1	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	Supplemental Information
14	
15	Facilitative lysosomal transport of bile acids alleviates ER stress in mouse
16	hematopoietic precursors
17	
18	Persaud et al.
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	

Supplemental Materials and Methods

31

32 Gene expression analysis

33

Total RNA was extracted from cells using the RNeasy Mini Kit (Oiagen, Valencia, CA) 34 following the manufacturer's protocol, and the RNA quality and quantity were measured using 35 the NanoDropTM 2000 Spectrophotometer (ThermoFisher Scientific, Waltham, MA). 36 Quantitative PCR detection of genes was reported after reverse transcription of 1µg of total RNA 37 using the High Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific, Waltham, 38 MA). qPCR was performed using the PowerUP SYBR Green Master Mix (ThermoFisher 39 Scientific, Waltham, MA) with sequence-specific primers (Sigma). $\Delta\Delta$ CT method (1) was used 40 to determine the expression levels of genes under investigation by normalizing the Ct values to 41 GAPDH. Each gene was amplified independently, and all experiments were performed in 42 triplicate. Exon-spanning primers were designed using the primer bank web application and are 43 described in Table S3. 44

45

- 46 Lysosome Isolation and Enrichment
- 47

Enriched lysosomes from mouse bone marrow cells were obtained using a lysosome isolation kit (LYSISO1, Sigma-Aldrich, St. Louis, MO) with differential centrifugation, followed by a density gradient centrifugation and calcium precipitation, as mentioned in the manufacturer's protocol. In brief, bone marrow cell homogenates (H) were first prepared in 1x extraction buffer using a glass Dounce homogenizer and were subjected to centrifugation for 10 min at 1,000 xg at 4°C to remove the nuclear pellet (NP). The post-nuclear supernatant (PNS) obtained from the earlier step was further centrifuged at 20,000 xg at 4°C to obtain the crude 55 lysosomal fraction (CLF) containing a mixture of lysosomes and other cell organelles, while the resulting supernatant fraction was collected as the cytosolic fraction (CF). The CLF was re-56 suspended in a minimal volume of 1x extraction buffer (0.8mL per gram mice tissue) and 57 purified via density gradient centrifugation at 150,000 xg for 4 h on a multistep OptiPrep 58 gradient (8-27%), according to the manufacturer's details. Altogether, 10 fractions of 500 µL 59 each were collected, starting from the top of the gradient, and labeled as ELF 1-10 fractions 60 (Enriched Lysosomal Fraction). Further purification of the ELF fractions was carried out using 61 calcium chloride solution (250 mM), which precipitated the rough endoplasmic reticulum and 62 mitochondria followed by its subsequent centrifugation at 5,000 xg at 4°C to obtain the PLF 1-10 63 fractions (Purified Lysosomal Fraction). In order to determine the enrichment as well as recovery 64 of lysosomes, the homogenates as well as the different lysosomal fractions were assayed for 65 protein concentration (using BCA protein assay) and acid phosphatase activity, a lysosomal 66 marker enzyme (CS0740, Sigma-Aldrich, St. Louis, MO); while intactness of the lysosomes was 67 assessed, using neutral red dye assay provided with the LYSISO1 kit. Enriched lysosomes from 68 mouse HSCs were obtained using the MinuteTM Lysosome Isolation Kit (Invent Biotechnologies, 69 INC., Plymouth, MN) following the manufactures protocol. Then, the expression of different 70 subcellular marker proteins in the lysosomal fractions were evaluated using Western blotting 71 analysis by probing with specific antibodies against each marker protein like LAMP1. 72

73

74 ER Isolation and Enrichment

75

Enriched ER from mouse bone marrow cells were obtained using the ER isolation kit (ER0100) from Sigma-Aldrich (St. Louis, MO) with differential centrifugation and calcium precipitation, as mentioned in the manufacturer's protocol. In brief, bone marrow cell

79	homogenates (H) were first prepared in isotonic extraction buffer using a glass Dounce
80	homogenizer and were subjected to centrifugation for 10 min at 1,000 xg at 4° C to remove the
81	nuclear pellet (NP). The post-nuclear supernatant (PNS) obtained from the earlier step was
82	further centrifuged at 12,000 xg at 4°C for 15min to obtain the post mitochondrial fraction (PMF)
83	containing a mixture of ER and other cell organelles. Enriched RER was prepared by calcium
84	chloride (8mM) precipitation of PMF followed by centrifugation for 10 min at 8,000 xg at 4° C.
85	In order to determine the enrichment as well as recovery of ER, the homogenates as well as the
86	ER fraction were assayed for protein concentration (using BCA protein assay) and NADPH
87	cytochrome c reductase activity, an ER marker enzyme (CY0100, Sigma-Aldrich, St. Louis,
88	MO). Also, the expression of different subcellular marker proteins in the ER fractions were
89	evaluated using Western blotting analysis by probing with specific antibodies against each
90	marker protein.
91	
92	Immunoblots
93	

Whole cell lysates from blood cells were made in TNE buffer supplemented with 94 protease and phosphatase inhibitors. Total cell lysate containing 20 µg of protein were separated 95 by SDS-PAGE on an 8% or 12% polyacrylamide gel using the Bio-Rad gel electrophoresis 96 system following the manufacturer's protocol. Separated proteins were transferred onto PVDF 97 membranes using the Bio-Rad Trans-Blot Turbo Transfer System. Western blot analysis was 98 performed using GRP78 (Abcam 108615, 1:1000), GRP94 (Abcam 230842, 1:1000), p-PERK 99 (CST 3192, 1:1000), eIF2a (CST 9722, 1:1000), p-eIF2a (CST 9721, 1:1000), IRE1 (Abcam 100 37073, 1:1000), p-IRE1 (Abcam 48187, 1:1000), ATF6 (Novus Biologicals 40256, 1:1000), 101 ENT3 (ThermoFisher Scientific PA5-38039, 1:1000), and LAMP1 (CST 3243S, 1:1000) primary 102

