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Abstract: In Maasai Steppe, public health and economy are threatened by African
Trypanosomiasis; a debilitating and fatal disease to livestock (African Animal
Trypanosomiasis -AAT) and humans (Human African Trypanosomiasis - HAT), if not
treated. Tsetse fly is a primary vector for both HAT and AAT and climate is an
important predictor of their occurrence and  parasites they carry. While understanding
tsetse fly distribution is essential for informing vector and disease control strategies,
existing distribution maps are old and were based on coarse spatial resolution data
which is not useful in understanding vector and disease dynamics necessary to design
and implement fit for purpose mitigation strategies. Also, assertion that climate change
is altering tsetse fly distribution in Tanzania lacks empirical evidence. Despite tsetse fly
posing public health risks and economic hardship, no study has modelled their
distributions at a scale needed for local planning. This study used MaxEnt species
distribution modelling (SDM) and ecological niche modeling tools to predict potential
distribution of three tsetse fly species in Tanzania Maasai Steppe from current climate
information and project their distributions to midcentury climatic conditions under
representative concentration pathways (RCP) 4.5 scenarios. Current climate results
predicted that  G. m. morsitans, G. pallidipes  and  G swynnertoni  cover 19,225 km  2 ,
 7,113 km  2  and 32,335 km  2  and future prediction indicated that by the year 2050,
the habitable area may decrease by up to 23.13%, 12.9% and 22.8% of current
habitable area  respectively. This information can serve as a useful predictor of
potential HAT and AAT hotspots and inform surveillance strategies. Distribution maps
generated by this study can be useful in guiding tsetse fly control managers, health,
livestock and wildlife officers when setting surveys and surveillance programs. The
maps can also inform protected area managers of potential encroachment due to
shrinkage of tsetse fly habitats in the protected area.
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Abstract 13 

In Maasai Steppe, public health and economy are threatened by African Trypanosomiasis; 14 

a debilitating and fatal disease to livestock (African Animal Trypanosomiasis -AAT) and humans 15 

(Human African Trypanosomiasis - HAT), if not treated. Tsetse fly is a primary vector for both 16 

While understanding tsetse fly distribution is essential for informing vector and disease control 18 

strategies, existing distribution maps are old and were based on coarse spatial resolution data which 19 

is not useful in understanding vector and disease dynamics necessary to design and implement fit 20 

Manuscript Click here to download Manuscript Ptential distribution of
Tsetse_Manuscript MAY 2020_01.docx

17 HAT and AAT and climate is an important predictor of their occurrence and the parasites they carry. 
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for purpose mitigation strategies. Also, assertion that climate change is altering tsetse fly 21 

distribution in Tanzania lacks empirical evidence. Despite tsetse fly posing public health risks and 22 

economic hardship, no study has modelled their distributions at a scale needed for local planning. 23 

This study used MaxEnt species distribution modelling (SDM) and ecological niche modeling 24 

tools to predict potential distribution of three tsetse fly species in Tanzania Maasai Steppe from 25 

current climate information and project their distributions to midcentury climatic conditions under 26 

representative concentration pathways (RCP) 4.5 scenarios. Current climate results predicted that 27 

G. m. morsitans, G. pallidipes and G swynnertoni cover 19,225 km2, 7,113 km2 and 32,335 km2 28 

and future prediction indicated that by the year 2050, the habitable area may decrease by up to 29 

23.13%, 12.9% and 22.8% of current habitable area  respectively. This information can serve as a 30 

useful predictor of potential HAT and AAT hotspots and inform surveillance strategies. 31 

Distribution maps generated by this study can be useful in guiding tsetse fly control managers, 32 

health, livestock and wildlife officers when setting surveys and surveillance programs. The maps 33 

can also inform protected area managers potential encroachment due to shrinkage of tsetse fly 34 

habitats in the protected area. 35 

Key Words: Climate change, Maasai Steppe, tsetse fly, MaxEnt, SDM, 36 

Authors’ summary 37 

Spatial variation of African Trypanosomiasis burden depends on distribution of biotopes 38 

necessary for tsetse flies to thrive. Therefore, mapping the occurrence of the tsetse fly species is a 39 

useful predictor of African Trypanosomiasis transmission risk areas. Climate is a major 40 

determining factor for occurrence and survival of tsetse fly, the vector responsible for both HAT 41 

and AAT. Since resources for prevention and control of tsetse fly species and the disease they 42 

transmit are generally scarce in endemic settings, understanding potential impacts of climate 43 
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change on tsetse fly species distribution in space and time is essential for informing coherent 44 

strategies for vector and disease control at a local scale. 45 

Introduction 46 

Most climate change predictions show an upward trend in temperature for at least the next 47 

nine decades [1], but there is uncertainty with different climate models predicting different 48 

magnitudes of warming. On average, global temperature is expected to rise by 0.8-2.60C and by 49 

