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S1 Data

S1.1 Metro Trip data

The metro smart card transaction data are from three major cities in China: Shanghai, Guangzhou, and Shenzhen.
These data have a similar structure, with each record containing the information of smart card ID, transaction ID,
transaction time, boarding station/time, and alighting station/time. The transaction type indicates if the transaction
is an entry or exit at the transaction station. Since each smart card is associated with a unique ID, we can therefore
construct the trip sequences for each commuter (each card) based on the transaction time, transaction type, and
location. We present a sample of smart card transaction data of Shenzhen on April 21st, 2016 in Tab S1.

Table S1: Sample records of metro transaction data of Shenzhen (2016-04-21). For Transaction Type, 21 indicates
that the traveler left the system and 22 denotes the entry of the traveler.

User ID Transaction
Type

Time Station
ID

80357781 22 08:39:50 1
290452424 22 08:39:32 1
20353676 22 09:41:43 1
361341888 21 07:15:36 1
329838057 22 07:47:08 1
667519928 22 08:34:07 1
329213920 21 07:37:19 1

We have access to three months of data for Guangzhou in 2017, one week of data for Shanghai in 2015, and 8 days
of data for Shenzhen in 2016. A summary statistics of the data and the size of the metro networks that corresponded
to the period of available data is shown in Table S2. For each city, we extract the data of five consecutive weekdays
for further analysis (2017.07.03 - 2017.07.08 for Guangzhou, 2015.04.13 - 2015.04.17 for Shanghai, and 2016.04.14
- 2016.04.15 & 2016.04.18 - 2016.04.20 for Shenzhen). There were no national holidays or major events during the
selected time periods. When compared with official statistics of daily ridership, we observe that the smart card
transaction data may cover over 60% of total daily travelers and can well reflect the trip dynamics of regular metro
users. The metro networks in these cities have distinct layouts which are tailored to the urban form. Shanghai metro
is the metro system with the longest total mileage and largest number of stations. It also has the highest number of
daily travelers. Guangzhou and Shenzhen are similar in terms of the size of the metro networks, however, the shape
of the metro network differs. In particular, Shenzhen is a stripe-shape city where commercial areas are located in
the middle and residential places are distributed at east and west sides of the city. The layouts of metro networks
and half-hourly passenger demand distributions of the three cities are presented in Figure S1. Note that the layouts
presented here correspond to the period of time when the data were collected.

While only five weekdays of data are used for each study, we further demonstrate the representativeness of the
selected data. Due to the limited data availability in the other two cities, we here use the selected one week data in
Guangzhou and compare it with the metro ridership patterns in the other 12 weeks. In general, the metro system
usage tends to be highly regular and this can be seen in Figure S1d. In particular, little variations in half-hourly
ridership are observed for both peak periods of the day (7-10 and 17-19). Moreover, while the half-hourly ridership
shows higher variation during off-peak hours, the trends of the selected week largely agree with those of the other
12 weeks. Aside from the distributions of half-hourly ridership, the data representativeness can also be seen from
statistical metrics. Figure S1e presents the box plot comparison among the 13 weeks, with week 1 being the selected
week. We can tell that there are minimal differences in terms of the minimum, maximum and mean values as well
as the upper and lower 25-th quantiles. Finally, we also perform the two-sample K-S test for the selected one week
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data and the other 12 weeks of data. The null hypothesis is that the selected week of data is drawn from the same
distribution as the other data of the other 12 weeks. The test returns a p-value of 0.606, which is significantly higher
than the 0.05 level. As a result, we failed to reject the null hypothesis and we shall have high confidence that the
selected data are presentative of the regular metro usage patterns.

(a) Guangzhou metro network (b) Shanghai metro network (c) Shenzhen metro network
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(d) Comparison of Guangzhou metro’s half-hourly weekly ridership distribution between the
selected week and the metro ridership in other 12 weeks
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(e) Box plot for comparing the distribution of half-hourly metro rid-
ership among the 13 weeks in Guangzhou. Week 1 represents the
selected week for the analyses.

Figure S1: Metro network layouts of the three cities and the half-hourly passenger demand distributions.

Table S2: Summary of metro card transaction data from three major cities in China

City Start date End date # metro
lines

# stations Average daily
records

Guangzhou 2017.07.01 2017.09.30 8 166 1.6 million
Shanghai 2015.04.13 2015.04.20 13 288 4.16 million
Shenzhen 2016.04.14 2016.04.21 5 118 2.13 million
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S1.2 Operation data

In order to infer the contact among travelers, we also need operation data which include the trip time between two
adjacent metro stations, the approximate transfer time at transfer stations, and the frequency of metro trains.

To obtain these data, we developed web crawlers and extracted the metro station adjacency matrix from GaoDe
Map API [1] as the representation of the metro system layouts . In addition, the time tables of the three metro
systems were obtained from their official websites [2, 3, 4], which contain the travel time between two stations as well
as the frequency of the metro trains during different time periods. Finally, the transfer time required at the transfer
station is calculated by identifying a route that needs a transfer at the station, quoting the travel time of the route
using GaoDe Map API and subtracting the travel time of the route based on the values that we obtained from the
timetable.