103	antibodies, with GAPDH (CST 97166, 1:5000) as a loading control. Rabbit (Bethyl A120-201P,
104	1:5000) and mouse (Bethyl A90-116P, 1:5000) secondary antibodies were used, and proteins
105	were visualized using the SuperSignal TM West Pico PLUS Chemiluminescent Substrate
106	(ThermoFisher Scientific, Waltham, MA) on the ChemiDoc MP Imaging System from Bio-Rad.
107	The Image Lab 5.2.1 software (Bio-Rad Laboratories, Hercules, CA) was used for immunoblot
108	analysis. Raw blots are provided in the Data Source file.

110 XBP1 splicing assay

111

Total RNA was extracted from ST-HSCs using the RNeasy Mini Kit (Qiagen, Valencia, 112 CA) and reverse transcribed to cDNA using the SuperScriptTM IV First-Strand cDNA Synthesis 113 System (ThermoFisher Scientific, Waltham, MA) with random hexamers and RNAse inhibitor 114 115 added. The spliced (228bp) and unspliced (254bp) XBP1 cDNA segments were amplified by PCR using the Phusion Flash High Fidelity polymerase (ThermoFisher Scientific, Waltham, 116 MA) and primers described in Table S3. Amplified PCR products were run on a 2% agarose gel 117 stained with ethidium bromide in 1X UltraPure TBE buffer (ThermoFisher Scientific, Waltham, 118 MA), and imaged on ChemiDoc MP Imager (Bio-Rad, Hercules, CA). All samples were assayed 119 in duplicate with GAPDH as a loading control and subjected to densitometry measurements by 120 AlphaView Software 3.3 (Protein Simple, Santa Clara, CA). 121

122

123 Metabolomic analysis-Instrumentation

124

Untargeted metabolomics analysis was performed on a Thermo Fisher Scientific LTQ
 Orbitrap XL[™] Hybrid Ion Trap-Orbitrap hybrid mass spectrometer and a Waters 2795 HPLC
 separation module interfaced by electrospray ionization (ESI) source. For targeted metabolomics
 analysis, a Thermo Fisher Scientific Vanquish[™] UHPLC system connected to TSQ Quantiva[™]
 Triple Quadrupole Mass Spectrometer and interfaced with a heated electrospray ionization

(HESI-II) source. On both the instruments, data acquisition and analysis was conducted using
 Thermo XcaliburTM software.

132	Solid phase extraction (SPE) was carried out using Visiprep TM SPE Vacuum Manifold
133	(Sigma-Aldrich, St. Louis, MO). Mettler AE163 analytical balance was used for weighing
134	standards and buffers. An ultra-low upright temperature freezer from New Brunswick
135	(Eppendorf) maintained at $-70 \pm 10^{\circ}$ C was used to store the plasma, urine and tissue samples. In
136	addition, a branson 2800 ultrasonicator, Savant [™] SPD121P SpeedVac and Eppendorf [™] 5424R
137	Microcentrifuge were used for study sample preparation.
138	

139 140

9 Metabolomic analysis-Sample Preparation and Extraction

Initially, all the samples i.e. plasma, urine, liver and bone marrow cell samples were thawed on ice to avoid metabolite degradation. The plasma and the urine samples were vortexed and centrifuged at 21,000 xg prior to sample preparation. Since LT-HSC levels are low in mice, we pooled LT-HSCs from multiple mice (10-12 mice/group) within each group to obtain sufficient cells for our analysis. Quality control samples were prepared by creating a pooled sample for each matrix.

For reversed phase (RP) mode analysis, plasma and urine samples were extracted with 200 μ L of cold acetonitrile: methanol (3:1, v/v); while 200 μ L of cold methanol: water (1:1, v/v) was used in case of hydrophilic interaction liquid chromatography (HILIC) mode analysis. After vortex-mixing, the samples were centrifuged at 21,000 xg at 4°C for 10 min and 10 μ L of the supernatant was injected into the LC-FTMS system. For subcellular analysis, samples corresponding to 100 μ g of lysosomal or ER protein (determined using protein concentration by BCA assay) were extracted with 100 μ L of cold acetonitrile: methanol (3:1, ν/ν). The samples were vortex-mixed and then, centrifuged at 21,000 xgat 4°C for 10 min. The supernatant was filled in autosampler vials and volumes of 10 μ L injected into the LC-FTMS system.