1.5-30C in Africa by the year 2050 [2]. Such increases have potential to cause species habitat 50 

modification including range expansion or contraction in addition to altering their relationships 51 

with bio-physical environment. The influence of climate change on species distribution is 52 

supported by evidence from fossil records [3] and observed trends from the twentieth to twenty 53 

first centuries on species range shifts. For example, it is estimated that a change in 10C will lead 54 

to range shifts of 160km of ecological zone on earth, implying that if the globe will warm by 30C 55 

by the year 2100, the flora and fauna of the North Pole will move approximately 480 km northward 56 

to remain within their thermal tolerances [4-5]. Some species of butterflies in Europe have been 57 

reported to shift further north as those zones become more habitable [6-8]. Predicted rise in 58 

temperature is also expected to transform dynamics of vector-borne diseases including African 59 

Trypanosomiasis, either, by altering the vectors and pathogens geographical range, or their 60 

development and mortality rates [9-12].  61 

Tsetse fly occurs in Sub-Saharan Africa and their distribution is influenced by climate, 62 

vegetation and hosts. Climate, particularly temperature is considered a major driver as it influences 63 

all others factors that determine tsetse occurrence. Trypanosomiasis remains a debilitating and 64 

fatal disease to livestock and humans, if left untreated. For instance, trypanosomiasis in livestock 65 
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causes loss of over 4 billion USD due to 70% reduction of cattle density, 50% reduction in diary 66 

and meat sales, 20% reduction in calving rates, and 20% increases in calf mortality in Sub-Saharan 67 

Africa [13]. In Tanzania, tsetse fly occurs in over 65% of rangeland savannah ecosystems [14], 68 

exposing about 4 million people in rural communities to the risk of sleeping sickness and causing 69 

loss of approximately eight million USD annually due to nagana induced low livestock 70 

productivity [15-17]. Since dynamics of African trypanosomiasis is a function of tsetse fly 71 

competence, and the ecology and behavior of available hosts, spatial variation of disease burden 72 

depending on the distribution of biotopes necessary for tsetse flies to thrive is expected.  73 

Trends in climate change and associated socioeconomic transformation is anticipated to 74 

continue altering tsetse fly habitats in Tanzania rangelands. Nonetheless, empirical evidence to 75 

support the assertion about change in tsetse fly species distribution as a result of climate change is 76 

lacking in the country. Also, information that could aid tsetse control planning for future 77 

preparedness is rare to find in the country and absent at local scales. In the Maasai Steppe, for 78 

instance, knowledge on tsetse fly spatial variation is often based on old and course data and not 79 

publicly available.  80 

Various scientific approaches have been used to understand the potential impacts of climate 81 

on spatial and temporal distribution of disease vectors. Some of the approaches include climate 82 

envelope models and correlations between climatic variables and vectors [18-21]. Climate 83 

envelopes are species distribution models that use climate data to define climate suitability for 84 

distributions points and their associated climate parameters to define a species' envelope of 86 

tolerance around existing ranges thereby delineating a ‘climate envelope’ within which species 87 

85 species to occur [22]. Specifically, these models relyies on statistical correlations between species 
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thrive [19;22]. Compared to mechanistic models, climate envelope models do not incorporate data 88 

other than occurrence and environmental related data; so they do not predict fitness variation across 89 

climate gradients [23].  90 

There have been research that studied risk of African Trypanosomiasis and tsetse fly 91 

burden in the Maasai Steppe [24-31]. However, none of these established potential impacts of 92 

climate change on distribution of tsetse. To fill this gap, a general question on what is the potential 93 

impact of climate change on the distribution of common Glossina species found in the study area 94 

distribution based on current climate under which they have been observed. Prediction for future 97 

distribution was carried out to understand how African Trypanosomiasis transmission hotspots 98 

might change under future climate scenarios. This information may help stakeholders to allocate 99 

scarce resources in preventing African Trypanosomiasis by implementing more targeted 100 

interventions. This study also may form a basis for a large national and regional scale prediction 101 

of future African Trypanosomiasis transmission hotspots.  102 

Methodology 103 

Study area 104 

This study was carried out in the Tanzania Maasai Steppe, located between 1.5 to 5° South 105 

latitude and 35 to 37° East Longitude (Fig 1). It covers an area of more than 60,000 km2 with a 106 

population of over 600,000 people, mainly practicing pastoralism and to a lesser extent, agro-107 

pastoralism. The region is semi-arid and a human-wildlife-livestock system, receiving up to 500 108 

mm of rainfall per annum. Rainfall patterns dictate movement of pastoralists and their herds and 109 

