundation of data for further 

exploration and generation of hypotheses. 
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The point-by-point responses: 

We thank the reviewers for their comments. Below are our point-by-point responses. The reviewers' 

comments are in plain text and our responses are in blue colored. The cross references to the manuscript 

are bold and underlined. (Line numbers mentioned in the responses may not coincide with the original 

line numbers.)  

 

Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The present manuscript by Wang et al. developed a single-cell multiomics sequencing technology 

(scNOMeRe-seq) that enables profiling of genome-wide chromatin accessibility, DNA methylation 

and RNA expression in the same individual cell. By applying this method, the authors studied the 

global dynamics of different molecular layers and their associations in mouse preimplantation 

embryos. Based on a comprehensive amount of data and detailed analysis, this paper deciphers a 

single-cell triple-omics map of chromatin accessibility, DNA methylation and RNA expression during 

mouse preimplantation development and provides many specific and novel insights into the 

understanding of epigenetic regulation in early embryos. The dataset would be of interest to others 

in the community, whereas, its weak points are the lack of finding the specific TFs/CREs/Met and 

the largely confirmatory nature of the results. It will substantially improve the manuscript if more 

analysis results of the datasets and validation work can be presented. Below please find my specific 

points that I feel should be addressed prior to publication.  

 

1. This manuscript reported the method “scNOMeRe-seq” which combined scNOMe-seq and MATQ-

seq, the authors should demonstrate the strength of this method compared with other similar 

method e.g., scNMT-seq (doi: 10.1038/s41467-018-03149-4). Besides, more evaluation and 

comparison including chromatin accessibility and methylation should be presented to support this 

method a valid and reproducible approach. For example, methylation coverage, whether the 

accessibility data affected by endogenous GpC methylation, Met and Acc profiles at DNase 

hypersensitive sites etc.  
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Response: 

We thank the Reviewer for the constructive suggestions. We have added more comparisons between 

our method with other similar methods to more clearly demonstrate the strength of our method (revised 

Extended Data Fig. 1). For the RNA data, we compared our method with Smart-seq2 (published single 

omics of mouse early embryos data) and scNMT-seq (employed Smart-seq2 to detect transcriptome of 

mouse embryonic stem cell data)(Clark et al., 2018, Nat Commun; Deng et al., 2014, Science). The 

results showed that our method could detect more genes with high accuracy and reproducibility and had 

better gene body coverage (Extended Data Fig. 1h). For the DNA data, our method together with 

published scNMT-seq and scCOOL-seq are all derived from NOMe-seq method, which used GpC 

methylase treatment combined with bisulfate sequencing to assess the DNA methylome (the 

methylation level of WCG sites) and genome wide chromatin accessibility (the methylation level of 

GCH sites)(Clark et al., 2018, Nat Commun; Guo et al., 2017, Cell Res; Kelly et al., 2012, Genome 

Res). The results showed that our method could simultaneously detect over 15% genomic WCG/GCH 

sites (WCG: 3.49 million sites, 15.8% of genomic coverage; GCH: 31.0 million sites, 15.5% of genomic 

coverage on average per cell) at around 3× sequencing depth with improved capture efficiency 

compared with scNMT-seq and scCOOL-seq (Extended Data Fig. 1e)(Clark et al., 2018, Nat Commun; 

Guo et al., 2017, Cell Res). In order to support this method a valid and reproducible approach, we 

previously showed that great fraction of NDRs identified in our method was overlapped with published 

defined open chromatin in early embryos at each corresponding stage (liDNase-seq, ATAC-seq and 

scCOOL-seq) (Extended Data Fig. 3f) (Guo et al., 2017, Cell Res; Lu et al., 2016, Cell; Wu et al., 2016, 

Nature). Following the Reviewer’s suggestion, we further calculated the chromatin accessibility and 

DNA methylation level around published DHSs/open regions (Lu et al., 2016, Cell; Wu et al., 2016, 

Nature). The results showed a high GCH and low WCG methylation level at the previously defined 

DHSs and open chromatin regions (Extended Data Fig. 1d), further supporting our method a valid and 

reproducible approach. We have modified our manuscript in Line 83-90 of revised manuscript, “The 

DNA data showed that our method could simultaneously detect over 15% genomic WCG/GCH 

sites (WCG 3.49 million, 15.8%; GCH 31.0 million, 15.5% on average per cell at around 3× 

sequencing depth) with improved capture efficiency compared with single-cell nucleosome, 

methylation and transcription sequencing (scNMT-seq) and single-cell chromatin overall omic-

scale landscape sequencing (scCOOL-seq) (Extended Data Fig. 1e)4,23. Moreover, the DNA data 
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showed a high GCH and low WCG methylation level at the previously defined DNase 

hypersensitive sites and open chromatin, supporting our method a valid and reproducible 

approach (Extended Data Fig. 1d) 6,10.” 

 

The assessment of chromatin accessibility with GCH methylation in NOMe-seq has been fully validated 

and well accepted (Clark et al., 2018, Nat Commun; Guo et al., 2017, Cell Res; Kelly et al., 2012, 

Genome Res). To further evaluate whether the accessibility data affected by endogenous GpC 

methylation in this study, we have calculated the methylation level of GCH sites in the scBS-seq data 

(without GpC methylase treatment, obtained from FITC-microinjected embryos) and scNOMeRe-seq 

data (with GpC methylase treatment) (Fig. R1). Clearly, the GCH methylation level of scBS-seq 

samples (consider as endogenous GCH level) is less than 1% and extremely lower than that of 

scNOMeRe-seq samples (Fig. R1), supporting that the endogenous GCH methylation would not affect 

the chromatin accessibility assessment. 

 

 
Figure R1. Box plot showing the methylation level of GCH sites in the scBS-seq data (without GpC methylase) and the 

DNA part of scNOMeRe-seq data (with GpC methylase). Mean ± SD are shown. 

 

2. Extended Data Fig. 1d showed better gene body coverage of scNOMeRe-seq data than smart-

seq/smart-seq2, does it benefit this early embryo study? Could the authors please show some 

cases?  