157

158 LC-FTMS Data Analysis

159

Untargeted metabolomics data processing was performed using the open source software 160 package MZmine v.2.21 (http://mzmine.sourceforge.net/). Briefly, peak detection was performed 161 using the following filter conditions: chromatography peak intensity signal/noise > 25, retention 162 time tolerance: ± 0.25 min, and m/z tolerance: ± 0.04 , followed by normalization using reservine 163 and 4-nitrophenol as internal standards for positive and negative mode respectively. Then, a 164 chromatogram for each mass was constructed, which was deconvoluted into individual peaks 165 using the local minimum search algorithm. To remove isotopic peaks from the peak list, the 166 deconvoluted data were processed using the isotopic peak grouper algorithm. RANSAC 167 algorithm was applied to align detected peaks in the different samples, generating an aligned 168 peak list for $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ samples. The aligned peak lists containing m/z, retention 169 time and peak area were exported to Microsoft[®] Excel and filtered based on coefficient of 170 variation (CV) for the QC samples (< 20%) and normalized p-values for the Slc29a3^{-/-} samples 171 (< 0.05). Database search using HMDB, KEGG & LipidMaps was performed to establish peak 172 identities for each of the m/z in this filtered aligned list with a mass tolerance set to ± 10 ppm. 173 Peak identification was based on both accurate mass and calculated formula matching. In 174

addition, tandem mass spectra of pure standards confirmed the identity of the metabolitesexamined in the transport assay.

The identified peak lists containing peak identities, sample identities and their normalized 177 peak area intensities were imported separately into MetaboAnalyst[®] 3.0 for multivariate data 178 analysis. Briefly, data normalization of each dataset was initially performed using log 179 transformation and pareto-scaling with the missing values (if any) being replaced by a small 180 default value. Principal component analysis (PCA), partial least squares discriminant analysis 181 (PLS-DA) as well as orthogonal projection to latent structures discriminant analysis (OPLS-DA) 182 was used to visualize clustering of the $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ samples along with the QCs. 183 Unsupervised hierarchical clustering for data overview of each of the datasets was accomplished 184 with help of a heatmap generated using t-test. Euclidean distance measure and Ward clustering 185 algorithm. Cross-validated PLS-DA was used to obtain a list of discriminating metabolites from 186 187 each dataset, ranked according to their Variable Importance in Projection (VIP) scores, with VIP >1.0 being considered relevant for group discrimination. 188

189

190 Xenopus Oocyte Transport Assay

191

192 The construction of pOX- Δ 36hENT3 Xenopus expression vector and *in vitro*

193 transcription and expression of Δ 36hENT3 in Xenopus oocytes were described earlier (2, 3).

194 Transport of radiolabeled substrates was conducted as described before (4). Briefly, 50 nanoliters

195 (400–800 ng/ μ l) of Δ 36hENT3 mRNA were injected into defolliculated oocytes. The injected

196 oocytes were incubated at 15 °C for 24 h before performing transport assays. Uptake of

radiolabeled substrates (3 H-adenosine or 3 H-BAs; 0.02 μ M) supplemented in combination with

unlabeled substrates (to a final concentration of 100 μ M; for estimation of kinetic parameters)

199 was measured after 30 min of incubation in transport buffer (100 mM NaCl, 2 mM KCl, 1 mM CaCl₂, 1 mM MgCl₂, and 10 mM HEPES, pH 5.5) at room temperature. Uptake was terminated 200 by washing oocytes 3 times with arrest buffer (20 mM Tris-HCl, 3 mM K₂HPO4, 1 mM 201 MgCl₂·6H2O, 2 mM CaCl₂, 5 mM glucose, 130 mM N-methyl-D-glucamine) containing 20 mM 202 uridine. Individual oocytes were shaken overnight in 10% SDS for complete dissolution, and 203 204 then the radioactivity was quantified by Beckman liquid scintillation counter. Data represent the average \pm S.E. (n = 5–10 oocytes). The results were normalized for experimental variations and 205 analyzed using Graphpad prism software. The kinetic parameters, Km and Vmax were calculated 206 207 by fitting the data of uptake rate of identified metabolites to the Michaelis-Menten equation. A representative experiment from 3–5 independent experiments is presented. 208

The mass spectrometric validation of the transport of all unlabeled metabolites was 209 performed with oocytes according to the method reported earlier. Briefly, the oocytes obtained 210 after treatment with wash buffer was homogenized with 200 µL of extraction buffer (50% 211 methanol containing 0.1% acetic acid) and spiked with cholic acid-d4 (1µg/mL) and glycocholic 212 acid-d4 (1µg/mL) as internal standards. After incubation at 4 °C for 24 h, samples were 213 centrifuged at 20,000g for 10 min and supernatants collected. Samples (10 μ L) were injected into 214 the Thermo Scientific Vanquish UPLC system (Waltham, MA) interfaced with Thermo 215 Scientific TSQ Quantiva triple-stage quadrupole mass spectrometer (Waltham, MA) equipped 216 with H-ESI ion source. MS detection was carried out in positive and negative ionization modes 217 and the transition monitored for each metabolite were reported in table (Table S2 and S3). The 218 219 operational mass spectrometric parameters included capillary voltage: 4.5 kV; sheath gas: 35 arbitary units; auxiliary gas: 10 arbitary units; sweep gas: 2 arbitary units; ion transfer tube 220 221 temperature: 350°C; vaporizer temperature: 450°C; Dwell time: 50 ms per transition; Collision