96 built using climate variables to define areas that have suitable climate for the tsetse fly and model their 

95 was investigated. This study adopted a general definition of climate envelopes in which models were 
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transmission between domestic animals, people and wildlife [3].  111 

Data Collection 112 

Species occurrence and background data 113 

This study targeted three Glossina species G.m.morsitans, G.pallidipes and G. swynnertoni 114 

commonly found in the Maasai Steppe [27, 28, 29]. Abundance data were collected through 115 

entomological field surveys carried out once in the dry season, November 2015 and once in the 116 

wet season, May 2016. A total of 99 baited epsilon traps [33] were placed in Simanjiro and 117 

Monduli districts. Traps were deployed in stratified random subsampling of the major vegetation 118 

types [34] at a distance of at least 200m apart [16, 33]. At each trapping site, numbers of tsetse 119 

flies caught and geographical coordinates were recorded using hand-held Global Positioning 120 

System (GPS). The collected abundance data was converted to presence data for each of the GPS 121 

locations, yielding a total of 32, 59 and 29 unique occurrence points for G.m.morsitans, G. 122 

pallidipes and G. swynnertoni, respectively, after eliminating duplicate records resulted from 123 

multiple entries for a particular season. Duplicate records were removed using ecological niche 124 

modelling tools (ENMTools) software version 1.4.3 [35]. The occurrence data were used with 125 

climate predictor variables as input in MaxEnt (v 3.3.3k) [36], to create climate envelope models 126 

for the three species. MaxEnt is a species distribution model developed to work with presence-127 

only data, and has been widely used in modelling and mapping species distributions [37], including 128 

to predict the probability of occurrence of species across space and time in areas that have not been 129 

sampled [36, 38]. Since dispersal of tsetse flies is dependent on availability of suitable hosts, and 130 

the study area is home to numerous hosts (wildlife and livestock), the study assumed that all 131 

110 wildlife in search for water and pastures. These movements increases the likelihood of disease 
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districts of Maasai Steppe were potential for attracting tsetse flies. For this reason, background 132 

data were sampled from the whole study area [38-40]. 133 

Climate layers 134 

Predictive models for tsetse fly species distribution were made using the occurrence data 135 

and current climate variables (Table 1). The initial candidate layers considered in the model were 136 

elevation, precipitation of the wettest month (April), mean maximum temperature of the warmest 137 

month (February), mean maximum temperature of the driest month (September) and mean 138 

minimum temperature of the coldest month (July). Both maximum and minimum temperature 139 

affects tsetse fly activity patterns and plays an important role in determining the development of 140 

tsetse flies and trypanosomes at each life stage [41-42]. Since blood meals is the only known tsetse 141 

fly nutrition, no information is known on effects of precipitation on tsetse fly species except reports 142 

that indicate fluctuation of abundance during rainy season [25, 27, 43, 44]. However, it is thought 143 

that rainfall, apart from maintaining vegetation and humidity for tsetse fly to thrive, it also affects 144 

tsetse fly species indirectly by causing local flooding which may drown pupae that are buried in 145 

loose soil [45] and so it was included in predictor variables. Elevation, which is a proxy for 146 

temperature, was also used as a predictor variable in order to gain insight regarding the potential 147 

altitude limit for tsetse fly species to thrive. Although land cover/use, density of animals also 148 

influence tsetse fly distribution in space and time [16], this information was not included in the 149 

study due to inconsistency of available data. Models created using current climate variables were 150 

mapped on to future climate layers to understand how changing climate might influence tsetse 151 

distribution and thereby African Trypanosomiasis transmission risk. For the future climate 152 

projection scenario (year 2050), this study used 833.33m resolution Coupled Model Inter-153 

comparison Project (CMIP5) global circulation model (GCM).  154 
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Table 1: Candidate covariates tested used in initial model runs, and the bolded ones used in the 155 

best-performing MaxEnt models 156 

 157 

Of the many possible GCMs to use, CMIP5 was chosen because the CMIP5models are 158 

relatively more advanced (fine-tuned) and they use RCP scenario compared to previous GCMs 159 

that were released in or before 2010. In particular, the climate system model from Beijing Climate 160 