Response: 

We thank the Reviewer for the comment. The gene body was more evenly detected by our method (used 

MATQ-seq for RNA profiling in scNOMeRe-seq) than the Smart-seq2 method, consistent with the 
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reported MATQ-seq method (Sheng et al., 2017, Nature methods). In principle, a better gene body 

coverage could contribute a more accurate evaluation of the expression level (Hendrickson et al., 2017, 

Nat Genet). The accurate calculation of gene expression level is fundamentally important for this study, 

benefiting our exploration of the interplay between transcriptome with different epigenetic molecular 

layers. Moreover, the better gene body coverage may also contribute to detect more genes compared to 

other methods (as shown in our revised Extended Data Fig. 1h).    

 

3. Line 84-88, the authors reported the DNA data of scNOMeRe-seq showed better genome 

coverages than those in scCOOL-seq, is there any normalization? There are several parameters 

impacting the genome coverage e.g., sequencing depth.  

Response: 

We thank the Reviewer for the suggestion. As suggested, we have added the results of sequencing depth 

normalized genome coverage of our DNA data in the revised Extended Data Fig. 1e (please also see 

our response to the Question 1). The results showed that our method could simultaneously detect over 

15% genomic WCG/GCH sites (WCG: 3.49 million sites, 15.8% of genomic coverage; GCH: 31.0 

million sites, 15.5% of genomic coverage on average per cell) at around 3× sequencing depth with 

improved capture efficiency compared with scNMT-seq and scCOOL-seq (Extended Data Fig. 

1e)(Clark et al., 2018, Nat Commun; Guo et al., 2017, Cell Res). 

 

4. It is not surprising that PG blastomeres showed delayed development. It should be investigated 

further e.g., what the differences between PG embryos and normal embryos with integrative 

information e.g., specific region of Acc, Met and differential regulators.  

Response: 

We thank the Reviewer for the comment. Following the Reviewer’s suggestion, we have investigated 

the difference between PG embryos and normal embryos at different molecular layers as shown below. 

We found most of differentially expressed genes (DEGs, 93.71% of PG upregulated genes, 89.53% of 

PG downregulated genes, FDR<0.01, Fold change>=2) between PG embryos and normal embryos were 

transient altered at one stage of PG cells, and back to normal range in the next stage (Fig. R2a, R3a). 

Since both the PG embryos and normal embryos of the same stage were collected at the same time 

points, we suspected that the transient DEGs might reflect the nature of delayed development of the PG 
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embryos. Among those DEGs, 31 known paternal specific expressed genes were found in the PG 

downregulated genes, while two known maternal specific expressed genes were found in the PG 

upregulated genes (Fig. R2b, R3b). Next, we explored whether those DEGs were caused by the 

abnormal epigenetic reprogramming of PG embryos. We found relatively more PG-hypermethylated-

TSSs and PG-hypomethylated-genebodies (FDR<0.01, Differential Met>10%) were constantly 

identified in PG downregulated genes compared to that in PG upregulated genes, indicating the 

difference of DNA methylation level could partially explain the difference of gene expression (Fig. 

R2c-f, R3c-f). However, we did not find clear relationships between the expression level and chromatin 

accessibility of its TSS region for these DEGs (Fig. R2g-h, R3g-h).   

 

 

Figure R2: PG upregulated genes. Heat map of the RNA expression level of PG upregulated genes (a), and PG upregulated 

known imprinted genes (b); Dynamics of the DNA methylation level of PG upregulated genes at TSS (c and d) and gene body 

(e and f); g-h. Dynamics of the chromatin accessibility level of PG upregulated genes at TSS. DEG.type: stage specific DEGs 
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(2-cell, 4-/L4-cell, 8-cell), NSDEGs (non-stage-specific DEGs); PG_hyper: PG hypermethylated (Met: WCGs, Acc: GCHs); 

PG_hypo: PG hypomethylated (Met: WCGs, Acc: GCHs); no.diff: No significant difference; n.d.: not determined. 

 

 

Figure R3: PG downregulated genes. Heat map of the RNA expression level of PG downregulated genes (a), and PG 

downregulated known imprinted genes (b); Dynamics of the DNA methylation level of PG downregulated genes at TSS (c 

and d) and gene body (e and f); g-h. Dynamics of the chromatin accessibility level of PG downregulated genes at TSS. 

DEG.type: stage specific DEGs (2-cell, 4-/L4-cell, 8-cell), NSDEGs (non-stage-specific DEGs); PG_hyper: PG 

hypermethylated (Met: WCGs, Acc: GCHs); PG_hypo: PG hypomethylated (Met: WCGs, Acc: GCHs); no.diff: No significant 

difference; n.d.: not determined. 

 

5. About Acc clustering (Line 111-129, Extended Data Fig. 3), have the authors tried K-nearest 

neighbor (KNN) based clustering? The authors state that the cluster_2 (higher Acc level) probably 

linked to DNA duplication, can the authors exclude this results reflect an enzyme-, PCR- or 

sequencing-derived artefact? Besides the NDRs, it would be more convincing to check whether RNA 
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and Met data in cluster_2 also showed evidences to support this point since this is an integrated 

data with multi-omics layers.  

Response: 

We thank the Reviewer for the comment. The KNN is an alternative method for classification. However, 

it requires training dataset to learn the model before clustering. As we did not know the identity of each 

cell, we cannot construct the prediction model for the samples. Therefore, we use the K-means method 

to cluster the cells into two groups, which do not need prior identity of each cell. To determine the 

optimal number of clusters, we used Average Silhouette method as shown in Fig. R4. The results show 

two clusters (k=2) maximize the average silhouette values for most of stages (6 out of 8). For the rest 

two stages (Zygote and L4-cell), the average silhouette value of two clusters, as the second optimal 

number of clusters, are very close to that of the optimal number of clusters (k=3). In order to keep the 

consistency of the number of clusters, we used two clusters (k=2) for all stages we analyzed. 

 
Figure R4: Average silhouette values of K-means clustering of Acc for each stage. 