222	Energy (CE): 5 V and collision induced dissociation (CID) gas: 1.5 mtorr. Chromatographic
223	separation was carried out on a Kinetex C_{18} (100 X 2.1mm; 1.7 µm particle size) from
224	Phenomenex (Torrance, CA). The mobile phase consisted of solvent A: Water (0.1 % formic
225	acid) and Solvent B: Acetonitrile (0.1 % formic acid). The flow rate was set at 0.5 mL/min and
226	the gradient program used was 0 min: 10% B; 2 min: 10% B; 5 min: 22% B; 20 min: 95% B; 24
227	min 95%B; 25 min: 10% B; 30 min: 10% B. The total run time was 30 min per sample and the
228	auto-sampler was maintained at 4°C throughout the analysis.
229 230 231	ENT3 Overexpression in HEK293 cells and HEK293 Transport Assay
232	HEK293 cells were seeded at a density of 1.0×10^5 cells/well in 24-well plates. After 24
233	hours, cells were transfected with a plasmid encoding ENT3 (pEYFP-ENT3) described
234	previously (2,3) using Lipofectamine 3000 following the manufacture's protocol. The culture
235	media was removed 24 hours post-transfection, and transport buffer (20 mM Tris-HCl, 3 mM
236	dipotassium phosphate, 1 mM magnesium, 2 mM calcium chloride, and 5 mM glucose)
237	containing 1 μ M cholic acid (CA; including 0.02 μ M ³ H-cholic acid) was added to each cell type
238	for 0.5, 3, 12 or 24 hours. Uptake was terminated by washing the cells with arrest buffer as
239	previously described (3), and radioactivity was quantified using the Beckman liquid scintillation
240	counter after cell lyses with 10% SDS. Protein was quantified using the Pierce [™] BCA Protein
241	Assay Kit (23225), and DPM values were normalized to protein content and presented as
242	pmol/mg of protein.
243	

3D QSAR Analysis

246	3D QSAR models were built through the 3D-QSAR online server (http://www.3d-
247	qsar.com/). The transport data relative to adenosine of 21 BA compounds was employed as the
248	training dataset to build 3D QSAR models. 2D chemical structures of BAs were converted to 3D
249	structures and subsequently minimized using Chem3D 16.0 (PerkinElmer/CambridgeSoft, UK).
250	30 conformations for each BA molecule were generated using Py-ConfSearch, and all
251	conformations were aligned to a cholic acid conformation with the RDKit method. After the
252	alignment, molecular interaction field (MIF) point based descriptors were used for building 3D-
253	QSAR models with known BA transport values with Py-CoMFA. The MIFs were generated
254	using C.3, C.cat, N.3, O.3, H, and C.2 as atom probes. Both electrostatic and steric interaction
255	fields were used. The sample point maximum distance was set to 1.0 Å. The experimental
256	transport coefficients relative to adenosine (TC_{ade}) were converted to their positive-logarithmic
257	scale by using the formula: $pTC_{ade} = -log (TC_{ade})$ and defined as the dependent variable. The
258	partial least square (PLS) regression method was used through the 3D-QSAR Py-CoMFA
259	module. The maximum number of components was set to 8, and Y scrambles were set to 10. The
260	derived QSAR models were assessed by regression coefficient (r^2) and validated by leave-one-
261	out (LOO) cross-regression coefficient (q^2). The robustness of the derived 3D-QSAR models
262	were validated by the leave-one-out (LOO) technique.
263	

264 Lentiviral gene transfer in mouse LSKs and HSCs

265

Lentiviruses harboring ENT3 or RFP were generated in HEK293T (packaging) cells by transfecting the target plasmids (Applied Biological Materials Inc., BC, Canada) and packaging plasmids (Trans-Lentiviral ORF Packaging Kit, Dharmacon, IL, USA), using the calcium phosphate transfection method as per the manufacturer's instructions. For viral transduction,

270	HS	SPCs were transduced with lentivirus (10^8 transduction units) in the presence of 8 µg/ml
271	po	lybrene in HSC medium on polypropylene tubes pre-coated with 1% bovine serum albumin
272	(B	SA), centrifuged at 1500 xg for 3 h at 32°C and incubated for 24 h without centrifugation.
273 274	Co	olony-forming cell (CFC) assay
275		
276		HSCs were plated at a concentration of 3.0×10^5 in semisolid MethoCult media
277	coi	ntaining a cocktail of cytokines designed for burst-forming unit-erythroid (STEMCELL
278	Те	chnologies, SF M3436) and colony-forming unit-erythroid (STEMCELL Technologies,
279	M.	3334) enumeration following the manufacture's protocol. Burst-forming unit-erythroid (BFU-
280	E)	and colony-forming unit-erythroid (CFU-E) were quantified after 14 days with and without
281	sal	ubrinal treatment (10 mM) using a Bright-field microscope.
282		
283	Re	ferences
284 285	1.	Schmittgen, T. & Livak, K. Analyzing real-time PCR data by the comparative CT method. <i>Nature Protocols 3</i> , 1101-1108 (2008).
286 287	2.	Govindarajan, R., Leung, G.P.H., Zhou, M., Tse, C., Wang, J., and Unadkat, J.D. Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative
288		nucleoside transporter-3. American Journal of Physiology-Gastrointestinal and Liver
289		Physiology 296, G910-G922(2009).
290	3.	Kang, N., Jun, A. H., Bhutia, Y. D., Kannan, N., Unadkat, J. D., and Govindarajan, R.
291		Human equilibrative nucleoside transporter-3 (hENT3) spectrum disorder mutations impair
292		nucleoside transport, protein localization, and stability. J. Biol. Chem. 285, 28343-28352
293		(2010).
294	4.	Rahman, M., Askwith, C. & Govindarajan, R. Molecular determinants of acidic pH-
295		dependent transport of human equilibrative nucleoside transporter 3. Journal of Biological
296		Chemistry 292, 14775-14785 (2017).