S2 Metro Contact Network

S2.1 Structural property of MCNs

Table S3: Summary statistics of the MCNs of various number of nodes for Guangzhou. In the table, < k > represents
the average unweighted degree and < d > represents the average weighted degree.

Number
of
nodes

Average
path
length

Average
clus-
tering
coeffi-
cient

Assor-
tativ-
ity

Diam-
eter

<k> <k2> <kmax> <d> <d2> <dmax>

500 2.99 0.48 0.27 6.90 18.00 416.37 45.10 7.97 102.52 30.74
1000 2.79 0.49 0.26 7.20 35.09 1,562.10 89.50 15.95 401.66 59.99
1500 2.68 0.49 0.24 6.80 53.64 3,610.10 126.70 23.68 873.08 89.61
2000 2.64 0.49 0.25 7.10 71.03 6,322.30 169.70 31.83 1,564.80 117.92
2500 2.60 0.49 0.25 6.30 89.55 10,027 209.70 40.22 2,503.40 148.33
3000 2.58 0.49 0.25 6.40 106.15 14,085 247.20 47.35 3,434.80 173.65
3500 2.55 0.49 0.25 6.60 124.88 19,444 292.20 56.30 4,862.50 208.17
4000 2.54 0.49 0.24 6.40 141.92 25,075 337.50 63.51 6,168.50 237.69
4500 2.52 0.49 0.26 5.90 160.94 32,346 378.70 72.05 7,966.40 259.52
5000 2.51 0.49 0.24 6.40 177.68 39,327 411.20 79.09 9,583.30 292.39
5500 2.50 0.49 0.25 6.20 197.53 48,585 461.80 88.56 12,000 318.63
6000 2.49 0.49 0.24 5.90 212.67 56,242 491.40 95.82 14,058 354.27
6500 2.49 0.49 0.25 6.20 231.81 67,051 541.50 104.12 16,644 377.04
7000 2.48 0.49 0.25 5.90 249.96 77,836 579.30 112.71 19,554 401.65
7500 2.47 0.49 0.25 5.80 267.74 89,419 626.30 119.68 21,986 443.35
8000 2.46 0.49 0.25 5.90 285.40 101,360 661.60 127.38 24,787 460.05
8500 2.46 0.49 0.23 6.20 302.02 113,320 688.30 134.64 27,515 494.58
9000 2.45 0.49 0.24 5.90 321.19 128,210 738.70 144.12 31,663 520.86
9500 2.45 0.49 0.25 6.20 339.39 143,330 776.80 152.16 35,326 541.30
10000 2.44 0.49 0.25 6.00 356.57 158,060 819.80 159.84 38,966 576.08

We simulate MCNs of different sizes to gain insights into the structural properties. We present the summary
statistics of the MCNs of various number of nodes in Table S3 to S5. We are interested in the following representative
network metrics and these metrics are the average of 10 random realizations of MCNs:

1. Average path length measures the mean shortest path length among all pair of nodes in MCN.

2. Average local clustering coefficient is calculated following the definition in [5] and measures the average cliquish-
ness of individual travelers.

3. Assortativity measures the proclivity of a node to attach to another node of a similar degree. This metric
quantifies the similarity of the nodes that get into contact.

4. Diameter measures the longest shortest path of the MCNs.

5. < k > is the average unweighted degree of the MCNs.
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Table S4: Summary statistics of the MCNs of various number of nodes for Shanghai.

Number
of
nodes

Average
path
length

Average
clus-
tering
coeffi-
cient

Assor-
tativ-
ity

Diam-
eter

<k> <k2> <kmax> <d> <d2> <dmax>

500 3.14 0.46 0.27 7.40 14.48 280.46 41.90 9.50 139.37 35.67
1000 2.89 0.46 0.30 7.60 29.14 1125.50 77.20 18.78 528.15 67.91
1500 2.77 0.47 0.29 7.80 43.56 2483.10 117.40 28.37 1179.50 102.35
2000 2.71 0.47 0.30 7.60 58.74 4516.80 154.30 37.91 2085.60 136.65
2500 2.67 0.47 0.30 7.80 73.57 7098.20 192.60 47.48 3275.60 172.57
3000 2.64 0.47 0.30 8.30 87.83 10030 231.50 57.26 4737.90 204.34
3500 2.62 0.47 0.29 7.50 102.58 13642 274.60 66.58 6386 240.23
4000 2.60 0.47 0.30 7.40 116.81 17751 306.90 75.84 8276.20 261.84
4500 2.59 0.47 0.30 7.30 131.69 22497 344.40 85.60 10504 295.58
5000 2.57 0.47 0.30 7.30 146.25 27856 389.10 95.46 13144 335.95
5500 2.56 0.47 0.30 7.40 160.56 33407 423.10 104.59 15692 374.46
6000 2.55 0.47 0.29 7.30 174.79 39561 465 113.71 18553 410.25
6500 2.54 0.47 0.29 7.30 190 46854 504.10 123.32 21845 429.61
7000 2.53 0.47 0.30 7.10 205.03 54479 552.70 133.28 25513 471.11
7500 2.52 0.47 0.29 8 221.12 63337 584 143.07 29267 492.32
8000 2.52 0.47 0.29 8 232.36 69754 609.50 151.18 32655 526.39
8500 2.51 0.47 0.29 6.90 251.55 81864 656.70 164.12 38671 575.84
9000 2.50 0.47 0.29 7.20 263.96 89996 698 171.97 42270 612.77
9500 2.50 0.47 0.29 7.40 277.66 99696 734.20 180.60 46780 641.35
10000 2.49 0.47 0.30 7.10 292.74 110970 778.80 190.79 51981 676.15