 

We thank the Reviewer for pointing out other possibilities of the cluster_2. Clearly, the level of Acc 

and Met from the same single cell were measured by the methylation level of GCH and WCG sites 

extracted from the same DNA sequencing data. Since the DNA methylome from the cluster_2 cells 

were similar to the cluster_1 cells of the same stage, we suspected that the higher level of Acc from 

cluster_2 was not likely caused by the PCR- or sequencing- derived artefacts, otherwise the Met data 

should be also found noticeable difference between cluster_1 cells and cluster_2 cells. In addition, we 

found most of cluster_2 cells were not come from some specific embryos, but mixed with cluster_1 

cells in the same embryo (Fig. R5 Left). As the cells from the same embryo were treated with the same 
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batch of enzyme, as well as the same reaction conditions, indicating that the high level of Acc from 

cluster_2 might not reflect the enzyme derived artefacts, but genuine biological difference, which could 

be explained by the DNA duplication (Luo et al., 2017, Hum Mol Genet). To provide more cell cycle 

evidence, we inferred cell cycle of each cell with our RNA data (Fig. R5 Right). However, the results 

showed that the majority of cells from both clusters were classified into G2M phase, and no difference 

in the cell cycle results between cluster_1 and cluster_2 was noticed (Fig. R5 Right). To be more 

rigorous, we have rephrased this statement in Line 116-127 of the revised manuscript, “Notably, the 

cells from the cluster with the relatively higher Acc level (cluster_2) consistently showed lower 

correlations between Acc and Expr at the TSS regions, without differences in global Met levels, 

and correlations between Met and Expr were observed between the two clusters, suggesting that 

Acc changes in the cells of cluster_2 were irrelevant to the transcriptional regulation, which could 

be derived from biological differences, such as DNA duplication30, or other unknown technical 

artefacts (Extended Data Fig. 3b). Furthermore, we detected the nucleosome-depleted regions 

(NDRs) using an aggregated Acc dataset from single cells in each cluster at each stage. Regardless 

of the genome coverage, cluster_1 (low Acc level and high correlation between Acc and Expr) 

exhibited more NDRs than cluster_2 for each stage (Extended Data Fig. 3c-d). The NDRs in 

cluster_1 at each stage showed greater fractions overlapping with previously defined open 

chromatin in early embryos than those in cluster_2 (Extended Data Fig. 3e-f)4,6,10.”  

 
Figure R5: Left. Number of embryos containing only cluster_1, clsuster_2 cells, or mixed cluster_1 and cluster_2; Right. 

Cell cycles of cluster_1 and cluster_2 cells with cyclone() in Scran R package. 

 

6. It is unclear to me why the Acc clustering was quite well-organized with the respective to the cell 

stage whereas Met and RNA clustering showed relatively mixed (Fig. 1d and Extended Data Fig. 2g).  

Response: 



 14 

We thank the Reviewer for the comment. Previously, we used cellular pairwise spearman correlation 

coefficients to perform PCA and unsupervised hierarchical clustering for each molecular layer. To 

improve the clustering appearance, we have tried to cluster RNA directly using the expression matrix 

of high variable genes. The results showed an improved RNA clustering with well separated stages and 

defined cell type, so we have updated these results in our revised Fig. 1d and the text of corresponding 

Method section in Line 859-862, “PCA and hierarchical clustering were performed to analyze cell 

populations with the Expr data. Genes expressed in fewer than 6 cells were discarded. PCA was 

performed with the expression matrix of high variable genes (coefficient of variation ≥ 1) using 

the pcaMethods40 R package. The hclust function with the ward.D2 method was used for 

unsupervised hierarchical clustering.”  

 

As for the Met and Acc clustering, actually, previous Met clustering results showed major separation 

between blastocyst and pre-blastocyst (Zygote to Morula stages), and the Acc clustering showed a better 

separation pattern among different stages than the Met clustering, consistent with previous findings 

(Guo et al., 2017, Cell Res). To have a better presentation of Met clustering, we have treated the Met 

unsupervised hierarchical clustering result with reorder.dendrogram() function in R. The modified 

result has been updated in revised Fig. 1d. 

 

7. How about the open chromatin accessible regions gained during development, and what about 

those lost ones? What is the correlation among these gained and lost Acc with Met and RNA data?  

Response: 

We thank the Reviewer for the question. We have analyzed the NDR changes between two consecutive 

stages (Fig. R6a). The results showed both Proximal_NDRs and Distal_NDRs were more dynamic than 

TSS_NDRs during development. And the number of gained NDRs was the highest in the transition 

from Zygote to 2-cell stage, accompanied with ZGA process.  

 

We further investigated the changes of Acc, Met and Expr among these gained and lost NDRs. Clearly, 

the Acc level of gained NDRs was increased in the latter stage of two consecutive stages, contrast to 

the decreased Acc level of the lost NDRs in the latter stage (Fig. R6b). The dynamic of NDRs were 

generally associated with the changes of Met level and gene expression. The gained NDRs showed 
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lower Met level and higher expression level in the latter stage, while the lost NDRs showed higher Met 

level and lower expression level in the latter stage (Fig. R6 c-d). 
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Figure R6: (a) Bar plot showing the number of gained, lost and maintained NDRs between two consecutive development 

stages. Gained (or Lost) NDRs: the NDRs only found in the latter (or earlier) stage of two consecutive stages; Maintained 

NDRs: the overlapped NDRs between two consecutive development stages. Boxplot showing the differential Acc level (b), 

Met level (c) and Expr (d) of gained and lost NDRs between two consecutive development stages. y.axis, latter stage minus 

earlier stage of two consecutive development stages; P, p value, Student t-test. 

 

8. It is good to see the reconstruction of genetic lineages in mouse early embryos using single-cell 

Met datasets referred to a published method, however, besides the corrections and patterns, it would 

be also interesting to see the distinct molecular features (each layer) of daughter cells originated 

from different mother cell. Moreover, it would be more convincing to have more blastomeres to 

validate.  