350	Supplemental Fig 1. Slc29a3 ^{-/-} mice have increased splenic apoptosis. (a) Representative
351	histological image of <i>Slc29a3</i> ^{+/+} spleen at 16 weeks immunostained for cleaved caspase 3
352	(cCasp3; <i>brown</i>) showing few hematopoietic cells undergoing apoptosis as indicated by green
353	arrows. (40x; Scale bar = 20 mm). One representative image from three independent experiments
354	is shown. (b) Representative histological image of <i>Slc29a3^{-/-}</i> spleen at 16 weeks immunostained
355	for cleaved caspase 3 (cCasp3; <i>brown</i>) showing numerous hematopoietic cells undergoing
356	apoptosis as indicated by green arrows. (40x; Scale bar = 20 mm). One representative image
357	from three independent experiments is shown. Bone marrow sections were not amenable for
358	immunostaining due to the decalcification process.
359	
360	
261	
301	
362	
363	
361	
504	
365	
366	
367	
507	
368	
369	
370	
570	
371	
372	
373	
374	
375	
376	
377	

412	Supplemental Fig. 2. The loss of ENT3 decreases <i>Slc29a3</i> ^{-/-} mouse HSPC differentiation into
413	erythroid precursors. (a) Colony enumeration of burst forming unit-erythrocytes (BFU-E)
414	produced from $Slc29a3^{(black)}$ and $Slc29a3^{(red)}$ HSPCs from 12-weeks-old mice ($n = 6$
415	mice/group, mean \pm SEM, *p < 0.05 by two-tailed t-test). (b) Colony enumeration of colony
416	forming unit-erythrocytes (CFU-E) produced from <i>Slc29a3^{+/+} (black)</i> and <i>Slc29a3^{-/-} (red)</i> HSPCs
417	from 12-week-old mice ($n = 6$ mice/group, mean \pm SEM, $*p < 0.05$ by two-tailed t-test). (c)
418	Colony enumeration of BFU-E produced from $Slc29a3^{+/+}$ (black) and $Slc29a3^{-/-}$ (red) HSPCs
419	isolated from 2, 5, and 12-week-old mice ($n = 6$ mice/group, mean \pm SEM, $*p < 0.05$ by two-
420	tailed t-test). (d) Colony enumeration of BFU-E produced from $Slc29a3^{+/+}$ (black) and $Slc29a3^{-/-}$
421	(<i>red</i>) spleen cells isolated from 2, 5, and 12-week-old mice ($n = 3$ mice/group, mean \pm SEM, *p
422	< 0.05 by two-tailed t-test).
423	
424	
425	
426	
427	
428	
429	
727	
430	
421	
431	
432	
122	
433	
434	
435	
436	
437	
438	

470	Supplemental Fig. 3. The loss of ENT3 alters the cell count of HSPC subpopulations in
471	$Slc29a3^{-/-}$ mice. (a) Representative gating strategy for HSPC subpopulations (LT-HSC, ST-HSC,
472	LSK+, MPP FLT3+, MPP2, MPP3, CMP, GMP, and MEP) from <i>Slc29a3</i> ^{+/+} and <i>Slc29a3</i> ^{-/-} mice
473	presented in supplemental fig. S9B and S9C. (b) HSPC subpopulations cell count derived from
474	analytical cytometry analysis of c-kit enriched bone marrow cells isolated from 12 week old
475	$Slc29a3^{+/+}$ (black) and $Slc29a3^{-/-}$ (red) mice (n = 3 mice/group, mean ± SEM, *p < 0.05 by two-
476	tailed t-test).
477	
478	
479	
480	
481	
101	
482	
183	
403	
484	
105	
485	
486	
487	
488	
489	
490	
491	
492	
174	
493	
404	
474	
495	

528	Supplemental Fig. 4. Flow cytometry gating strategies for ER stress, aggresome, apoptosis, and
529	cell cycle markers. (a) ER stress marker (GRP78, GRP94, Eif2a, and p-PERK) gating strategy
530	for HSPC populations (LSK, LSK FLT3-, ST-HSCs and LT-HSCs) from <i>Slc29a3</i> ^{+/+} and
531	<i>Slc29a3^{-/-}</i> mice presented in fig. 2a and fig. S6 and S7. (b) Aggresome marker (TFT) gating
532	strategy for HSPC populations (LSK, LSK Flt3-, ST-HSCs and LT-HSCs) from <i>Slc29a3</i> ^{+/+} and
533	<i>Slc29a3^{-/-}</i> mice presented in fig 2a and fig. S6 and S7. (c) Apoptosis marker (Annexin V and
534	Cleaved Caspase-3) gating strategy for HSPC populations (LSK, LSK FLT3-, ST-HSCs and LT-
535	HSCs) from <i>Slc29a3</i> ^{+/+} and <i>Slc29a3</i> ^{-/-} mice presented in fig. 2a and fig. S6 and S7. (d) Cell cycle
536	(Ki-67 and Hoecht 33342) gating strategy for HSPC subpopulations from <i>Slc29a3</i> ^{+/+} and
537	<i>Slc29a3^{-/-}</i> mice presented in fig 2b. (e) Gating strategy for lineage depleted HSC populations
538	(Lin ⁻ , c-kit ⁺ , Sca1 ⁺ , FLT3, CD34 ⁺) from <i>Slc29a3^{+/+}</i> and <i>Slc29a3^{-/-}</i> transplant mice presented in
539	fig 3.
540	
7 4 1	
541	
542	
543	
544	
544	
545	
546	
547	
548	
540	
549	
550	
551	
552	
002	
553	
551	
554	
555	
556	