Table S5: Summary statistics of the MCNs of various number of nodes for Shenzhen.

Number
of
nodes

Average
path
length

Average
clus-
tering
coeffi-
cient

Assor-
tativ-
ity

Diam-
eter

<k> <k2> <kmax> <d> <d2> <dmax>

500 3.01 0.53 0.26 6.70 20.51 552.23 51.60 11.54 216.49 42.15
1000 2.78 0.54 0.27 6 41.59 2227.10 101.20 23.45 874.57 86.62
1500 2.69 0.54 0.25 5.20 61.70 4882.30 154.60 35.44 1996.70 132.55
2000 2.64 0.54 0.23 5.60 83.32 8839 199.90 47.70 3570.50 175.15
2500 2.60 0.54 0.26 5.10 104.38 13918 272.10 60.10 5650.10 223.27
3000 2.57 0.54 0.25 5.10 125.54 20095 328.70 71.94 8064 256.44
3500 2.56 0.54 0.24 5 144.51 26587 361.90 82.46 10620 295.50
4000 2.55 0.54 0.24 5.10 166.57 35318 404.40 95.47 14250 354.75
4500 2.53 0.54 0.24 5 187.63 44732 466.60 107.36 17976 390.15
5000 2.53 0.54 0.25 5 206.49 54322 522.20 118.88 22117 437.16
5500 2.51 0.54 0.24 5 228.79 66332 582.80 131.54 26888 491.68
6000 2.50 0.54 0.24 5 249.88 79360 656.50 143.23 31951 518.46
6500 2.50 0.54 0.24 4.80 269.98 92430 728.10 154.43 37126 571.30
7000 2.49 0.54 0.24 5.20 291.62 108070 776.50 167.16 43457 621.85
7500 2.48 0.54 0.24 5 311.65 123240 831.90 177.91 49027 641.73
8000 2.48 0.54 0.24 5 333.22 141000 893.10 190.60 56325 699.74
8500 2.48 0.54 0.24 4.80 354.44 159240 942.40 203.12 63857 724.36
9000 2.47 0.54 0.24 4.80 372.76 176220 980 213.35 70824 769.69
9500 2.47 0.54 0.23 4.80 395.30 198090 997.20 225.65 78760 792.65
10000 2.46 0.54 0.24 4.80 414.51 217520 1068.70 237.12 87273 871.27
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6. < k2 > is the average second moment of the unweighted degree of the MCNs.

7. < kmax > is the maximum degree of the unweighted MCNs.

8. < d > is the average weighted degree of the MCNs.

9. < d2 > is the average second moment of the weighted degree of the MCNs.

10. < dmax > is the maximum weighted degree of the MCNs.
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Figure S2: Change of average path length with increasing number of nodes in MCNs.
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Figure S3: Correlation between node degree and the average degree of neighboring nodes. The results are obtained
from a sample MCN with 1000 nodes for Guangzhou during 8:00-8:30 AM.

Despite the differences in scale and layout of the metro networks, we can immediately observe several structure
properties that are universal across the MCNs. The MCNs of different cities and a various number of nodes all present
high values of average local clustering coefficient, short average path lengths and small network diameters. Moreover,
these statistics are found to converge to fixed values with the number of nodes increases from 500 to 7,000 and then
become invariant with further increases in the number of nodes in the network (see Fig. S2 for the convergence of
average path length). These results suggest that the structural properties of the MCNs are primarily determined
by the layout and scale of the metro network. And the minor differences in the values of these network metrics are
also reflections of the differences in their metro systems. Since Shanghai has the largest metro network, we observe
the average path length and the network diameter are in general higher than those of Guangzhou and Shenzhen,
and the average local clustering coefficient is comparatively lower than other cities due to more diverse destinations
among travelers. Finally, the assortativity values of the three cities imply that MCNs are weakly assortative where
nodes are likely to be connected to other nodes with a similar degree and this can be verified from the visualization
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in Fig. S3. In general we observe a positive correlation between the node degree and the average degree of the
neighboring nodes, but there is also a huge discrepancy among the average degree of the neighboring nodes for the
nodes of similar degree. This indicates a certain level of randomness in the number of contacts in the MCN, which
is likely to depend on the time of arrival and the specific pair of trip origin and destination.
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Figure S4: Randomization of simulated MCNs with 1000 nodes using data from Guangzhou during 8:00 to 8:30 AM.
(A) presents the dissimilarity between the randomized network and the original MCN with increasing number of
swaps. The two networks become almost completely dissimilar with 222 swaps. We compare the distribution of the
average path length (B), network diameter (C), average local clustering coefficient (D) and assortativity (E) before
and after the randomization using 20 samples of the simulated MCNs.

