Supplementary Information

Laboratory Evolution of a Sortase Enzyme that Modifies the Alzheimer's Disease-Associated Amyloid β-protein

Christopher J. Podracky^{1,2}, Chihui An², Alexandra DeSousa³, Brent M. Dorr², Dominic M. Walsh³, David R. Liu^{1,2,4}

¹Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142

²Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 021383

³Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115 ⁴Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138

Supplementary Tables

- 1. Evolutionary history of SrtAβ
- 2. Comparison of developed ELISA to commercial kits
- 3. Primers used to generate reversion mutants
- 4. Sex and age of cerebrospinal fluid donors

Supplementary Figures

- 1. TEV treatment reduces SrtA display to uninduced levels
- 2. Evolved sortase activity on fetuin A
- 3. Mutational analysis of the round 7 consensus sequence
- 4. Calcium dependence of evolved SrtAβ
- 5. HPLC traces of semi-syntheses and other reaction mixtures

Round	Library Size	# Sorts	Positive Substrate	Conc. (nM)	Negative Substrate	Conc. (µM)	Time (min)	Buffer
1	4.8 x 10 ⁷	5	Btn-G LPVGG V	3200 → 100	GLPESGT	0 →10	60	TBS- BC
2	7.2 x 10 ⁷	5	Btn-GLMVGGV	10000 → 1000	LMVTGV LPVGGV	0 → 100 0 → 100	60	TBS- BC
3	3.5 x 10 ⁷	4	Btn-GLMVGGV	1000 → 320	LMVTG∨ LPVGG∨	1 → 20 1 → 20	60	TBS- BC
4	1.4 x10 ⁷	4	Btn-GLMVGGV	500 → 200	LMVTG∨ LPVGG∨	20 → 100 20 → 100	60	TBS- BC
5	4.2 x 10 ⁷	4	Btn-GLMVGGV	500 → 50	LMVTG∨ LPVGG∨	100 100	60	TBS- BC
6	4 x 10 ⁷	2	Btn-GLMVGGV	100	LMVTG∨ LPVGG∨	100 100	60	TBS- BC
7	2.5 x 10 ⁷	2	Btn-GLMVGGV	100 → 50	LMVTGV LPVGGV	100 100	60	TBS- BC
8	1 x 10 ⁷	5	Btn-GLMVGGV	500 → 50	LMVTG∨ LPVGG∨	100 100	60	TBS- BC
9	7 x 10 ⁷	6	Btn-G LMVGG V	50	ALAVGGS Alppags Lpvggv	10 → 50 10 → 50 100	60 → 30	TBS- BC
10	2 x 10 ⁷	5	Btn-GLMVGGV	5000 → 500	-	-	60	PC
11	8 x 10 ⁶	5	Btn-GLMVGGV	500 → 50	-	-	60	PC
12	2 x 10 ⁷	5	Btn-GLMVGGV	50	-	-	60 → 20	PC
13	5 x 10 ⁷	6	Btn-GLMVGGV	50 → 30	-	-	20	PC
14	4.4 x 10 ⁷	6	Btn-GLMVGGV	30	-	-	20	PC
15	1 x 10 ⁷	5	Btn- Aβ40	200 🗲 20	-	-	60 → 15	PC
16	1.2 x 10 ⁷	6	Btn- Aβ40 Btn- Aβ42	10 → 5 10 → 5	-	-	15	PC

Supplementary Table 1. Evolutionary history of SrtAβ. Library size at the beginning of each round, number of sorts before re-diversification, and information on screening stringency are provided. Changes in substrate concentrations and reaction times over the course of a round are indicated where applicable. The sequences in each substrate relevant to sortase recognition are in bold. Changes in incubation time over the course of a round is indicated by an arrow where applicable. TBS-BC = 100 mM Tris pH 7.5, 500 mM NaCl, 1% BSA, 5 mM CaCl₂. PC = human plasma, 5 mM CaCl₂.