557 а 558 **Averaged RAW Ct Values** 559 560 MPP c-kit+ LT-HSC ST-HSC LSK ΒM 561 (Flt3+) ΒM 562 Slc29a3+/+ 26.5 29.3 27.6 25.3 21.8 18.2 Slc29a3 563 564 Slc29a3^{-/-} 32.3 30.7 31.1 32.0 32.3 33.2 565 Slc29a3+/+ 21.3 23.3 23.3 12.5 24.6 16.1 566 GAPDH 567 Slc29a3^{-/-} 22.0 22.5 22.5 18.2 21.2 14.6 568 569 b 570 571 6000-Slc29a3^{-/-} Slc29a3^{+/+} in S/c29a3 mRNA (2^{- Δ ACt}) 572 5000-**Relative Fold Change** 573 4000 -574 800-575 400 576 577 20 578 579 10 580 581 0 582 MPP LSK c-kit BM LT-HSC ST-HSC ΒM 583 (Flt3+) 584 585 С **HEK293** 586 WBMC 587 HSPC 588 589 590 70 kDa ENT3 591 592 LAMP1 100 kDa 593 594 595 596

Supplemental Figure 5

597 598 599 600 601 602 603 604 605 606	Supplemental Fig. 5. <i>Slc29a3</i> expression in HSPC subpopulations. (a) Averaged raw Ct values after amplification of <i>Slc29a3</i> and <i>GAPDH</i> from LT-HSCs, ST-HSCs, MPP+, LSK, c-kit bone marrow (BM), and crude BM cells isolated from 5-week-old <i>Slc29a3</i> ^{+/+} and <i>Slc29a3</i> ^{-/-} mice. (b) qPCR data normalized to GAPDH and <i>Slc29a3</i> ^{+/+} mouse gene expression presented as relative fold change (2- $\Delta\Delta$ Ct) for each cell population from <i>Slc29a3</i> ^{+/+} (<i>black</i>) and <i>Slc29a3</i> ^{-/-} (<i>red</i>) mice (<i>n</i> = 3 mice/group, mean ± SEM). (c) Representative immunoblots of lysosomal ENT3 from HEK293 (positive control), bone marrow cells, and HSPCs from <i>Slc29a3</i> ^{+/+} mice. Lysosomal fractionation was confirmed with co-fractionation with the lysosomal membrane marker LAMP1. One representative blot from three independent experiments is shown.
607	
608	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	

Supplemental Fig. 6. Flow cytometry profiling of ER stress, apoptosis, and aggresomal markers pre-irradiation. LSK, LSK FLT3-, ST-HSCs and LT-HSCs were examined for (a) Thioflavin T (ThT) stained unfolded proteins (ThT⁺), (b) GRP78, (c) GRP94, (d) p-eIF2 α , (e) p-PERK, (f) Cleaved Caspase-3, and (g) Annexin V in 8-week old *Slc29a3*^{+/+} and *Slc29a3*^{-/-} mice before irradiation. Gating strategy for HSPC populations (LSK, LSK Flt3-, ST-HSCs and LT-HSCs) from $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mice followed by a histogram overlay of $Slc29a3^{+/+}$ (gray) and $Slc29a3^{-/-}$ (red) are presented for each biomarker.

709	Supplemental Fig. 7. Flow cytometry profiling of ER stress, apoptosis, and aggresomal markers
710	post-irradiation. LSK, LSK FLT3-, ST-HSCs and LT-HSCs were examined for (a) Thioflavin T
711	(ThT) stained unfolded proteins (ThT ⁺), (b) GRP78, (c) GRP94, (d) p-eIF2α, (e) p-PERK, (f)
712	Cleaved Caspase-3, and (g) Annexin V in 8-week old <i>Slc29a3^{+/+}</i> and <i>Slc29a3^{-/-}</i> mice 15 days
713	after sub-lethal irradiation (6.5 Gy). Gating strategy for HSPC populations (LSK, LSK Flt3-, ST-
714	HSCs and LT-HSCs) from $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mice followed by a histogram overlay of
715	$Slc29a3^{+/+}$ (gray) and $Slc29a3^{-/-}$ (red) are presented for each biomarker.
716	
,10	
717	
718	
719	
720	
720	
721	
722	
723	
724	
705	
125	
726	
/=0	
727	
728	
729	
720	
/30	
731	
732	

 734 735 736 737 738 739 740 741 742 	Supplemental Fig. 8. The loss of ENT3 activates the unfolded protein response in <i>Slc29a3</i> ^{-/-} mouse HSCs. (a) Representative immunoblots of proteins from the PERK, ATF6, and IRE1 arm of the unfolded protein response in <i>Slc29a3</i> ^{+/+} and <i>Slc29a3</i> ^{-/-} mouse ST-HSCs at 2, 5, and 12 weeks of age. One representative blot from three independent experiments is shown for each experimental condition. (b) XBP1 splicing assay of cDNA extracted from <i>Slc29a3</i> ^{+/+} (<i>black</i>) and <i>Slc29a3</i> ^{-/-} (<i>red</i>) mouse ST-HSCs at 2, 5, and 12 weeks of age. RT-PCR of sXBP1 and uXBP1 was run on a 3% agarose gel and visualized with ethidium bromide followed by XPB1 splicing quantification ($n = 2$ mice/group).
743	
744	
745	
746	
747	
748	
749	
750	
751	
752	
753	
754	
755	
756	
757	
758	
759	
760	