S2.2 Network randomization

To verify the statistical significance of the network metrics for MCNs, we conduct the randomization of the simulated
MCNs by selecting two random links in the MCN and swap their endpoints, which is also known as XSwap [6]. This
process creates a completely randomized counterpart of the generated MCN, and we can then compare their structural
properties to validate if the structure characteristics discussed above specifically pertain to the MCNs. We note that
XSwap produces the randomization of the MCN while preserving the same degree distribution. We compare the
network metrics discussed above among 200 samples of MCN and the corresponding randomized networks, and
the results are shown in Fig. S4. It is obvious that the distributions for MCNs and the random counterparts are
independent for all the metrics.differences in the distributions of network metrics between the two networks are
statistically significant. And we further conduct the two-sample t-test for these metrics, with the null hypothesis
being that the sample metrics from MCNs and the randomized networks are from the distribution with the same
mean and variance. The results reject the null hypotheses with p-values closing to 0. This confirms the observed
structural properties are distinct in MCNs. These results highlight that MCN is a special type of network that
presents universal structural properties though being stemmed from metro systems of different scales and layouts.

S2.3 Degree distribution

The universality of the MCN can also be observed from its unweighted and weighted degree distributions. We first
observe that with the same number of nodes in MCNs, the average unweighted degree and weighted degree are
different among the three cities. Shenzhen metro has the highest average unweighted and weighted node degree
and also the largest variation of node degree, followed by Guangzhou and Shanghai respectively. This is likely
because that Shenzhen has the smallest metro network among the three which results in higher chance of contact
and hence higher clustering coefficient and average node degree. But the probability density functions for the degree
distributions of the three cities present striking similarities. As shown in Fig. S5, the unweighted degree distribution
shows that there is a large proportion of nodes of degree smaller or equal to around half of the maximum degree in
MCN and it has a tail that decays almost exponentially fast. One may be tempted to fit a power-law distribution to
explain the decay of the tail. Indeed, many real networks are observed to be well explained by power-law distribution
and we observe similar decaying trend between MCN and the power-law counterpart. And the MCNs are shown to
be significantly different from the random networks in terms of the overall shape and the tail behavior. But there
are two subtle differences that prevent the use of power-law distribution for characterizing the degree distribution
of MCNs. First, as seen in Fig. S5, the chance of having high-degree hubs in MCN is much lower as compared to
the scale-free network of the same number of nodes and links. This indicates the decay of the tail is faster than
that in the scale-free network. But more importantly is that MCNs are deemed to be scale-dependent and the
degree distribution is closely associated with the number of nodes or equivalently the number of travelers in the
metro system. This poses a fundamental contradiction to the philosophy behind the power-law distribution and its
properties.

S6



0 50 100

k:Number of contacts

10 -4

10 -3

10 -2

10 -1

P
(k

)

A

0 50 100

k:Number of contacts

10 -4

10 -3

10 -2

10 -1

P
(k

)

0 50 100

k:Number of contacts

10 -4

10 -3

10 -2

10 -1

P
(k

)

MCN

Random network

BA model

B C

Figure S5: Comparing the probability density function of the degree distribution of MCNs with the random networks
and scale-free networks (generated using the Barabasi–Albert (BA) model) with same number of nodes (N=1000)
and links for (A) Guangzhou, (B) Shanghai and (C) Shenzhen.
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Figure S6: Change of node degree and the standard deviation of node degree with increasing number of nodes in
MCNs. (A) Guangzhou, (B) Shanghai and (C) Shenzhen.

Nevertheless, the degree distribution of MCN presents several surprising properties that are usually seen in the
scale-free network. The first is the possible divergence of < k2 > and < d2 > as shown in Fig. S6, where the standard
deviation of the node degree increases with higher average node degree. Such a phenomenon is one important reason
that leads to the presence of scale-free property and this is observed in the MCNs for all three cities. In addition,
despite seeing that the chance of large hubs is much lower in MCN than in the scale-free network, we empirically
observe that the maximum degree of the MCN also increases linearly with an increasing size of the network. This
again is a unique property that is found in scale-free networks:

kmax ∝ N
1

γ−1 (1)

where γt is the exponent the power-law distribution.
In summary, by analyzing the simulated MCNs, we find that several structural properties of the MCNs are

invariant to the size of the network and are primarily determined by the layout and scale of the metro systems.
We show that these properties are rare in random networks and are likely to be distinct features of MCNs that are
universal across different cities. But more importantly, while presenting fundamental differences when compared
with scale-free networks, the MCNs also present universal structural properties that are usually found in scale-free
networks. These findings define the MCN as a special class of networks that arises from the collective behavior of
travelers and also the interplay between trip patterns and the metro system layout.