Response: 

We thank the Reviewer for raising this interesting question. Following the Reviewer’s suggestion, we 

have performed comparisons to explore the distinct molecular features of daughter cells originated from 

different mother cells. Specifically, we first identified the differentially expressed genes (FDR<5%, 

FC>=2), differentially methylated TSSs (FDR<1%, Difference>10%) and differentially accessible 

TSSs (FDR<1%, Difference>10%) between the daughter cells (for 4-cell and L4-cell 

stages)/granddaughter cells (for 8-cell stage) from different 2-cell mother cells for each embryo, then 

we overlapped the DEGs/differential Met/Acc TSSs from different embryos of the same stage to test 

which gene/TSS was constantly biased expressed/epigenetic modified. However, no genes were biased 

expressed in all embryos of the same stage. Only few genes were constantly biased expressed in over 

half of embryos (5 genes in 4-cell stage, 4 genes in L4-cell stage and 7 genes in 8-cell stage), and no 

overlapped genes were found among the three stages. Similar results were found for the differential Met 

TSSs and Acc TSSs. Although some TSSs showed biased modified in all embryos of the same stage 

(such as the Diff Met TSSs of 8-cell stage and the Diff Acc TSSs of L4-cell stage), no more than three 

embryos of those stages were analyzed. Moreover, there was also no overlapping between DEGs and 

differentially modified TSSs. Together, our preliminary results suggested that there might be no fixed 

molecular features between the daughter cells originated from different mother cells. However, to fully 

address this interesting question would require further investigation.  
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Figure R7: Bar plot showing the number of differentially expressed genes (upper), DNA methylated TSSs (middle) and 

accessible TSSs (bottom). Venn diagram showing the number of overlapped genes (upper) and TSSs (middle and bottom) 

biased expressed/modified in over half of embryos of the same stage. For DEGs, FDR <5%, FC>=2; Diff Met/Acc TSSs, 

FDR<1%, Difference>10%. 

 

As for the lineage reconstruction with single-cell DNA methylation datasets, the consistent correlation 

pattern was observed for all embryos we analyzed (for 4-/L4-cell embryo, N=17, including two PG 

embryos; for 8-cell embryo, N=4, including one PG embryo) without any exemption (Fig. R8). Further, 

we also used DNA methylation data of three 4-cell embryos and two 8-cell embryos with FITC 

microinjection to determine the correlation pattern of cells from the same 2-cell mother and the pattern 

of cells from the same 4-cell mother, validating the accurate use of single-cell DNA methylation 

datasets to reconstruct lineages of early embryos. 
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Figure R8: Heat map showing the Pearson correlation coefficients of z-scored DNA methylation level among cells in each 

embryo of 4-cell, L4-cell and 8-cell stages. Red labeled PG embryos; green labeled cells divided from the same 2-cell 

blastomere (FITC_4-cell_1-3# and FITC_8-cell_1#) or from the same 4-cell blastomere (FITC_8-cell_2#). The 4-cell_5# 

embryo was not shown here due to the insufficient cells for this embryo to perform this analysis. 

 

In this study, we have showed that the correlations of the cells from the same mother inferred from Met 

data is higher than that of the cells from different mother at the transcriptome level, and the correlations 

of cells from the same grandmother is higher than that of cells from different grandmother (Fig. 2h). 

Further, we explored whether this correlation differences of transcriptome were enabled us to 

reconstruct genetic lineages. Interestingly, we found the correlation differences were highly conserved 

for each embryo (as shown in our revised new Extended Data Fig. 4). Specifically, the cells from the 

same mother cell are clustered closer than the cells from different mother cell, similarly, the cells from 

the same grandmother cell are clustered closer than the cells from different grandmother cell. These 

RNA clustering results are consistent with the tracing results by Met datasets. Therefore, these results 

demonstrated that both single-cell transcriptome and methylome datasets could be used to reconstruct 
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genetic lineages of early embryos. We have added this new finding in the revised manuscript in Line 

185-188, “Interestingly, we found the gradually increased transcriptome heterogeneity during the 

first three cleavages were highly conserved for each embryo, which enabled us to reconstruct 

genetic lineages of early embryos with single-cell transcriptome datasets (Extended Data Fig. 4).” 

 

9. The statement “Moreover, the correlations between blastomeres from the same grandmother cells 

were higher than those of blastomeres from different grandmother cells in 8-cell embryos (Fig. 2h).” 

is not supported by Fig. 2h, at least as presented. 

Response: 

We thank the Reviewer for the question. We are sorry for the confusion. For this statement, we were 

trying to point out the correlations between blastomeres from the same grandmother cells were higher 

than those of blastomeres from different grandmother cells in 8-cell embryos at the transcriptome level 

(average correlation coefficient of 0.8765 in same_grand and 0.8699 in diff_grand; same_grand vs 

diff_grand, P=2e-07), as shown in Fig. R9. We have modified this statement in the revised manuscript, 

Line 181-183, “Moreover, the correlations between blastomeres from the same grandmother cells 

were higher than those of blastomeres from different grandmother cells in 8-cell embryos at the 

transcriptome level (Fig. 2h) (Student t-test, P = 2e-07).”. 

 
Figure R9: Box plot showing the pairwise Spearman correlation coefficients of RNA expression level in 8-cell embryos. P, p 

value, Student t-test. 

 

10. The statement in line 263 “Considering the global decreases in Acc during the ZGA process”, are 

there any figures to support this? It has been reported distinct regulatory patterns during ZGA (DOI: 

10.1038/s41467-018-08244-0), the authors should double check this statement.  



 21 

Response: 

We thank the Reviewer for the comment. The global Acc level of embryos reached the lowest at the 2-

cell stage when the major ZGA occurred, supported by Extended Data Fig. 2e-f. In addition, these 

results were consistent with previous findings used scCOOL-seq in the mouse preimplantation embryos 

(Guo et al., 2017, Cell Res). 

 

Although the global decreases in Acc during the ZGA process, the Acc level of thousands of ZGA 

associated potential functional CREs (positively correlated CREs) was specifically increased in 2-cell 

embryos (Fig. 4a and Extended Data Fig. 6d). The distinct regulatory patterns during ZGA (reported in 

the Reviewer mentioned paper, DOI: 10.1038/s41467-018-08244-0), were identified by calculating the 

average chromatin accessibility level of the distinct expression patterns of human ZGA genes. In their 

results, the activation of major ZGA genes was overall associated with increased chromatin accessibility 

of promoters and enhancers, which is consistent with our findings.  

 

To be clear, this statement “Considering the global decreases in Acc during the ZGA process and 

the characteristics of the negatively correlated CREs described above, these negative correlations 

seemed to simply reflect global changes in Acc rather than representing repressive regulation 

during ZGA.” was just our speculation about the negatively correlated CREs identified for ZGA 

process. We have removed this statement in our revised manuscript to avoid any confusion. 