 795 796 797 798 799 800 801 802 803 804 	Supplemental Fig. 9. ENT3 loss activates the unfolded protein response in $Slc29a3^{-/-}$ mouse erythroid precursors and progenitors. (a) Representative immunoblots of proteins from the PERK, ATF6, and IRE1 arm of the unfolded protein response in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mouse ProE cells at 12 weeks of age. (b) Representative immunoblots of proteins from the PERK, ATF6, and IRE1 arm of the unfolded protein response in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mouse MEP cells at 12 weeks of age. (c) Representative immunoblots of proteins from the PERK, ATF6, and IRE1 arm of the unfolded protein response in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mouse MEP cells at 12 weeks of age. (c) Representative immunoblots of proteins from the PERK, ATF6, and IRE1 arm of the unfolded protein response in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mouse MEP cells at 12 weeks of age. (c) Representative immunoblots of proteins from the PERK, ATF6, and IRE1 arm of the unfolded protein response in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mouse CMP cells at 12 weeks of age. One representative blot from three independent experiments is shown for each experimental condition.
805	
806	
807	
808	
809	
810	
811	
812	
813	
814	
815	
816	
817	
818	
819	
820	
821	

856	Supplemental Fig. 10. Salubrinal treatment of $Slc29a3^{-/-}$ mice reduces aggresomes and reactive
0.57	$= \frac{1}{2} $
857	oxygen species. (a) L1-HSCs isolated from $Sic29a5$ mice have reduced inionavin 1 (111)
858	incorescence with (grey) and without (rea) saturation treatment pre- and post-irradiation. Data
859	represent mean \pm SEM (n=8 mice/group, *p < 0.05 by two-tailed t-test). (b) L1-HSCs isolated
860	from <i>Slc29a3</i> mice have reduced reactive oxygen species (ROS) with (<i>grey</i>) and without (<i>red</i>)
861	salubrinal treatment pre- and post-irradiation. Data represent mean±SEM (n=8 mice/group, *p <
862	0.05 by two-tailed t-test). (c) LT-HSC count after treatment of <i>Slc29a3</i> HSPCs with (<i>black</i>) or
863	without (<i>blue</i>) salubrinal (10 mM) ($n = 6$ mice/group, mean \pm SEM, $*p < 0.05$ by two-tailed t-
864	test). (d) Colony enumeration of burst forming unit-erythrocytes (BFU-E) produced from
865	<i>Slc29a3</i> ^{+/+} and <i>Slc29a3</i> ^{-/-} HSPCs after vehicle (DMSO)(<i>black</i>) or salubrinal (10 mM) (<i>blue</i>)
866	treatment for 24 hours ($n = 6$ mice/group, mean \pm SEM, *p < 0.05 by two-tailed t-test).
867	
868	
869	
870	
871	
872	
873	
874	
875	
876	
877	
878	
879	
880	
881	
882	
883 881	
004 885	
886	
887	
888	
889	
890	
891	
892	
893	
894	
895	
896	
897	
898	
899	

Plasma

Supplemental Fig. 11. Analysis of differentially produced metabolites in $Slc29a3^{-/-}$ plasma. (a) Projection to latent structure-discriminant analysis (PLS-DA) score plot constructed based on metabolic profiles of Slc29a3^{+/+} and Slc29a3^{-/-} plasma samples (green, Slc29a3^{+/+}; red, Slc29a3^{-/-}). (b) Volcano plots showing metabolite profiles of $Slc29a3^{+/+}$ compared with $Slc29a3^{-/-}$ plasma samples. Dotted lines along x axis represent $\pm \log_2(2)$ fold change and the dotted line along y axis represents $-\log_{10}(0.05)$. *pink*, differential metabolites; *black*, other metabolites. (c) Representative reference standard and plasma sample MS2 spectra used for identification of the metabolite taurocholic acid. (d) Variable in projection (VIP) plot illustrating the 21 significantly altered metabolites in *Slc29a3^{-/-}* mice plasma ranked on the basis of PLS-DA modelling. The colored boxes represent the relative levels of the metabolites in each group. red, high; green, low. (e) Box-whisker plot representation of 21 significantly altered metabolites in $Slc29a3^{-/-}$ mice plasma samples. Values, Mean \pm S.E.M; n=6 mice/group, *, p<0.05 by two-tailed t-test comparing $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ and fold change >2.0 w.r.t $Slc29a3^{+/+}$. Box plots represent the median (middle line), 25th, and 75th percentile (box), while the whiskers span from the minimum to the maximum value.

Supplemental Figure 12

Urine

947	Supplemental Fig. 12. Analysis of differentially produced metabolites in $Slc29a3^{-/-}$ urine. (a)
948	PLS-DA score plot constructed based on metabolic profiles of $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ urine. (b)
949	Volcano plot for comparison of $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ urine. (c) Representative reference
950	standard and urine sample MS2 spectra used for identification of the metabolite inosine. (d) VIP
951	plot for 32 significantly altered metabolites in $Slc29a3^{-/-}$ urine. (e) Box-whisker plot
952	representation of for 32 significantly altered metabolites in $Slc29a3^{-/-}$ mice urine. Values, Mean ±
953	S.E.M; n=6 mice/group, *, p<0.05 by two-tailed t-test comparing $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ and
954	Fold change >2.0 w.r.t $Slc29a3^{+/+}$. Box plots represent the median (middle line), 25th, and 75th
955	percentile (box), while the whiskers span from the minimum to the maximum value.
956	
957	
958	
959	
960	
901	
963	
964	
965	
966	
967	
968	
969	
970	
971	
972	
973	
974	
975	
9/6	
977	
979	
980	
981	
982	
983	
984	
985	
986	
987	
988	
989	
990	

