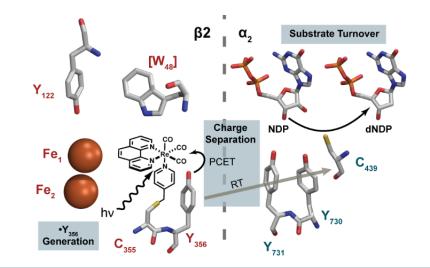
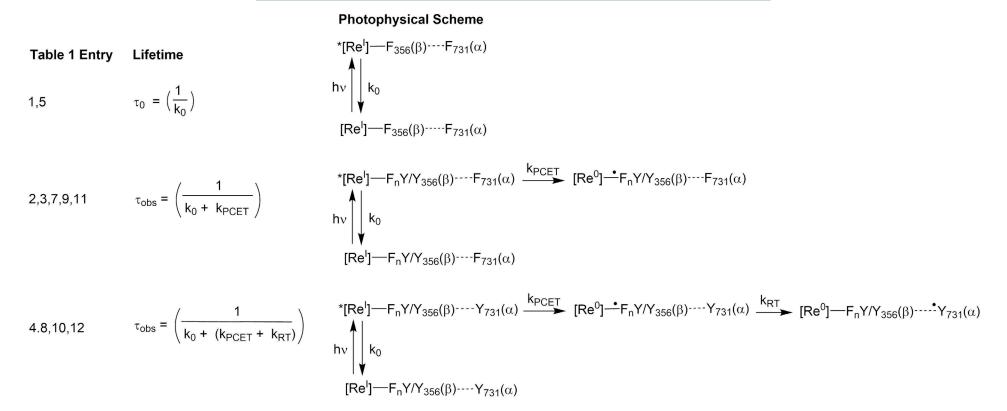
Supporting Information

Gated Proton Release During Radical Transfer at the Subunit Interface of Ribonucleotide Reductase

Chang Cui,^{*a*} Brandon L. Greene,^{*a,b,**} Gyunghoon Kang,^{*c,d*} Catherine L. Drennan,^{*c,d,e,f*} JoAnne Stubbe,^{*c,e,**} and Daniel G. Nocera^{*a,**}


^a Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138
 ^b Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara CA 93106


 ^c Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA 20139
 ^d Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 20139
 ^e Department of Biology, Massachusetts Institute of Technology, Cambridge MA 20139
 ^f Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1

Email: *greene@chem.ucsb.edu, *stubbe@mit.edu, *dnocera@fas.harvard.edu

Table of Contents

Figure S1.	Excited-state reaction pathways accompanying photophysical schemes of $photo\beta_2$ systems	S3
Figure S2.	Experimental design of transient absorption/emission kinetics	S4
Figure S3.	Extended view of the docking model of [Re] photooxidant	S5
Figure S4.	K_d determination for [Re]-labeled $E_{52}Q$ -photo β_2 with wt α_2	S6
Figure S5.	Representative [Re]* emission kinetics and associated fits.	S7
Figure S6.	Transient absorption spectra of $E_{52}Q$ –photo β_2 and $E_{52}Q/Y_{356}F$ –photo β_2	S8
References	References	

Figure S1. (Top) Excited-state reaction pathways after excitation of $[\text{Re}^{I}]^*$ in photo β_2 . Figure 3 is reproduced here for convenience to the reader. (Bottom) description of the lifetimes (τ_0 and τ_{obs}) listed in Table 1 of text and accompanying photophysical schemes that describe the lifetimes.

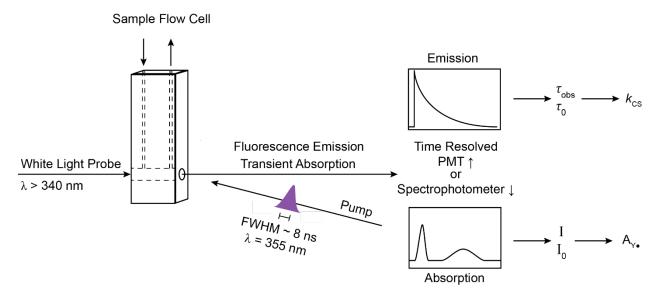


Figure S2. Schematic of the emission lifetime and transient absorption experimental setup and data processing.