S3 Individual level disease transmission model

Based on the constructed MCNs, we next model the percolation of communicable diseases on the MCNs with the
individual based model (IBM). The IBM is adapted from the non-linear dynamical system approach in [7]. In the
IBM, each traveler is a node in MCN and the transmission takes place between two travelers with positive βij . We
consider the classical susceptible-infectious-susceptible (SIS) model as the disease dynamics, while a more refined
model such as SIR and SEIR can also be embedded.
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The IBM model takes the following items as model input:

1. The unweighted adjacency matrix G or weighted adjacency matrix A of the MCN.

2. Disease parameters: unit transmission rate β and recovery rate r, where 1/r represents the unit number of
time steps required for a full recovery.

S3.1 Disease transmission rate

For communicable diseases that spread upon contact, it is well understood that the exposure duration and contact
distance between two individuals are two contributing factors to successful transmission. In our study, the strength
of transmission between two individuals is measured by the expected contact duration of two travelers based on their
travel profile, and scales the probability of contact by considering the chance if two individuals are within effective
transmission distance. As a consequence, we are able to measure the heterogeneous transmission rate between two
travelers.

S3.2 The model

Denote pi,t as the probability that node i is infected at time t. When an individual i travels, the probability that i
stays healthy at time t can be written as:

1− pi,t = (1− pi,t−1)qi,t + pi,t−1r (2)

where qi,t represents the probability that neighboring nodes of i fail to transmit disease to node i at time t. The first
term on right hand side of the equation implies the node was healthy at time t− 1 and is not infected at time t, and
the second term suggests that the node was infected at time t− 1 but recovered at time t.

The probability that all neighbors of i failed to transmit the disease can be written as:

qi,t =
∏

j∈N (i)

(1− pj,t + (1− βi,j)pj,t) (3)

with N (i) denotes the set of neighboring nodes of i. The right hand side also also contains two parts: either a
neighbor j is not infectious at current time t (1− pj,t), or if j is infectious but fails to transmit the diseases.

By rearranging equation 2, we can express the probability that node i is infected at time t as

pi,t = 1 + pi,t−1(qi,t − r)− qi,t,∀ i ∈ V (4)

And the entire system dynamics over the MCN can be expressed in the matrix form as

Pt = G(Pt−1) (5)

So that the disease spreading on MCN is characterized as a non-linear dynamic system.

S3.3 Condition for disease free equilibrium

The disease dynamic system on MCN has two equilibrium states. One is the disease free equilibrium (DFE), where
each individual is in S (healthy) state and the disease is completely eliminated. On the contrary is the endemic
equilibrium, where there will always be a positive portion of nodes that are in I state. Formally, the DFE can be
defined as

Definition 1 (Disease free equilibrium (DFE)). The system reaches the disease free equilibrium if at time t pi,t = 0
for all nodes.

The vulnerability of a metro system therefore corresponds to the stability condition for the IBM of the MCN
to reach DFE. The stability of the system depends on how the system may return to equilibrium under small
perturbation. If the perturbation diminishes and the system goes back to the equilibrium point, the DFE point is
said to be asymptotically stable, otherwise the system will reach the endemic state. Before we establish the stability
condition for DFE, we first introduce the Gershgorin Circle theorem [8] as follows

Theorem 1 (Gershgorin circle theorem). Every eigenvalue of a complete matrix A lies within at least one of the
Gershgorin discs D(ai,i, Ri):

|λ− ai,i| =

∣∣∣∣∣∣
∑
j 6=i

ai,jxj

∣∣∣∣∣∣ ≤
∑
j 6=i

|ai,j ||xj | ≤
∑
j 6=i

|ai,j | = Ri. (6)

where λ is the eigenvalue of A.
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Based on Gershgorin circle theorem, we develop the following condition for the stability of the DFE on MCN:

Proposition 1. The DFE is asymptotically stable if maxi(
∑
j(βi,j)) < r.

Proof. We proof the proposition by linearizing the non-linear dynamic system G(Pt−1 = 0) at the DFE and measuring
the partial derivatives K:

K =
∂Pt(0)

∂pt−1
(7)

where we have
Ki,j = −r + 1, if i = j (8)

Ki,j = βi,j , if i 6=j and i,j are adjacent (9)

Ki,j = 0, o.w. (10)

Therefore we have
K = (1− r)I +B (11)

For the DFE to be stable, it must be satisfied that the largest eigenvalue of K is less than 1:

ρ(K) < 1 (12)

Define δ as an upper bound of the eigenvalue of K. Since all diagonal entries of K are identical, by applying
Theorem 1, we have

ρ(K) ≤ δ = maxi(Ri(B)) +Ki,i = maxi(
∑
j

(βi,j)) + 1− r (13)

To satisfy the condition in equation 12, we require the upper bound δ to satisfy:

maxi(
∑
j

(βi,j)) + 1− r < 1 (14)

This gives that maxi(
∑
j(βi,j)) < r and completes the proof.