Bile acid	Exp	Fit	Pred	Err Pred
TCA	3.042	3.048	1.483	-1.559
DCA	2.101	2.061	1.694	-0.407
CA	2.228	2.366	2	-0.228
UDCA	2.173	2.118	1.39	-0.783
TUDCA	1.795	1.714	1.39	-0.405
GCA	1.738	1.73	1.416	-0.322
GUDCA	1.422	1.435	1.315	-0.107
HCA	1.492	1.321	1.127	-0.365
CDCA	1.223	1.197	1.18	-0.043
MCA	1.189	1.268	1.592	0.403
TMCA	1.305	1.34	1.528	0.223
Bile acid	Exp	Fit	Pred	Err Pred
GCDCA	1.324	1.361	1.406	0.082
LCA	1.139	1.125	1.274	0.135
DHCA	1.145	1.146	1.279	0.134
HDCA	1.057	1.132	1.563	0.506
THDCA	1.039	1.059	1.156	0.117
THCA	1	1.007	1.349	0.349
GLCA	1.062	1.021	1.028	-0.034
GDCA	1.193	1.211	1.377	0.184
GDHCA	1.157	1.135	1.189	0.032
GHCA	1.154	1.159	1.416	0.262

Supplemental Fig. 13. Radiometric BA transport assay in oocytes and fitted-predicted transport

- activities of BA. (a) Graphical representation of the transport activities of ³H-CA, ³H-DCA and
- ³H-TCA by Δ 36hENT3 expressing oocytes with respect to water-injected oocytes. Uptake was
- 1036 measured in sodium-free transport buffer at pH 5.5. Data represent mean±SEM (n=8
- 1037 oocytes/group, *p < 0.05 by two-tailed t-test) (b) The predicted versus experimental activity of
- ENT3 BA transport comparison data presented. Cross-validation regression coefficient, $q^2 =$
- 1039 0.24; regression coefficient r2 = 0.98. Fit, fitted; Pred, predicted; Err Pred, error prediction. (c)
- 1040 Fitted (*black*) and predicted (*red*) transport activities for the 21 BAs in the Training Data Set. Fit,
- 1041 fitted; Pred, predicted.

Supplemental Fig. 14. Targeted mass spectrometric analysis of Slc29a3-/- mouse liver and lysosomes. (a) Heat map representing hierarchical clustering of 13 BAs determined by targeted mass spectrometric analysis of 8 *Slc29a3*^{-/-} mice liver samples. MS signal intensities were clustered in two dimensions (row represent metabolites while column indicates samples) on the basis of Euclidean distance. Colors indicate the metabolite abundances with red for high and green for low. (b) Pie chart illustrating the bile acid composition in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mice liver samples (n=8 mice/group). (c) The concentrations of liver total BAs, unconjugated BAs (U-BAs), taurine-conjugated BAs (TBAs) and glycine-conjugated (GBAs) as determined by LC-MS/MS analyses. Values, Mean \pm S.E.M; n=8 mice/group, p<0.05 by two-tailed t-test comparing $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$. (d) Box-whisker plot representation of significantly altered BAs in *Slc29a3^{-/-}* mice liver samples as determined by targeted LC-MS/MS analyses. Values, Mean \pm S.E.M; n=8 mice/group, p<0.05 versus *Slc29a3*^{+/+}. Box plots represent the median (middle line), 25th, and 75th percentile (box), while the whiskers span from the minimum to the maximum value. (e) Heat map representing hierarchical clustering of 13 bile acids determined by targeted mass spectrometric analysis of 8 *Slc29a3^{-/-}* mice liver lysosome samples. MS signal intensities were clustered in two dimensions (row represent metabolites while column indicates samples) on the basis of Euclidean distance. Colors indicate the metabolite abundances with red for high and green for low. (f) Pie chart illustrating the bile acid composition in $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$ mice liver lysosome samples (n=8 mice/group). (g) The concentrations of lysosome total bile acids (BAs), unconjugated BAs (U-BAs), taurine-conjugated BAs (T-BAs) and glycine-conjugated (G-BAs) as determined by LC-MS/MS analyses. Values, Mean ± S.E.M; n=8 mice/group, p<0.05 by two-tailed t-test comparing $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$. (h) Box-whisker plot representation of significantly altered BAs in *Slc29a3^{-/-}* mice liver samples as determined by targeted LC-MS/MS analyses. Values, Mean ± S.E.M; n=8 mice/group, p<0.05 by two-tailed t-test comparing $Slc29a3^{+/+}$ and $Slc29a3^{-/-}$. Box plots represent the median (middle line), 25th, and 75th percentile (box), while the whiskers span from the minimum to the maximum value.

1177 **Supplemental Fig. 15.** ENT3 overexpression increases BA accumulation in HEK293 cells. (a)

- ¹¹⁷⁸ Uptake of ³H-cholic acid into HEK293 (control)(*black*) and HEK293 overexpressing ENT3
- 1179 (HEK293 + ENT3 OE)(*red*) were measured after cells were incubated with culture media
- 1180 containing 1 μ M cholic acid (including 0.02 μ M ³H-cholic acid) for 0.5, 3, 12, and 24 hours.
- 1181 Data represent mean \pm SEM (n=3 biological replicates/group, *p < 0.05 by two-tailed t-test).
- 1182