Center (BCC-CSM1-1) was used and the RCP 4.5 was selected for this study. The BCC-CSM1 161 

the key processes relevant to our study area [46]. Although there is uncertainty associated with 163 

any future climate scenario, these data provide reasonable predictions that can be useful for 164 

planning. 165 

Modelling procedures 166 

In order to minimize the use of correlated variables that may mask contribution of 167 

individual variables and cause difficulties in results interpretation [37, 47], pairwise collinearity 168 

tests of predictor variables was performed using ENMTool 1.4.3[35-36]. Temperature variables 169 

and altitude were highly correlated but mean minimum and maximum temperature of coldest and 170 

Variable Type  Units Resolutio

n  

source 

Precipitation of the wettest month 

(April) 

Continuous ml 833.33m http://www.worldclim

.org 

Mean maximum temperature of the 

warmest month (April) 

Continuous 0C*10 833.33m http://www.worldclim

.org 

Mean minimum temperature of the 

coolest month (July) 

Continuous 0C*10 833.33m http://www.worldclim

.org 

Altitude/elevation Continuous msl 833.33m http://www.worldclim

.org 

Mean maximum temperature of the 

driest month (September) 

Continuous 0C*10 833.33m http://www.worldclim.

org 

162 was chosen for this analysis because it’s is among the models that have been suggested to capture 

Cross-Out

Highlight



 

9 

 

warmest month respectively were maintained because of their high biological relevance to tsetse 171 

fly species [43]. Altitude was also forced in the model to gain insights regarding the elevation 172 

limits of tsetse fly species distribution. Mean maximum temperature of the driest month was 173 

omitted from analysis because of the relatively lower knowledge of biological values of dryness 174 

to tsetse fly.  175 

MaxeEnt was used to model the probability of species occurrence based on unique occurrence 176 

points [36-38]. Sample bias file was excluded in the model with the assumption that tsetse flies 177 

are likely to be present in large part of the study area due to widely spread of hosts [17; 48]. 178 

Because there were more than 15 occurrence points, MaxeEnt was run using linear, quadratic and 179 

hinge features [49]. The model was set to run with 500 iterations and 10 replicates with default 180 

parameters regularization and the jackknife estimates (measure of variable influence).  181 

Model assessment  182 

Four variables were included in MaxEnt along with the occurrence data. An initial SDM 183 

was run in MaxEnt (one run; raw output setting) to acquire lambda values used in ENMTools 184 

v.1.4. 3 [35] to calculate Akaike’s Information Criterion (AICc; AIC and Bayesian information 185 

Criterion (BIC) [50] for a model fit with four, three and two variables, respectively (Table 2). This 186 

method selects the most parsimonious model. The model that was most parsimonious in this study 187 

(lowest AIC, AICc, BIC and high area under the receiver operating curve (AUC) value) had all 188 

four variables. The best model for each species was validated using 10-fold cross-validation, with 189 

the averages of 10 model runs representing the final output. Model performance as well as the 190 

contribution of predictor variables were assessed by using AUC and variable importance was 191 

assessed using the relative gain contribution of each variable and jackknife tests compared using 192 
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AUC, test gain and regularized training gain. Marginal and single variable response curve were 193 

used to depict the relationship between tsetse fly species and predictor variables. Final outputs 194 

included predictive maps of the probability of tsetse fly species presence based on climate 195 

suitability. The probability scores (numeric values between 0 and1) were displayed in ArcGIS 10.5 196 

to show the current and future habitat suitability for each of the three tsetse fly species. 197 

Results 198 

Model selection  199 

The distribution models for each tsetse fly species performed better than base/random 200 

(AUC>0.5). The model that included all four predictor variables had the best fit (Table 2). The 201 

results presented in all subsequent sections are based on this model.  202 

Table 2: Model performance based on AUC, AIC, AICc and BIC values for tsetse fly species 203 

occurrence and different combinations of the environmental variables. 204 

Species Model 

assess

ment 

Tmax of 

warmest month 

Tmin of coldest 

month 

Precipitation of the 

wettest month 

Tmax of warmest 

month 

Tmin of coldest month 

Altitude 

Precipitation of the wettest 

month 

Tmax of warmest month 

Tmin of coldest month 

G.m.morsitans AUC 0.850 0.902 0.938 

AIC 702.78 667.27 625.79 

AICc 709.04 680.47 642.21 

BIC 714.51 683.39 643.38 

     

G. pallidipes AUC 0.818 0.919 0.959 

AIC 1302.59 1198.26 1108.75 

AICc 1304.79 1202.85 1115.54 

BIC 1317.13 1219.04 1133.68 

     

G.swynnertoni AUC 0.840 0.854 0.899 

AIC 624.99 614.66 576.83 

AICc 630.32 626.88 601.09 
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BIC 634.56 628.33 594.60 