 

11. It has been reported that many TFs important in mouse preimplantation embryos, for example, 

Hippo/Yap1, Nr5a2 and Rarg are important in the lineage segregation of the ICM and the TE in the 

mouse. The authors should investigate more putative TFs based on this multi-omics dataset, and 

also further check whether their binding motifs enriched in any accessible regions which showed 

high correlation with other omics layers. Besides mouse, there are also many human early embryo 

studies, what kind of species differences in this important development process need further 

investigation based on this interesting dataset.  

Response: 

We thank the Reviewer for the suggestion. The putative TFs mentioned in this part were actually 

unbiased identified based on our multi-omics dataset. Specifically, to identify what TFs might play 
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important roles in the ICM and the TE lineage segregation, we first took advantage of our single cell 

multi-omics dataset containing both the gene expression and chromatin accessibility data of the same 

single cell and extracted the significantly correlated NDRs as potential functional CREs by calculating 

the correlations between the chromatin accessibility of NDRs and the expression level of corresponding 

ICM/TE differential expressed genes across cells during preimplantation development. Then, we 

performed motif enrichment analysis using these CREs with Homer2 software. Through our analysis, 

we have successfully identified total of 33 putative TFs, which might play a role in segregating the ICM 

and the TE lineages. Among them, many known TFs important for the lineage segregation have been 

revealed by our analysis, such as Gata, Klf, and Tead families, as well as Nr5a2, Rarg, shown in Fig. 

5g.  

 

For the TFs mentioned by the Reviewer, our result showed that Nr5a2 and Rarg were enriched in both 

ICM and TE distal CREs, but these two TFs were more enriched in ICM promoter CREs (Nr5a2, P=1e-

11; Rarg, P=1e-12) than TE promoter CREs (Nr5a2, P=1e-4; Rarg, P=1e-5), suggesting their 

preferential role in activating ICM program. Hippo/Yap1 signal pathway has been shown in establishing 

TE lineage through regulating Tead4 activity (Nishioka et al., 2009, Developmental cell). In our results, 

we found that Tead4 was specifically enriched in TE CREs at both promoter (P=1e-19) and distal 

regions (P=1e-28) but ICM CREs, supporting that Tead4 played an important role in TE lineage 

establishment. 

 

The dynamics of different molecular layers of human early embryos have been reported in recent years. 

Following the Reviewer’s suggestion, we have tested whether mouse ICM and TE CREs would be open 

during human embryo development. First, we converted our mouse ICM/TE-CREs into human genome. 

We found over 80% promoter CREs were successfully converted into human genome, while around 

half distal CREs were converted into human genome (Fig. R10 a). Next, we overlapped the successfully 

converted CREs with human open regions (Wu et al., 2018, Nature). The results showed that mouse 

ICM/TE-CREs were significantly accessible in the human embryos (Fig. R10 b). Further, we performed 

motif enrichment analysis using the CREs open in human embryos and the rest converted CREs (Fig. 

R10 c-d). We found TFs such as CTCT, GATAs, KLFs and TEADs were enriched in the CREs open 

in human embryos, suggesting their conservative roles in the both human and mouse species (Fig. R10 
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d). We found ESRRA and CRX are exclusively enriched in mouse CREs not open in human embryos, 

indicating these TFs might play species-specific role between mouse and human (Fig. R10 d). However, 

there is no available single cell multi-omics data simultaneously containing the transcriptome and 

chromatin accessibility from the same single cells of human early embryos, limiting our further 

comparisons in this study.  

 

 
Figure R10: a-c. Bar plot showing the number of CREs of indicated type; d. TF enrichment analysis of indicated CREs.  

 

12. In Fig. 5i, several important TFs e.g., Klf5, Klf6 in group IV stated as showing no difference in 

activity but higher expression level in ICM cells, however, this statement was not supported by Fig. 

5i, at least as presented. There is a typo in the y-axis label in Fig. 5i. 

Response: 

We thank the Reviewer for the carefully reviewing. Klf5/6 were higher expressed in TE cells. We have 

corrected this mistake as shown in our revised Fig. 5i and corresponding figure legend. And we also 

corrected the typo error of y-axis label in Fig. 5i. 
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13. Will these triple layers of omics data help provide more accurate descriptions/definitions of 

“single-cell state”?   

Response: 

We thank the Reviewer for raising this interesting question. We think that with the help of these triple 

layers of omics data of the same single cell would provide more accurate descriptions/definitions of 

single-cell state and beyond. As shown in our study, we used RNA reads and DNA reads, as well as 

SNP information, to infer the abnormal cells, and successfully identified aneuploid and parthenogenetic 

cells, providing the opportunity to study the consequence of these genomic abnormal cells at different 

molecular levels. In addition, we used the endogenous DNA methylation data to construct genetic 

lineage to know the history of the single cell in the 4-cell and 8-cell embryos; with these cell lineage 

information, we further revealed that the asymmetric cleavage was the potential major driver of the 

gradual increases in transcriptome heterogeneity among blastomeres that occur during the first three 

cleavages, and the Met maintenance was increased during DNA duplication at the 4-cell stage. 

Moreover, with the knowledge of the transcriptome and different layers of epigenome from the same 

single cells, we not only found the relationships among transcription, chromatin accessibility and DNA 

methylation at single cell level and at different allele level, but also successfully identified thousands 

of potential functional CREs and dozens of putative TFs during ZGA and cell lineage separation 

processes, enhancing the fundamental understanding of epigenetic regulation in early embryos. 

 

Reviewer #2 (Remarks to the Author):  

 

The authors reported a single-cell multi-omics technology (scNOMeRe-seq) that enabled profiling of 

mouse preimplantation embryo cells for genome-wide chromatin accessibility, DNA methylation and 

RNA expression. They applied this new platform and analyzed the global dynamics of epigenetic 

molecular layers. The authors constructed a zygotic genome activation (ZGA)-associated regulatory 

network and revealed coordination among multiple epigenetic layers, transcription factors (TFs) and 

repeat elements that instruct the proper ZGA process. The analysis also revealed the partial ZGA 

and abnormal development of PG embryos, the parental specific allelic gene expression and 

epigenetic profiles, and enabled reconstruction of genetic lineages that reveals the source of 

heterogeneity in early embryos. Finally, they investigated the candidate TFs responsible for the 
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establishment of differential regulatory networks in the ICM and the TE lineages.  