	Alloform(s)	Standard range	LLoQ	LLoD	MDD + 3	MDD + 2
Source	detected	(pg/mL)	(pg/mL)	(pg/mL)	(pg/mL)	(pg/mL)
This Work	40 and longer	39-2500	39-78	39	7.2	5.5
LifeSpan BioSciences	40	12.4-1000	-	-	<4.6	-
LifeSpan BioSciences	42	15.6-1000	-	-	<9.4	-
RayBiotech	40	100-100000	-	-	-	100
Biomatik	40	12.4-1000	-	-	-	4.6
Biomatik	42	12.4-1000	-	-	-	5
R&D Systems	40	15.6-1000	-	-	-	4
R&D Systems	42	7.8-500	-	-	-	2.3
Biorbyt	40	125-8000	-	-	31.2	-
Biorbyt	42	312-20000	-	-	78	-
IBL International	40	188-1880	-	-	104	-
IBL International	42	7.8-125	28.6	16	-	-
Abexa	40	15.6-1000	-	-	9.4	-
Abexa	42	15.6-1000	-	-	9.4	-
Thermo	40	7.8-500	-	-	-	<6
Thermo	42	15.6-1000	-	-	-	<10
Novus	40	15.6-1000	-	-	9.4	-
Novus	42	15.6-1000	-	-	9.4	-

Supplementary Table 2. Comparison of developed ELISA to commercial kits. Searching publicly available databases and manufacturer's catalogs for ELISA kits that detect human Aß reveals kits designed to be used with standards ranging in concentration from 7.8 to 100,000 pg/mL, with most individual kits ranging from ~10 to 1000 pg/mL. Most commercially available kits are designed for the detection of a single A β alloform, normally A β 40 or A β 42. In contrast, SrtAβ has been shown to modify Aβ40, Aβ42, and Aβ43. The performance of these kits can be measured in multiple ways. The lower limit of quantitation (LLoQ) is defined as the lowest standard concentration with a signal higher than the average signal of the blank samples plus nine standard deviations that allows a percent recovery of 80-120%. The lower limit of detection (LLoD) is defined as the lowest standard concentration with a signal higher than the average signal of the blank samples plus nine standard deviations. The minimum detectable dose (MDD), referred to as sensitivity by some manufacturers, is the lowest concentration of analyte that can be differentiated from zero. It is obtained by taking the average of the blanks, adding 2 (MDD + 2) or 3 (MDD + 3) standard deviations, and using that value to calculate a concentration. In six ELISA experiments on six separate days, we observed LLoQ = 39 pg/mL on five occasions and LLoQ = 78 pg/mL once. We observed LLoD = 39 pg/mL on all six occasions. The average MDD across assays was 5.5 or 7.2 pg/mL, depending on whether 2 or 3 standard deviations were added to the average of the blanks.