Variable contribution and climate suitability map for G. m morsitans 205 

Altitude accounted for more than one third (35.1%) of the variation in climate suitability 206 

model for G. m. morsitans occurrence, followed by precipitation of the wettest month (32.1%), 207 

maximum temperature of the warmest month (22.3%), and minimum temperature of the coldest 208 

month (10.6%). Based on 10 percentile training presence logistic threshold (10% minimum 209 

threshold), the model showed that current suitable climate for G.m.morsitans covers 32% (19,225 210 

km2) of the entire Maasai Steppe (≈ 60,000 km2) and in the future (year 2050) the model indicated 211 

the suitable area will shrink to 7.4% (4,447.34 km2) of the current suitable area in the Maasai 212 

Steppe (Fig 2 and 3).  213 

 214 

Variable response curves indicated that the probability of occurrence of G.m.morsitans 215 

drops off dramatically above 1000m of altitude when all variables are included in the model, but 216 

a very peaked response to altitude ≈1200msl and almost no probability of occurrence above 217 

2500msl when that is the only variable considered (Supplementary 1 a and Supplementary 2 a). 218 

Marginal and single variable response curves were however similar for precipitation of the 219 

wettest month, showing a preference (probability of presence ≥ 0.6) for precipitation between 220 

140-230mm per month, and almost no chance of occurrence below 100mm/month or above 221 

350mm/month (Supplementary 1 b and Supplementary 2 b). The probability of occurrence of 222 

G.m.morsitans drops off dramatically above 280C maximum temperature when all variables are 223 

included in the model, but, a peaked response to maximum temperature of ≈ 280C for the mean 224 

maximum temperature of the warmest month, with minimal chances of occurrence below 150C 225 
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or above 320C maximum temperature values when used as the only single variable in the model 226 

(Supplementary 1 c and Supplementary 2 c). 227 

The probability of occurrence of G.m.morsitans drops off dramatically above 140C 228 

minimum temperature when all variables are included in the model, reaching the peak response at 229 

a minimum temperature of ≈ 130C for the mean minimum temperature of the coldest month with 230 

rare chances of occurrence below 00C or above 160C minimum temperature when used as the only 231 

variable (Supplementary 1 d and Supplementary 2 d). 232 

Variable contribution and climate suitability map for G. pallidipes 233 

Precipitation of the wettest month accounted for almost two-third (60.4%) of the 234 

variation in habitat suitability, followed by altitude (23.0%) and maximum temperature of the 235 

warmest month (16.6%). Based on 10 percentile training presence logistic threshold, the model 236 

showed that current suitable habitat for G.pallidipes covers 11% (7113 km2) of the Maasai 237 

Steppe and by 2050, the model indicated only 918 km2 with suitable habitat for this species (Fig 238 

4 and 5). 239 

Variable response curves indicated that the probability of occurrence of G.pallidipes drops 240 

off dramatically above 1,000m of altitude when all variables are included in the model, reaching 241 

its peak response at altitude ≈1,200msl and almost no probability of occurrence above 3,000msl 242 

when that is the only variable considered in the model (Supplementary 3 a and Supplementary 4 243 

a). Marginal and single variable response curves were similar for precipitation of the wettest 244 

month, showing a preference (probability of presence ≥ 0.6) for precipitation between 140-180ml 245 

per month, and almost no chance of occurrence below 120mm/month or above 330mm/month 246 

(Supplementary 3 b and Supplementary 4 b). The probability of occurrence of G.pallidipes drops 247 
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off dramatically above 280C maximum temperature when all variables are included in the model, 248 

and a peak response was observed at a maximum temperature of ≈ 280C for the mean maximum 249 

temperature of the warmest month, and almost no chance of occurrence below 100C or above 340C 250 

maximum temperature when used as the only variable (Supplementary 3 c and Supplementary 4 251 

c). The probability of occurrence of G.pallidipes drops off dramatically above 100C minimum 252 

temperature when all variables are included in the model, but, a very peaked response to minimum 253 

temperature of ≈ 130C for the mean minimum temperature of the coldest month and almost no 254 

chance of occurrence below -50C or above 170C minimum temperature when used as the only 255 

variable (Supplementary 3 d and Supplementary 4 d). 256 

 257 
Precipitation of the wettest month provided the best fit to the training data when used in 258 

isolation. This variable also appears to have the most information that is not present in the other 259 

variables, as it decreases the gain the most when it is omitted. Yet, precipitation of the wettest 260 

month indicated the best fit to the test data and best predicted the distribution of the G. pallidipes 261 

test data. 262 

Variable contribution and climate suitability map for G. swynnertoni 263 

Altitude contributed almost a half (47.5%) of the variation in climate suitability for G. 264 

swynnertoni occurrence, followed by precipitation of the wettest month (27.4%), minimum 265 

temperature of the coldest month (22%), and maximum temperature of the warmest month (3.1%). 266 