Proposition 1 has several important implications. The risk level of the MCN is shown to be dictated by the
individual who has the highest risk exposure. As long as the exposure rate of this particular individual is smaller
than the recovery speed, the system will reach DFE. Otherwise the system may be either DFE or endemic. However,
in practice, if we would like to control the spread of communicable diseases, it is unlikely that we may identify who
exactly this person is. Even if this person is spotted, vaccine/quarantine the individual does not necessarily reduce
the risk level of the overall system, since the second riskiest person may have a similar level of risk exposure. This
implies that we would also need to examine the structure of the contact network to devise feasible control strategies.
In addition, the model provides the solution to monitor the vulnerability of metro systems at very fine scale and
identify the periods of time that are of particularly high risk level.

S4 OD-level model

One drawback of the IBM model, however, comes from its computational bottleneck. It will be very expensive to
generate the large-scale MCN with millions of passengers, which copes with the passenger demand level in real-world
scenarios. In this regard, we also develop a metapopulation model based on the flow of travelers between each pair
of origin and destination (OD) pair. The OD level model can be used to monitor the risk level of metro systems, but
it does not reveal any insights on the contact pattern among individual travelers. The OD-level model treats each
pair of OD as the set of nodes and the contagion pattern between OD pairs as the set of links. It can be readily
seen that the total number of OD pairs in a given metro network is the square of the number of stations, which is
much more scalable as compared to constructing contact networks for millions of travelers. Denote Si and Ii as the
susceptible population and infected population of OD pair i, and let P be the set of OD pairs in the network, we
have the following equations

Ei,j = βd̄j,iSiIj (15)

where Ei,j represents the proportion of susceptible population of i being infected by the infectious population of
j and d̄j,i is the expected contact duration between OD pairs i and j. The disease dynamics at the OD level can
therefore be written as:

dIi
dt

= −rIi +
∑
j∈P

Ei,j ,∀i ∈ P (16)
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Moreover, since Ii + Si = Ni, where Ni is the total number of travelers for OD pair i, equation 16 can be further
rewritten as:

dIi
dt

= −rIi +
∑
j∈P

βd̄j,iNiIj −
∑
j∈P

βd̄j,iIiIj ,∀i ∈ P (17)

And the matrix form is therefore
dI

dt
= FI + b(I) (18)

where F is a square matrix with its entry: Fii = βd̄i,iNiIi − r and Fij = βd̄j,iNiIj . b(I) is a column vector with its
entry being b(I)i = −

∑
j∈P βd̄j,iIiIj . Equation 18 gives the disease dynamics at the OD level.

We can see that one important difference between the OD-level model and the IBM is that the OD-level model
use d̄ij as the aggregate representation of the contact duration between all travelers of OD pair i and travelers of OD
pair j, rather than the individual level contact duration dij between travelers i and j. As a result, it sacrifices the
fidelity for modeling disease at the individual model, but can be used for understanding the system level dynamics
more efficiently.

S5 Generation model

By observing that multiple metro networks in different cities share very similar degree distributions in their MCNs,
we next establish the generation mechanism to model how the MCNs are shaped during travel. The goal is to build a
single generation mechanism that is capable of restoring the MCNs of all cities to support the universality of MCNs.

Being different from many other networks, the MCNs are special in the way that the number of links each
node being adjacent should be a function of the total number of nodes in the MCNs. This corresponds
to the congestion effect in the metro system with more number of travelers. Consequently, the MCNs may not be
generated in a way like preferential attachment [9] where new nodes and links are added sequentially. Instead, we
follow a process where we first estimate the total number of links in the network and then assign the links among
the nodes in a way similar to the configuration model.

To cope with the congestion effect in MCNs, we consider the expected number of contacts each node may encounter
as:

ci = αtγti (N − 1) (19)

This states that the number of contacts is proportional to the rescaled travel time tγti and the number of nodes N .
In particular, with 0 < γt ≤ 1, tγti suggests more expected number of contacts with increasing travel time, and if we
take the derivative of tγti with respect to ti, we have

dtγi
dti

= γtt
γt−1
i (20)

which implies that, in contrast to the rescale as γti, the number of contacts does not increase linearly with increasing
ti. Instead, the increase rate will drop with the increase in travel time. Indeed, the number of contacts one may
have with 40 minutes of travel should not be 10 times that of the number contacts as if one travels for 4 minutes.
Regarding the value of γt, we define it as the similarity coefficient that measures the ’similarity’ of travels among all
travelers. A higher value of γt indicates that, on average, a traveler will have a higher contact chance with another
traveler, e.g., two travelers are more likely to travel in the same direction to the same destination. On the other
hand, the value of α reflects the scale of the metro network, with the physical meaning being the contact rate per
individual traveler per unit time of travel. As a result, α is a system dependent value and varies across the cities.