 

In summary, this work is expected to further facilitate the single cell genomics and multi-omics 

research field and to improve the fundamental understanding of epigenetic regulation in early 

embryos.  

 

Minor points:  

 

1. Various single-cell epigenomic methods have been developed in the past several years to profile 

epigenetic molecular layers, providing opportunities to explore the associations among molecular 

regulatory layers.  

 

What are the major advantages and disadvantages of scNOMeRe-seq compared with the author's 

previous technologies including the one mentioned in the manuscript – scCOOL-seq, and with other 

single-cell multi-omics sequencing technologies (eg. scTrio-seq, scNMT-seq, scNOMe-seq, etc.)?  

 

Response: 

We thank the Reviewer for the comments. Our method could parallel detect DNA methylation, 

chromatin accessibility and transcriptome from the same single cell. Compared with the most of 

published single-cell multi-omics sequencing technologies, our method could detect more layers of 

molecular with high quality and reproducibility. For instance, scCOOL-seq and scNOMe-seq are only 

able to detect DNA methylation and chromatin accessibility from the same single cell, and scTrio-seq 

is only able to detect DNA methylation (more focused on CpG enriched regions) and transcriptome 

simultaneously (Guo et al., 2017, Cell Res; Hou et al., 2016, Cell Res; Kelly et al., 2012, Genome Res). 

scNMT-seq is able to detect the same molecular layers with our method (Clark et al., 2018, Nat 

Commun). Despite the different orders of GpC treatment and RNA capture, the most important 

difference between our method and scNMT-seq is that different methods for RNA library preparation 

were employed, as we used MATQ-seq and scNMT-seq used SMART-seq2 (Picelli et al., 2013, Nature 

methods; Sheng et al., 2017, Nature methods).  
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In order to show the power of our method, we have compared the quality of our data of different 

molecular layers with corresponding dataset obtained from published scCOOL-seq, SMART-seq2 and 

scNMT-seq (revised Extended Data Fig. 1, please also see our response to the Reviewer 1#, question 1) 

(Clark et al., 2018, Nat Commun; Deng et al., 2014, Science; Guo et al., 2017, Cell Res). For the RNA 

data, our method could detect more genes with high accuracy and reproducibility and had better gene 

body coverage. For the DNA data, our method could detect over 15% genomic WCG/GCH sites (WCG: 

3.49 million sites, 15.8% of genomic coverage; GCH: 31.0 million sites, 15.5% of genomic coverage 

on average per cell) at around 3× sequencing depth (8.74 Gb in average) with better capture efficiency 

compared with scNMT-seq and scCOOL-seq.  

 

However, our method requires physically separating cytoplasm and nuclei at single cell level, which 

would increase the risk of loss sample and the chance of contamination.  

 

2. Fig. 2h: The manuscript states that "the correlations in Met levels between blastomeres from the 

same mother cells were higher in 8-cell embryos than in 4-cell and late 4-cell embryos". The authors 

need to provide proper statistics of these analyses including p-value.  

Response: 

We thank the Reviewer for the comment. We have performed statistical analyses for the correlations in 

DNA methylation level between blastomeres. We found the correlations from the same mother cells in 

8-cell embryos were higher than that in 4-/late 4-cell embryos (average correlation coefficient of 0.51 

in 4-cell, n=20 pairs; 0.51 in late 4-cell, n=9 pairs; and 0.53 in 8-cell, n=12 pairs), but no statistical 

significance were observed when we used 5 kb bins to estimate the DNA methylation level (Fig. R11). 

Further, we titrated several different lengths of bins and calculated pairwise correlations. We found the 

pairwise correlation in 8-cell embryos is consistently higher than that in 4-/L4-cell embryos with 

different length of tiles (Fig. R11). Moreover, we found the difference of pairwise correlations between 

8-cell embryos and 4-/L4-cell embryos was increased and showed more statistical significance with 

longer tiles. To support this statement, we have updated the pairwise correlation results of DNA 

methylation with 200 Kb bin in our revised Fig. 2h and corresponding text in the manuscript, Line 189-

192, “we notably observed that the correlations in Met levels between blastomeres from the same 

mother cells were higher in 8-cell embryos than in 4-cell and late 4-cell embryos (average 
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correlation coefficient of 0.59 in 4-cell, 0.58 in late 4-cell and 0.74 in 8-cell; Student t-test, 4-cell 

vs 8-cell, P = 0.018; late 4-cell vs 8-cell, P = 0.013)”. 

 

 
Figure R11: Box plot showing the pairwise Spearman correlation coefficients of DNA methylation level of different lengths 

of bins from same mother cell. P, p value, Student t-test, compared with 8-cell stage. 

 

 

3. Fig. 3c /3h. More details about determining paternal alleles and maternal alleles are needed, 

assuming that these embryos are from several crosses.   

Response: 

We thank the Reviewer for the comment. Following the Reviewer’s suggestion, we have added more 

details about determining parental alleles in the revised Method section, Line 962-978, “The embryos 

in this study are from 129S1 (paternal) mice × B6D2F1/J (F1 of C57BL6NJ × DBA2J, maternal) 

mice. Thus, these embryos should have backgrounds of 129S1 with mixed C57BL6NJ and DBA2J. 

The pipeline used to determine the parental origin assignment of sequencing data from the hybrid 

embryos was constructed as reported, which based on traceable hybrid SNP information52. 

Specifically, we downloaded the SNPs of 129S1 (paternal in this study), C57BL6NJ and DBA2J 

(C57BL6NJ × DBA2J, maternal in this study) from the website of Mouse Genome Project 

(ftp://ftp-mouse.sanger.ac.uk/REL-1211-SNPs_Indels/). Only the informative SNPs could 

distinguish the paternal (129S1) and maternal (C57BL6NJ × DBA2J) genome (homozygous in 

parental alleles and paternal is different with maternal) were used in our analysis. For each 

mapped read covered the informative SNP site, the read was parsed according to the specific base 

at the SNP position, if the base matched the paternal allele, the read was assigned to paternal 

origin; if the base matched the maternal allele, the read was assigned to maternal origin. For 
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RNA-seq data, 172,319 SNPs within the exon regions were used to split the RNA mapped reads. 