Mutant	Forward Primer	Reverse Primer
L76I	GGCGGGCTATATTGAAATTCC	ACTTTGCTTTTATCTTTCGG
C102S	ACCGTGGCG/ideoxyU/GTCCTTTGTG	ACGCCACGG/ideoxyU/CGAGCTGTTC
D105E	AAGACGAAAGCC/ideoxyU/GGATGATCA G	AGGCTTTCGTCT/ideoxyU/CTTCCACAAAGCACACG CC
D107N	GAAAGCCTGGATGA/ideoxyU/CAGAAC	ATCATCCAGGCTT/ideoxyU/CGTTTTCGTCCACAAAG CAC
I118S	GTCATACCGCGCT/ideoxyU/CTTCGTC	AAGCGCGGTA/ideoxyU/GACCGGAAATGCTAATGTT CTGATCATCCAGG
L123I	ACTATCAGTT/ideoxyU/ACCAACCTGAG	GTAAACTGATAG/ideoxyU/GCGGACGAAGAATCGCG GTATGACCG
L124D	TACCGCGCTTGACCGTCCGCACT	TGACCGATAATGCTAATGTTCTG
H127N	AACTATCAGTT/ideoxyU/ACCAACCTGAG G	AAACTGATAGT/ideoxyU/CGGACGAAGAAGCGCG
R134G	CGAAACTAGACAGCA/ideoxyU/CGTGT	GATGCTGTCTAGTT/ideoxyU/CGCCGCCCCAGGTT GGTAAACTGATAGTGC
L138K	GGCGGCGAAAAAAGACAGCATCG	CTCAGGTTGGTAAACTGATAG
D139G	AGCATCGTGTATTT/ideoxyU/ACAGTG	GTAAAATACACGATGC/ideoxyU/GCCTAGTTTCGCC GCCC
I141M	ACTAGACAGCATGGTGTATTTTACAGTG GG	TTCGCCGCCCTCAGGTTG
T145K	ATCGTGTATTTTAAAG/ideoxyU/GGGCAA CGAAACCC	ACTTTAAAATACACGA/ideoxyU/GCTGTCTAGTTTCG
R152K	CGAAACCCGTAAGTATAAAATAACCAGC	TTGCCCACTGTAAAATAC
I155M	CCAGCATTTGTAACG/ideoxyU/GAGAC	ACGTTACAAATGC/ideoxyU/GGTCATTTTATATCTAC GGGTTTC
C159R	AGCATTCGTAACG/ideoxyU/GAGACCGA	ACGTTACGAATGC/ideoxyU/GGTTATTTTATATCTAC GGG
R162K	ACCGCGGTGGAAG/ideoxyU/GCTGGAT G	CACTTCCACCGCGG/ideoxyU/CGGTTTCACGTTACA AATGCTG
H172Q	AGGAAGGCAAAGA/ideoxyU/AGACAGCT GAC	ATCTTTGCCTTCC/ideoxyU/GTTCATCCAGCACTTCC AC
E173K	ATAAAGGCAAAGA/ideoxyU/AGACAGCT GAC	ATCTTTGCCTTTA/ideoxyU/GTTCATCCAGCACTTCC AC
R177K	AGGCAAAGATAAACAGCTGACCC	TCATGTTCATCCAGCACTTCC
A182V	ACCTGCGATGAT/ideoxyU/ATAACTATG	AATCATCGCAGG/ideoxyU/GACCAGGGTCAGCTGTC TATC
Y189V	AAACCGGCGTG/ideoxyU/GGGAATCCAG	ACACGCCGGTT/ideoxyU/CTACGTTATAATCATCGCA GGTCGC
S196T	CGTGTGGGAAACTAGTAAAATTTTTG	CCGGTTTCATAGTTATAATC
S197R	GTGGGAATCCCGTAAAATTTTTGTGG	ACGCCGGTTTCATAGTTATAATC
R206K	ACCGAAGTGAAAGGA/ideoxyU/CCGAAC AAAAGCTTATTTC	ATCCTTTCACTTCGG/ideoxyU/CGCCAC

Supplementary Table 3. Primers used to generate reversion mutants.

Sample	Sex	Age (years)
1	F	78
2	М	61
3	М	64
4	F	86
5	М	73
6	М	64
7	М	67
8	М	67
9	М	72
10	F	78

Supplementary Table 4. Sex and age of cerebrospinal fluid donors.

Supplementary Figure 1. TEV treatment reduces SrtA display to uninduced levels. TEV cleavage to remove SrtA also removes its C-terminal c-Myc tag. Staining of an induced population of cells, cells from that same population that have been treated with TEV as described above, and uninduced cells for c-Myc tag (chicken anti-c-myc, Invitrogen A-21281, followed by goat anti-chicken IgY AlexaFluor 488 conjugate, Invitrogen A-11039) shows that TEV treatment reduces the amount of apparent c-Myc to uninduced levels.