With the above definition, we can approximate the total number of links (contacts) in the MCNs as:

C =

N∑
i=1

ci (21)

And if we consider each link as two stubs (half links), denoting M = 2C and mi = 2ci, we then assign these stubs
to each node based on their contribution tγti , where the probability that a randomly chosen stub is adjacent to node
i with travel time ti as:

wi =
mi

M
=

tγti∑N
j=1 t

γt
j

(22)

While each stub counts as one degree for each node, we can therefore write down the probability density function
that a node of travel time ti is of degree k follows the binomial distribution:

p(k|ti) =

(
M

k

)
wki (1− wi)M−k (23)
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Then for a randomly selected node in the MCN, the probability density function for the number of contacts follows

p(k) =

N∑
i=1

p(ti)

(
M

k

)
wki (1− wi)M−k (24)

where p(ti) is the probability density function for the human mobility within metro system and is observed to be
well captured by the exponential distribution. With large M , we can approximate the binomial distribution as the
Poisson distribution and hence we have

p(k) =

N∑
i=1

(Mwi)
ke−Mwi

k!
p(ti) (25)

and this gives the probability density function for the unweighted MCN.
Following equation 25, we can subsequently generate a MCN with M stubs attached to each node. To produce

the weighted MCN, we follow the process of the configuration model as:

1. Randomly selected two stubs in the unweighted MCN, with the nodes adjacent to the stubs as i and j.

2. Connect the selected stubs with an link, and assign the weight to the link: dij ∝ min(ti, tj).

3. Repeat the above two steps until all stubs are exhausted. Output the weighted MCN.

In summary, the above procedure describes the growth of MCN as a two-stage process where we first determine if
two travelers will get into contact and then decide the duration of their contact which is assumed to be proportional
to the shorter travel time of the two.

S5.1 Validation

The validation of the generation model involves the calibration of the model parameters and then verify if the
calibrated generation model is representative of the simulated MCNs from the smart card data. The correctness of
the generation model is validated using the two-sample Kolmogorov–Smirnov (KS) test [10] to compare the CDF of
the degree distribution of the MCN from the generation model and the CDF of the degree distribution of the MCNs
simulated from the smart card data. The null hypothesis of the KS test is that the two data samples for comparison
are drawn from the same continuous distribution. Specifically, we bin the degree distribution of each MCN into 20
equal-length intervals and conduct KS test on the probability distribution of the binned data.

The calibration of model parameters is to find the best γt and α value that leads to the best goodness of fit between
the generation model and the simulated MCNs. In particular, we have different γt for different time intervals while α
is held the same across all time intervals for a particular city. Since we do not have a closed-form representation for
the probability density function of the weighted MCNs, we conduct cross-validation to find the pair of parameters
that minimizes the KS statistics. For each city, we consider α being time-invariant since it captures the impacts of
metro network structure, and γt will change over time to reflect temporal variations of passenger trip patterns. We
perform cross-validation to determine the optimal α and γt for each city and for each time period, with the selection
criteria being the parameter combination that gives the lowest sum of KS statistics for weighted degree distribution
and unweighted degree distribution of the MCNs.
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Figure S7: Validation of the Poisson distributed number of contacts.

S5.2 Measure of similarity

To further validate the correctness of γt, we present the metric for measuring the trip similarity among all travelers
and we compare the computed metrics to the fitted γt values. The similarity is measured by first constructing the
correlation matrix Q of the trip pairs, where for each entry of Q:

Qi,j = fifjσi,j (26)
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Figure S8: Relationship between the number of contacts per individual and the total system travel time. (A)
Guangzhou, (B) Shanghai and (C) Shenzhen. The change of travel time reflects the increase in number of nodes
from 500 to 5000 with an increment of 500 at each step.

where fi and fj represent the normalized trip flow traveling on OD pair i and OD pair j (number of nodes on OD

pair i divided by total number of nodes in MCN). σi,j =
di,j

maxdi,j
refers to the standardized contact duration between

the two OD pairs. In this regard, each entry of Q measures the pairwise contagion strength and row i of Q therefore
gives the level of correlation of OD pair i with all other OD pairs. And the correlation depends on both the demand
level as well as the contact duration.