The splitted allelic reads were further used to calculate the paternal and maternal expression level 

of each gene. For DNA data, 896,161 SNPs (SNP sites with C or T were discarded) in the whole 

genome were used to split the mapped reads to paternal and maternal origin. The splitted reads 

were further processed to calculate the paternal and maternal DNA methylation and chromatin 

accessibility level.”  

 

4. Fig. 3h. The authors state that "the correlations between maternal Met and Expr at gene body 

regions were clearly weaker in nonmaternal genes than in maternal genes". The authors should 

provide p-value and proper statistics.   

Response: 

We thank the Reviewer for the comment. We have added box plots to show the correlation coefficients 

of allelic gene body Met vs Expr and performed statistical analyses between nonmaternal genes and 

maternal genes in the revised Extended Data Fig. 5g and corresponding figure legend.  

 

5. Fig. 4f. "Klf4, Nkx3-2, Nr5a2 and Rarg showed high TF activity and high expression levels in 2-

cell embryos compared to zygotes". It seems that the expression of Klf4, Nkx3-2, Nr5a2 in 2C-cells 

is similar to in the zygotes. It may be better to use Z-score, instead of TPM.   

Response: 

We thank the Reviewer for the suggestion. We have updated heat map of the TF expression with Z-

score treatment in the modified Fig. 4f. 

 

6. Fig. 5c/d: “Notably, all of the known enhancers for three key ICM/TE TFs (Pou5f1, Nanog, and 

Cdx2) that we analyzed were revealed to be present in preimplantation embryos or in embryonic 

stem cells, confirming that the CREs identified by our correlation analysis could cover known active 

enhancers ". The correlation coefficient(r) of the expression level of Pou5f1 and chromatin 

accessibility of positive-correlated CREs labelled in (c) is low (0.35)?  

Response:  

We thank the Reviewer for the comment. To compute the correlation coefficient (r) of the Acc level of 

each NDR and the expression of its corresponding gene, we adopted a previously published method in 



 29 

(Argelaguet et al., 2019, Nature; Clark et al., 2018, Nat Commun) (please also see our Method section, 

Line 951-960). The NDRs with significant associations (FDR < 10%) were kept for downstream 

analysis. 

 

The detailed information of positive-correlated CREs labelled in Fig. 5c has been collected from 

Supplementary Table 5 as shown below. All of the four CREs showed statistically significant 

correlations between the chromatin accessibility and Pou5f1 expression. We agree that the correlation 

coefficients of these CREs are relatively low (the range of r is between 0.3 to 0.5). However, it seems 

common to observe relatively low correlations with single cells datasets. For example, the reported 

correlation coefficients of Acc vs Expr are between 0.2 to 0.5 in a previous report (Argelaguet et al., 

2019, Nature). We think the relatively low correlation coefficient might be caused by the sparsity nature 

of single cell epigenetic omics, the unavoidable dropout from single cell RNA-seq, and the multi-layers 

of transcriptional regulation.  

 
Table R1: The detailed information of Pou5f1 related positive-correlated CREs  

chr start end symbol 
r (Acc vs 

Expr) 

P value (Acc 

vs Expr) 

FDR (Acc vs 

Expr) 

Correlation 

type 
CRE type No. 

chr17 35569861 35570060 Pou5f1 0.35051163 0.000937723 0.020617572 pos.sig ICM.CRE #1 

chr17 35634581 35634720 Pou5f1 0.329634608 0.006449953 0.064690553 pos.sig ICM.CRE #2 

chr17 35639761 35640020 Pou5f1 0.394067855 0.002208283 0.034496974 pos.sig ICM.CRE #3 

chr17 35640761 35641200 Pou5f1 0.4825338 1.42E-07 7.17E-05 pos.sig ICM.CRE #4 

 

7. The authors discover that Klf4 could be a maternal factor and have important functions in ZGA. 

They can design experiments to verify it. Similarly, for the newly identified TFs that affect the ICM/TE 

separation, the author can also do experimental verification. These validation results will provide 

further supports to using the cNOMeRe-seq.  

Response: 

We thank the Reviewer for the suggestion. In this study, we have identified dozens of TFs potentially 

driving ZGA or ICM/TE separation. Notably, among of those TFs, many of them have been proved 

to be very important in those processes in previous studies, such as the Tead, Gata family, and 

Tcfap2c for driving TE lineage; Esrrb and Klf3/4 for driving ICM lineage, supporting the faithful 

and informative of our findings.  
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Klf4 is well known as a core transcription factor for pluripotency. A recent paper showed that Klf4 

mutant embryos failed to form blastocyst with substantially reduced all cell lineages of epiblast, 

primitive endoderm and trophectoderm, suggesting that Klf4 might play an important role in the very 

early stage of embryos (Ye et al., 2018, Nat Commun). Although there is no study claimed that Klf4 

regulates ZGA process, but we found many Klf4 binding sites (published Klf4 ChIP-seq data of 

mouse embryonic stem cells) (Di Giammartino et al., 2019, Nature cell biology) were open in the 2-

cell embryos (Fig. R12 Left), and Klf4 bound to the promoters of 317 ZGA genes (hypergeometric 

test, p= 8.475122e-19) (Fig. R12 Right), indicating that Klf4 may have important functions in ZGA. 

 
Figure R12 Left: Heat map showing the number of Klf4 ChIP-seq peaks overlap with NDRs. Right: Venn diagram showing 

the overlaps between Klf4 ChIP-seq promoter peaks bound genes and ZGA genes. 

 

We agree that functional validations would further provide more evidences to support the importance 

of our newly identified TFs in early embryo. However, it would be time consuming to perform 

experimental verification for those TFs, especially for some of them required conditionally knock-

out experiments. We appreciate the Reviewer for this constructive suggestion and would like to test 

those newly identified TFs in our future study. 