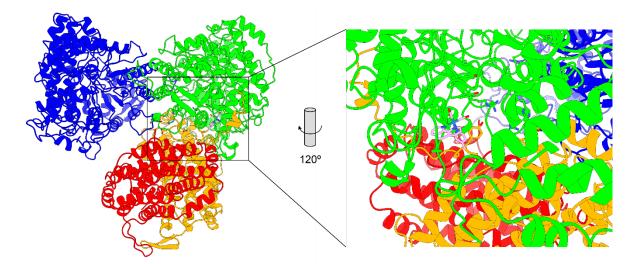
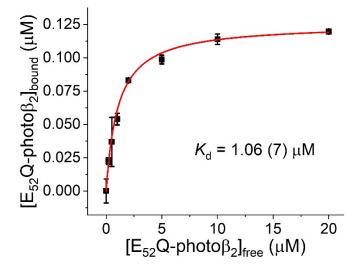
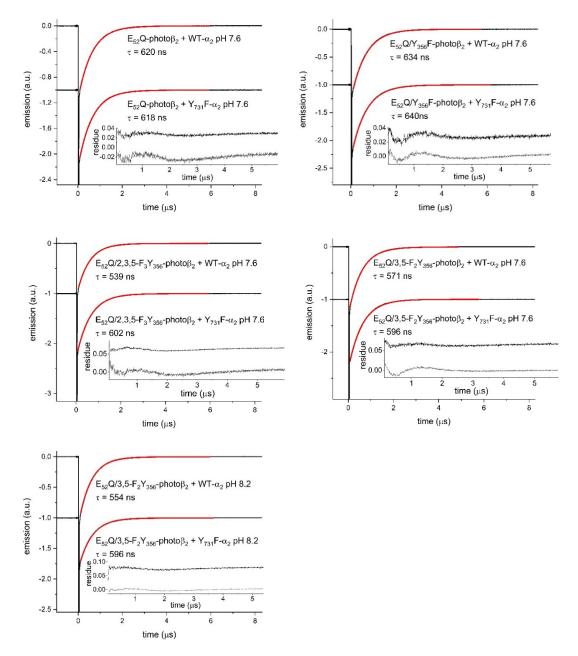




Figure S3. Expanded alternative views of the docked [Re] site in the cryo-EM RNR structure.

Figure S4. K_d determination for [Re]-labeled $E_{52}Q$ -photo β_2 with wt α_2 . Conditions as described in subsection " K_d determination" of the Methods. The K_d of the wt $\alpha_2\beta_2$ interaction is 0.2 μ M,¹ whereas the K_d of the wt α_2 photo β_2 interaction is 0.7 μ M,² the K_d of the wt $\alpha_2 E_{52}Q$ β_2 0.12 μ M³ and the $K_d < 0.4$ nM for radical-traped cryo-EM complex.⁴

Figure S5. Representative time traces of the emission $[\text{Re}^I]^*$ and the mono-exponential fitting with the residual difference shown in the figure inset. The emission kinetics were measured with 5 μ M α_2 , 2 μ M E₅₂Q-photo β_2 variants, 1 mM CDP, 3 mM ATP in assay buffer and lifetimes reported represent the average of three independent measurements consisting of 100 traces each.

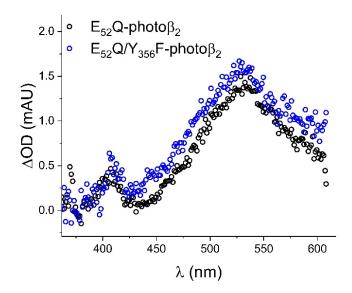


Figure S6. Transient absorption spectra of $E_{52}Q$ -photo β_2 and $E_{52}Q/Y_{356}F$ -photo β_2 . Conditions as described in Transient absorption spectroscopy subsection of the Methods.

References

- Climent, I.; Sjöberg, B. M.; Huang, C. Y. Carboxyl-Terminal Peptides as Probes for *Escherichia* coli Ribonucleotide Reductase Subunit Interaction: Kinetic Analysis of Inhibition Studies. *Biochemistry* 1991, 30, 5164–5171.
- (2) Pizano, A. A.; Lutterman, D. A.; Holder, P. G.; Teets, T. S.; Stubbe, J.; Nocera, D. G. Photo-Ribonucleotide Reductase β₂ by Selective Cysteine Labeling with a Radical Phototrigger. *Proc. Natl. Acad. Sci. U.S.A.* 2012, 109, 39–43.
- (3) Lin, Q.; Parker, M. J.; Taguchi, A. T.; Ravichandran, K.; Kim, A.; Kang, G.; Shao, J.; Drennan, C. L.; Stubbe, J. Glutamate 52-β at the α/β Subunit Interface of *Escherichia coli* Class Ia Ribonucleotide Reductase is Essential for Conformational Gating of Radical Transfer. *J. Biol. Chem.* 2017, 292, 9229–9239.
- (4) Kang, G.; Taguchi, A. T.; Stubbe, J.; Drennan, C. L. Structure of a Trapped Radical Transfer Pathway within a Ribonucleotide Reductase Holocomplex. *Science* **2020**, *368*, 424–427.