Supplementary Figure 2. Evolved sortase activity on fetuin A. (a) Fetuin A (5 μ M) was incubated with SrtA 8.5-H3 (20 μ M) and GGGK(Btn) (100 μ M). Labeled fetuin A is detected by Western blot. The laddering in lane 4 is only observed in the presence of both SrtA and fetuin. (b) Western blot of overnight reaction of SrtA 8.5-H3 (50 μ M) and GGGK(Btn) (1 mM) in human plasma shows labeling of endogenous fetuin A (c) In a two hour reaction of SrtA β (1 μ M) and GGGK(Btn) (1 mM) in human plasma, no enzyme dependent modifications are observed upon streptavidin pulldown and Coomassie staining. The bands observed in the +SrtA β +GGGK(Btn) lane are also observed in the GGGK(Btn) only lane. Notably, treatment with sortase 4S.6 under the same conditions leads to pulldown of a protein not observed in the other lanes. (d) Western blot of these reactions prior to pulldown shows that 4S.6, but not SrtA β , labels fetuin A. This is notable evidence of a change in substrate specificity between 4S.6 and SrtA β . Labeling of purified fetuin A, plasma Western blot, and plasma pulldown were each performed three times with similar results.

Supplementary Figure 3. Mutational analysis of the round 7 consensus sequence.

Single mutant reversions from the round 7 consensus sequence (R7) were made back to 4S.6 and wild-type SrtA. After induction and preparation for cell surface sortase reactions, clonal populations were incubated for 1 hour with 100-1000 nM Btn-LMVGG. Reversion mutant Y94R showed a 2.3-fold improvement on average across substrate concentrations compared to the round 7 consensus sequence. L123I (1.5-fold) and L124D (1.1-fold) also showed improvement. These three residues and residue 122 (by virtue of its proximity to 123 and 124) were targeted for site-saturation mutagenesis heading into round 9. Activity is defined as fold-increase in PE signal over a negative control (0 nM Btn-LMVGG) aliquot of each variant.

Supplementary Figure 4. Calcium dependence of evolved SrtAß. Several mutations (green) in SrtAß map near the calcium (orange) binding site. To assess the impact of these mutations on sortase calcium dependence, we treated 20 μ M Abz-LMVGG(Dnp)-CONH₂ with SrtAß in the presence of varying concentrations of calcium. Samples containing calcium showed an increase in fluorescence over time, while samples lacking calcium failed to rise above the level of a negative control lacking enzyme. Notably, SrtAß shows activity at physiologically relevant calcium concentrations (typical ionized calcium levels in plasma range from 1.3-1.5 mM).

Supplementary Figure 5. HPLC traces of semi-syntheses and other reaction mixtures. (a) In a representative injection from the AβM1-37GGGK(Btn) semi-synthesis described

above, 82% of the starting ABM1-40 was converted to the desired product, with no clear evidence of hydrolysis or alternate transpeptidation products. (b) 120 µM chemically synthesized AB40 (0.25 mg scale) was reacted overnight with 40 µM SrtAB and 1 mM of the indicated glycine-based nucleophile before lyophilization, dissolution in 7 M guanidium chloride, 50 mM Tris pH 7.5, 2 mM EDTA, and analysis of the crude reaction mixture by HPLC. In the presence of SrtA β but the absence of glycine nucleophiles, we observed a peak that does not fully resolve from the enzyme or AB40. This putative hydrolysis product has an area roughly one-quarter that of the AB40 peak. In the presence of glycine nucleophiles this product is never observed. Instead, we observe the expected transpeptidation products in yields of 80-88%. (c) In a representative injection from the A β M1-37GGGRR semi-synthesis described above, 64% of the starting A β M1-42 was converted to the desired product, with no clear evidence of hydrolysis or alternate transpeptidation products. (d) 120 µM chemically synthesized AB42 (0.4 mg scale) was reacted overnight with 30 µM SrtAB and 1 mM or 200 µM GGGRR before lyophilization, dissolution in 7 M guanidium chloride, 50 mM Tris pH 7.5, 2 mM EDTA, and analysis of the crude reaction mixture by HPLC using the column and protocol from the ABM1-37GGGK(Btn) semi-synthesis. 64% of the AB42 was converted to the expected product when reacted with 1 mM GGGRR as opposed to 50% when reacted with 200 µM GGGRR.