Based on 10 percentile training presence logistic threshold, it was revealed that, current suitable 267 

climate for G. swynnertoni covers 32,335 km2, but is predicted to shrink to 7,374km2 by the year 268 

2,050 (Fig 6 and 7). 269 
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 Variable response curves indicated that the probability of occurrence of G.swynnertoni 270 

drops off dramatically above 1000m of altitude when all variables are included in the model but a 271 

very peaked response to altitude ≈1300msl and almost no probability of occurrence above 2500msl 272 

when that is the only variable considered (Supplementary 5 a and Supplementary 6 a). Variable 273 

response curves indicated that the probability of occurrence of G.swynnertoni drops off 274 

dramatically above 140ml of rainfall when all variables are included in the model, but a very 275 

peaked response to precipitation ≈160ml for the precipitation of the wettest month and almost no 276 

probability of occurrence above 400ml/month or below 90ml/month when that is the only variable 277 

considered (Supplementary 5 b and Supplementary 6 b). The probability of occurrence of 278 

G.swynnertoni drops off dramatically above 280C maximum temperature when all variables are 279 

included in the model, but, a peaked response to maximum temperature of ≈ 280C for the mean 280 

maximum temperature of the warmest month, and almost no chance of occurrence below 100C or 281 

above 340C maximum temperature when used as the only variable (Supplementary 5 c and 282 

Supplementary 6 c).  283 

The probability of occurrence of G.swynnertoni drops off dramatically above 140C 284 

minimum temperature when all variables are included in the model. The peak probability was 285 

observed at a minimum temperature of ≈ 140C for the mean minimum temperature of the coldest 286 

month with reduced chances of occurrence below 00C or above 160C minimum temperature when 287 

used as the only variable (Supplementary 5 d and Supplementary 6 d). 288 

The best fit to the G.swynnertoni training data was provided by altitude when used by itself. 289 

Altitude indicated the best fit to the test data and best predicted the distribution of the G 290 

swynnertoni test data. Also, omission of this variable decreases the gain the most, meaning altitude 291 

had most information that is not present in other variables.  292 
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Discussion 293 

Tsetse fly occurrence poses public health challenges and exacerbates economic hardships 294 

due to the investment needed to control tsetse flies and treat the diseases they transmit. Since 295 

climate is the dominant factor that determines tsetse fly occurrence, and the resources for 296 

controlling tsetse and trypanosomiasis are scarce, understanding how the changes in climate at 297 

local scale affects the spatial and temporal distribution of tsetse fly species is critical in identifying 298 

the most likely vulnerable places, and better targeting limited resources. The SDM used in this 299 

study provides useful information for public health, livestock development stakeholders and 300 

wildlife managers to plan for future potential climates effects across space and time. 301 

This study used MaxEnt species distribution modelling to understand the influence of 302 

altitude and climate variables on tsetse fly species occurrence, and make predictions about future 303 

distribution based on predictive climate models. The models yielded current and future potential 304 

climate distribution maps for G. m. morsitans, G.pallidipes and G. swynnertoni, and predicted an 305 

overall reduction in the area of the Maasai Steppe that will have suitable climate for the three 306 

Glossina species. Prediction also indicated probability of these three tsetse fly species to inhabit 307 

relatively higher latitude by mid-century. Compared to current conditions, in the year 2050, area 308 

with suitable climate will decline to 23.13%, 12.9% and 22.8% of current suitable area for G. m. 309 

morsitans, G.pallidipes and G.swynnertoni, respectively. The reason for this could be explained 310 

by the temperature response curves, which indicated 340C mean maximum temperature of the 311 

warmest month and 170C mean minimum temperature of the coldest month to be maximum upper 312 

and lower temperature thresholds for these three species. The range reduction across the Maasai 313 

Steppe can be attributed to future climates exceeding these thresholds whereby, by mid of the 314 
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century, maximum temperature is expected to have risen by 1.70C in the Maasai Steppe [46]. The 315 

temperature thresholds that limit tsetse fly distribution and abundance has also been shown in other 316 

studies from the Maasai Steppe, based on intensive longitudinal sampling over smaller geographic 317 

areas [27]. These observations complement the suggestion that climate change in some parts of 318 

East Africa would result in overall reduction of habitat suitability range for tsetse flies, but also a 319 

spread out of suitable range particularly in high-altitude areas that currently are less suitable for 320 

the species due to low temperatures [18]. Hulme, also predicted a contraction of G. m.morsitans 321 

geographic range owing to climate change expected to affect the SADC region [51]. Influence of 322 

climate on the distribution of Glossina species has been explained in the previous studies [41, 42, 323 