 

Reviewer #3 (Remarks to the Author):  

 

This manuscript is entitled "Single-cell multiomics sequencing reveals the functional regulatory 

landscape of early embryos." The manuscript describes a series of experiments to reveal the 

profiles of genome-wide chromatin accessibility, DNA methylation and RNA expression in the 
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same individual cells of the embryo through to blastocyst stage. Several comments are generated 

by review of the manuscript:  

 

1) The manuscript would benefit from an introductory figure either in the main text or 

supplementary data that depicts the experimental design, embryo numbers and progression of 

experiments.  

Response: 

We thank the Reviewer for the suggestion. We have added an introductory figure in the modified Fig. 

1a to show the experimental design, embryo numbers and progression of experiments.   

 

2) Embryo numbers for different experiments should be clearly indicated in both the experimental 

methods/design and the figure legends.  

Response: 

We thank the Reviewer for the suggestion. We have added the embryo numbers of different experiments 

in the experimental methods/design and the figure legends as suggested.   

 

3) A figure depicting a model that derives from the data as a summary figure would enhance the 

manuscript greatly.  

Response: 

We thank the Reviewer for the suggestion. We have added our proposed models for regulating the 

processes of ZGA and ICM/TE separation in our modified Figure 4 and 5, respectively.  

 

Overall, the manuscript is well written and the data are intriguing. It is notable, however, that the 

testing of the findings via use of inhibitors or loss-of-function or gain-of-function genetics has not 

been incorporated into the manuscript to provide causation proof. Thus, the manuscript largely 

correlates molecular changes with development and does not provide further substantiation. 

Nonetheless, the experiments are illuminating and provide a foundation of data for further 

exploration and generation of hypotheses.  

 

  



 32 

References: 
Argelaguet, R., Clark, S.J., Mohammed, H., Stapel, L.C., Krueger, C., Kapourani, C.A., Imaz-Rosshandler, I., 

Lohoff, T., Xiang, Y., Hanna, C.W., et al. (2019). Multi-omics profiling of mouse gastrulation at single-cell 

resolution. Nature 576, 487-491. 

Clark, S.J., Argelaguet, R., Kapourani, C.A., Stubbs, T.M., Lee, H.J., Alda-Catalinas, C., Krueger, F., Sanguinetti, 

G., Kelsey, G., Marioni, J.C., et al. (2018). scNMT-seq enables joint profiling of chromatin accessibility DNA 

methylation and transcription in single cells. Nat Commun 9, 781. 

Deng, Q., Ramskold, D., Reinius, B., and Sandberg, R. (2014). Single-cell RNA-seq reveals dynamic, random 

monoallelic gene expression in mammalian cells. Science 343, 193-196. 

Di Giammartino, D.C., Kloetgen, A., Polyzos, A., Liu, Y., Kim, D., Murphy, D., Abuhashem, A., Cavaliere, P., 

Aronson, B., Shah, V., et al. (2019). KLF4 is involved in the organization and regulation of pluripotency-

associated three-dimensional enhancer networks. Nature cell biology 21, 1179-1190. 

Guo, F., Li, L., Li, J., Wu, X., Hu, B., Zhu, P., Wen, L., and Tang, F. (2017). Single-cell multi-omics sequencing 

of mouse early embryos and embryonic stem cells. Cell Res 27, 967-988. 

Hendrickson, P.G., Dorais, J.A., Grow, E.J., Whiddon, J.L., Lim, J.W., Wike, C.L., Weaver, B.D., Pflueger, C., 

Emery, B.R., Wilcox, A.L., et al. (2017). Conserved roles of mouse DUX and human DUX4 in activating 

cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet 49, 925-934. 

Hou, Y., Guo, H., Cao, C., Li, X., Hu, B., Zhu, P., Wu, X., Wen, L., Tang, F., Huang, Y., et al. (2016). Single-cell 

triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular 

carcinomas. Cell Res 26, 304-319. 

Kelly, T.K., Liu, Y., Lay, F.D., Liang, G., Berman, B.P., and Jones, P.A. (2012). Genome-wide mapping of 

nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22, 2497-

2506. 

Lu, F., Liu, Y., Inoue, A., Suzuki, T., Zhao, K., and Zhang, Y. (2016). Establishing Chromatin Regulatory 

Landscape during Mouse Preimplantation Development. Cell 165, 1375-1388. 

Luo, H., Xi, Y., Li, W., Li, J., Li, Y., Dong, S., Peng, L., Liu, Y., and Yu, W. (2017). Cell identity bookmarking 

through heterogeneous chromatin landscape maintenance during the cell cycle. Hum Mol Genet 26, 4231-

4243. 

Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta, N., Hirahara, S., Stephenson, 

R.O., Ogonuki, N., et al. (2009). The Hippo signaling pathway components Lats and Yap pattern Tead4 

activity to distinguish mouse trophectoderm from inner cell mass. Developmental cell 16, 398-410. 

Picelli, S., Bjorklund, A.K., Faridani, O.R., Sagasser, S., Winberg, G., and Sandberg, R. (2013). Smart-seq2 for 

sensitive full-length transcriptome profiling in single cells. Nature methods 10, 1096-1098. 

Sheng, K., Cao, W., Niu, Y., Deng, Q., and Zong, C. (2017). Effective detection of variation in single-cell 

transcriptomes using MATQ-seq. Nature methods 14, 267-270. 

Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., et al. (2016). The 

landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652-657. 

Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S., et al. (2018). Chromatin 

analysis in human early development reveals epigenetic transition during ZGA. Nature 557, 256-260. 

Ye, B., Liu, B., Hao, L., Zhu, X., Yang, L., Wang, S., Xia, P., Du, Y., Meng, S., Huang, G., et al. (2018). Klf4 

glutamylation is required for cell reprogramming and early embryonic development in mice. Nat Commun 
9, 1261. 

 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors addressed all of my comments in a satisfying manner, and I recommend the revised 

manuscript for publication. I wish the authors luck with this interesting paper and their follow up 

studies. 

Reviewer #2 (Remarks to the Author): 

This manuscript extensively analyzed the single cell data that they generated from mouse 

preimplantation embryos. The major conclusions are sound. 

I do not have further comments on the manuscript. 
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