Given the correlation matrix Q, we next extract the top n eigenvalues of Q as λ1, λ2, ..., λn, and we define
similarity index as the standard deviation among the top n eigenvalues:

s =

√∑
(λi − λ̄)2

n
(27)

where λ̄ =
∑
λi/n refers to the mean of the eigenvalues. With the normalization of trip flow and standardization of

contact duration, we restrict s to lie between 0 and 1.
The idea of similarity index is related to the principal component analysis of the correlation matrix, where the

trace of the correlation matrix measures the total variance and the top n principal components seek to maximize
the variance. The standard deviation among the top n eigenvalues therefore measures the differences in the total
contribution to the total variance of each component, and hence reflects the trip differences among passengers. In
particular, if those trips are totally uncorrelated and the trips, then the eigenvalues are all of the same value and the
standard deviation among them is simply 0. An example in metro system is that the demand are evenly distributed
among all OD pairs and these OD pairs have no overlapping segments to enable contacts. On the other hand, if some
of the trip pairs are highly correlated, we should have few eigenvalues of value much higher than others, which gives
rise to the large standard deviation. An extreme case in the metro system is that all travelers leave from the same
origin to the same destination so that these trips are perfectly correlated and the standard deviation is therefore 1.
The correlation matrix for metro systems is of size N2 ×N2 (N here is the number of stations) and we do not need
to compute all N2 eigenvalues. Instead, based on empirical observations, we find that eigenvalues drop quickly to
nearly zero and we therefore set n = 200.

S6 First and second moment of node degree in MCN

Here we develop the first and second moment of the MCNs based on the generation model. We also derive an ap-
proximation of the largest node degree in a given MCN. These help to gain further insights on the degree distribution
of the MCNs with an increasing number of nodes.

S6.1 First moment < k >

From the generation model for MCN we have:

p(k) =

N∑
i=1

e−Mwi
(Mwi)

k

k!
p(wi) (28)
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And we can calculate the average degree of the MCN as:

< k >=

K∑
k=1

p(k)k =

K∑
k=1

k

N∑
i=1

e−Mwi
(Mwi)

k

k!
p(wi) =

N∑
i=1

p(wi){
K∑
k=1

ke−Mwi
(Mwi)

k

k!
} (29)

When K →∞, the summation of discrete degree can be replaced with the integration:

K∑
k=1

ke−Mwi
(Mwi)

k

k!
=

∫ K

0

ke−Mwi
(Mwi)

k

k!
dk = Mwi (30)

where Mwi is the mean of the binomial distribution of M trials and wi rate of success. And we therefore have:

< k >=

N∑
i=1

p(wi)Mwi (31)

Note that p(wi) = p(ti) represents the probability density function for human mobility in metro network, which we
find to be approximated by an exponentially decaying tail. We consider that

Mwi = α(N − 1)tγti , p(ti) = be−ti/λ (32)

Then

< k >=

N∑
i=1

α(N − 1)tγti be
−ti/λ ≈

∫ tmax

0

α(N − 1)tγtbe−t/λdt (33)

Where the integration gives ∫
tγtbe−t/λdt = −bλγt+1Γ(γt + 1,

t

λ
) + C (34)

where Γ(m,n) is the upper incomplete Gamma function with Γ(m,n) → 0 if n → ∞, and Γ(m, 0) = Γ(m). This
suggests that

< k >= α(N − 1)bλγt+1Γ(γt + 1) (35)

which suggests that the average degree of MCN is linearly proportional to the number of nodes in the
network.

S6.2 Second moment < k2 >

In addition, we can also calculate < k2 > as

< k2 >=

K∑
k=1

p(k)k2 =

N∑
i=1

p(wi){Mwi(1− wi +Mwi)} (36)

where Mwi(1−wi+Mwi) represents the second moment of the binomial distribution. Following the same procedure
for deriving < k >, we arrive at the expression of < k2 > as

< k2 >= α2(N − 1)2bλ2γt+1Γ(2γt + 1) +O(N) (37)

This implies that the variance of MCN scales quadratically to the increase in number of nodes. These
results explain the divergence of < k2 > with N →∞.

S6.3 Max degree node kmax

To estimate the maximum degree in MCN, let we consider the probability that∫ ∞
kmax

p(k)dk = 1− p(kmax) = 1−
N∑
i=1

p(wi)

kmax∑
k=1

e−Mwi
(Mwi)

kmax

kmax!

≈
N∑
i=1

p(wi)e
−Mwi

(Mwi)
kmax+1

(kmax + 1)!

≈ bBkmax+1Γ(kmax + 2)

(kmax + 1)!(B + 1/λ)kmax+2

(38)
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where B = α(N − 1).
And for the maximum degree, we expect that∫ ∞

kmax

p(k)dk =
1

N
(39)

so that there is one node that is within the range [kmax,∞]. This condition suggests that

Bkmax+1

(B + 1/λ)kmax+2
=

1

Nb
(40)

By taking the natural log on both sides, the equation simplifies to

kmax + 1 =
ln(Nb)− ln(B + 1/λ)

ln(B + 1/λ)− ln(B)

∝ 1

ln(1 + 1/(αλ(N − 1)))

∝ αλ(N − 1)

(41)

where for the last step we make use of the Taylor series expansion for log values

ln(1 + 1/(αλ(N − 1)) =
1

αλ(N − 1)
+O(1) (42)

This result indicates that the maximum degree of the MCN is linearly proportional to the number of
nodes in the network.
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