55] and G. m.morsitans, G. pallidipes and G.swynnertoni are among groups of tsetse flies whose 324 

relative abundance tends to decrease with high temperature. Our model forecasts suitable area for 325 

all three species that will shrink in the Maasai Steppe by 2050 under RCP 4.5, suggesting 326 

populations of these species may crash or may adapt to increasing maximum temperatures by 327 

moving upward in elevation. In fact, the models predicted a suitable altitude for G. m.morsitans, 328 

G.pallidipes and G. swynnertoni from around 1,000msl currently observed, to around 2,500m, 329 

3,000m and 2,500m elevation, respectively, indicating these species may become problematic in 330 

high altitude ecosystems of the study area, if other ecological requirements for these species will 331 

be met in those habitats. 332 

The importance of the four variables that were selected through our parsimony analysis to 333 

the ecology of the three Glossina species indicates the importance of careful scrutiny of available 334 

environmental data for a study site of interest. Although there was variation in variable 335 

contribution to specific species model, mean maximum temperature of the warmest month and 336 

mean minimum temperature for the coldest month indicated similar response curves. Specifically, 337 
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mean maximum temperature of the warmest month, and mean minimum temperature of the coldest 338 

month have relevant ecological importance to the distribution of tsetse fly species. For example, 339 

the logistic probability response curves indicated higher maximum temperature of the warmest 340 

month and higher minimum temperature of the coldest month decreases likelihood of all three 341 

Glossina species occurrence, likely because, both low and high temperatures affect development 342 

of all two tsetse species at various life stages [41]. Effects of hotter and colder environments on 343 

various developmental stages of tsetse fly species has also been reported [56-57].  344 

Logistic probability response curves indicated that higher precipitation during the wettest 345 

month decreases the likelihood of occurrence of the three Glossina species considered in this study. 346 

Generally, no record is known on direct effect of rainfall on tsetse fly, but, it is thought that high 347 

rainfall may cause local flooding which may wash out pupae that are buried in loose soil, leading 348 

to tsetse fly depopulation and thus low probability of occurrence. Although responses to this 349 

variable indicated similar trend in all three species, the importance of the variable in models for 350 

the different species varied dramatically. For example, precipitation of wettest month contributing 351 

60.4% of the relative gain to the G. pallidipes model and providing the best fit to the model, 352 

indicating that the species can respond differently to the climate variables. In particular, 353 

precipitation in the wettest month may be more important to the distribution of G. pallidipes owing 354 

to the species’ ecology. G. pallidipes is strongly associated with wetter habitats, and so relatively 355 

hydrophilic, unlike G.m.morsitans and G. swynnertoni.  356 

In all three tsetse fly species models, altitude had a relatively high contribution to the model 357 

gain, but did not necessarily provide the best fit to the training model. For example, altitude 358 

contributed 35.1% of relative gain to the G.m. morsitans model and 23% for G. pallidipes 359 
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respectively. However, the best fit to the training models for these two species were provided by 360 

mean maximum temperature of the warmest month and precipitation of the wettest month. This 361 

may be because temperature and rainfall have more biological relevance to tsetse flies compared 362 

to altitude. Although altitude indicated high contribution (47.5%) to the G. swynnertoni model and 363 

also had the best fit, it should however be noted that all occurrence points were obtained at a 364 

relatively lower altitudes and this might have influenced the results. Nevertheless, all Glossina 365 

species responded similarly to altitude, with response curves for all species indicating low 366 

preference for higher altitude. This is because higher altitudes are characterized by lower 367 

temperature that affects tsetse fly development [42]. Given that altitude and temperature were 368 

highly correlated, it was initially considered that by including altitude in the model, it could have 369 

masked the contribution of variables with greater biological relevance [37]. However, because 370 

relationships between tsetse flies and temperature are well-established [41,42,58,59], altitude was 371 

included in the models in order to gain insight into how tsetse fly species are likely to expand their 372 

range to higher elevations under future increases in temperature.  373 

Extrapolated over larger areas, our findings could indicate either increases or decreases in 374 

suitable tsetse range. Likewise, predictions of climate impacts of tsetse distribution in Africa do 375 

not all agree. Some studies have suggested that climate change in some parts of East Africa would 376 

result in a spreading out of suitable range for tsetse flies particularly in high-altitude areas that 377 

currently exclude the species due to low temperatures, but also there is a chance of range 378 

contraction of tsetse flies in some location [18]. Other reports have suggested a decline in the 379 

distributional range of tsetse fly species owing to climate change. Furthermore, it should be noted 380 

that climate variables are not the sole predictors of future tsetse distribution. Other factors such as 381 

host availability and suitable vegetation will also influence where tsetse are found, but are more 382 
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difficult to model into the future. Distribution maps based on relationships with climate variables 383 

can therefore be considered to be maximum potential distributions. 384 

Although the findings of this study are based on only a single GCM model, BCC-CSM1-1 385 

from CMIP5, it is considered to have better predictive capacity because it uses RCP and at a 386 

relatively finer resolution of about 1km. The fact that these findings agree with previous findings 387 

reported by Rodgers and Randolph [50] and Hulme [51] that used relatively older GCM version, 388 

increase the confidence that climate is more likely to push distribution of tsetse flies into new 389 

areas, while removing it from others. For this reason, maps produced by this study can improve 390 

the efficiency and lower the cost of future surveillance. Also, the methods employed by this study 391 

can be adopted to generate high resolution species distribution maps under current and future 392 

climate scenarios for larger areas and for other vectors that pose threats to both public health and 393 

economic development. Tsetse fly control managers can incorporate the maps created from these 394 

models into integrated pest management regimes, and further tailor them based on what is already 395 

known about Maasai Steppe. Finally, maps such as these may be displayed to the public to increase 396 

awareness of climate change implications in the Maasai Steppe and other areas that are tsetse 397 

infested. These maps can as well inform protected areas managers of the likely encroachment due 398 

to shrinkage of tsetse fly habitats even in protected areas. 399 

Limitation of this study include the fact that the study approach was climate envelope 400 

models which does not predict the expected ability/fitness of tsetse fly to adapt to the climate 401 

change. Inclusion of other ecological requirement variables would improve the prediction of 402 

general habitat suitability other than only climate suitability. 403 
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Supporting information Captions 571 

Figures 572 

Fig 1: An extract of map of Tanzania showing the study districts (Kiteto, Longido, 573 

Monduli and Simanjiro) forming the Maasai Steppe.  574 

Fig 2 Current climate suitability maps for the best performing model with the 575 

G.m.morsitans occurrence data, and all 4 environmental variables: elevation, 576 

precipitation of the wettest month (April), mean maximum temperature of the 577 
warmest month (February), and mean minimum temperature of the coldest month 578 

(July).  579 
Fig 3: Midcentury (2050) climate suitability maps for the best performing model with the 580 

G.m.morsitans occurrence data, and all 4 environmental variables: elevation, 581 

precipitation of the wettest month (April), mean maximum temperature of the 582 
warmest month (February), and mean minimum temperature of the coldest month 583 

(July). In these figure we see that the probability of occurrence decreases with time 584 
(comparing current and midcentury) from the maximum values of 0.845 to 0.658, 585 

with contracted habitat 586 
Fig 4: Current climate suitability map for the best performing model with the G.pallidipes 587 

occurrence data, including all 4 variables.  588 
Fig 5: Midcentury (2050) climate suitability map for the best performing model with the 589 

G.pallidipes occurrence data, including all 4 variables. In these maps we see that 590 

the probability of occurrence decreases with time (comparing current and 591 
midcentury) from the maximum values of 0.919 to 0.725, with shrunk habitat 592 

Fig 6:  Current climate suitability maps for G. swynnertoni, for the model including all 593 
four predictor variables.  594 

Fig 7:  Midcentury (2050) climate suitability maps for G. swynnertoni, for the model 595 
including all four predictor variables. Similarly, in these maps indicate that the 596 
probability of occurrence decreases with time (comparing current and midcentury) 597 

from the maximum values of 0.826 to 0.715, with narrowing habitat 598 

 599 

Supplementary 600 

Supplementary 1: a-d shows marginal response curves for the best performing model with 601 

G.m.morsitans occurrence data. Temperature is reported in 0C * 10. 602 
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Supplementary 2: a-d shows single variable response curves for the best performing model with 603 

G.m.morsitans occurrence data. Temperature is reported in 0C * 10. 604 

 605 

Supplementary 3: a-d shows marginal response curves for the best performing model with 606 

G.pallidipes occurrence data. Temperature is reported in 0C * 10. 607 

Supplementary 4: a-d shows single variable response curves for the best performing model with 608 
G.pallidipes occurrence data. Temperature is reported in 0C * 10. 609 

Supplementary 5: a-d shows marginal response curves for the best performing model with 610 
G.swynnertoni occurrence data. Temperature is reported in 0C * 10. 611 

Supplementary 6: a-d single variable response curves for the best performing model with 612 
G.swynnertoni occurrence data. Temperature is reported in 0C * 10. 613 

 614 
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