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Supplementary methods 

Supplementary Note 1: Images from human subjects 

Ultrasonic gallbladder images used as training cohort were collected from the First Affiliated 

Hospital, Sun Yat-sen University, Hunan Children’s Hospital, Fujian Provincial Maternity and 

Children’s Hospital, Affiliated Hospital of Fujian Medical University, Guangdong Women and 

Children’ Hospital, and Shengjing Hospital of China Medical University. Ultrasonic gallbladder 

images used as external validation cohort were collected from Union Hospital, Tongji Medical College 

of Huazhong University of Science and Technology, West China Hospital of Sichuan University, 

Hexian Memorial Affiliated Hospital of Southern Medical University, the First People's Hospital of 

Foshan, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 

and Sanya City Womenfolk and Infant Health Care Hospital. 

 

Supplementary Note 2: The SE-ResNet model structure 

Multiple CNN model architectures have been proposed in the past several years, e.g., VggNet 1, 

ResNet 2, SE-ResNet 3 and SENet 3, with both SE-ResNet and SENet showing superior performance 
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on natural images (e.g., ImageNet) compared to most other model architectures. Considering that 

SENet was much more computationally expensive than SE-ResNet during training, we adopted SE-

ResNet as the CNN architecture for intelligent analysis of BA in this study. The adopted SE-ResNet 

mainly consists of 50 residual convolutional units, with each unit followed by a squeeze-and-excitation 

(SE) block (Supplementary Fig. 4). Each residual unit is composed of three convolutional layers and 

a skip connection from the input of the first layer to the output of the last (third) layer. Each 

convolutional layer contains multiple mathematical convolution operations between the input of the 

layer and the convolutional kernels in the layer. Batch normalization and a rectified linear unit (ReLU) 

are also part of each convolutional layer by default. The SE block is a three-layer fully connected sub-

network inserted to the end of each residual unit to adaptively adjust the importance (or "excitation") 

of each output channel of the residual unit by considering (or "squeezing") the global visual 

information of the input image. With this SE block, relevant visual features would become more 

excited, while irrelevant visual features would be suppressed to a large extent, therefore making the 

model focus on more relevant information during prediction. Besides, the last fully connection layer 

was adapted for our binary classification task. 

 

Supplementary Note 3: Training the SE-ResNet 

Before training each SE-ResNet, all images from the training cohort were pre-processed as 

follows. First, from each original image, six new images were obtained by randomly cropping around 

the provided bounding box, with each new image slightly larger than and containing the entire 

gallbladder region. Then, each new image was rescaled to a square image of the size 224-by-224 pixels. 

Each single-channel grayscale image became a three-channel image by duplicating the original single 
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channel three times. The mean and standard deviation of pixel intensities were computed over all 

cropped images, which were then used to normalize each pixel in all rescaled images. The 

normalization method was consistent with the pretrained model used. The pre-trained model we used 

comes from one of the most commonly used repositories (https://github.com/Cadene/pretrained-

models.pytorch) on the github. Each normalized image will be used as an input to the SE-ResNet for 

model training.  

Training a SE-ResNet was an iterative process. At each iteration, a batch of (normalized) images 

were respectively input to the SE-ResNet, and the scalar output of the SE-ResNet would be compared 

to the expected output ("1" if the class of the input image was BA, and "0" for non-BA). Training a 

deep learning model is actually to update the parameters of the model such that the real outputs are as 

close to the expected outputs as possible for each batch of input images, where the model parameters 

mainly consist of the elements in each convolution kernel in each convolutional layer and the edge 

weights in each fully connect layer. The differences between the real outputs and the expected outputs 

are measured by a loss function called cross-entropy loss, which is a mathematical function of the 

model parameters. In other words, model training is to search for the best set of model parameter values 

such that the cross-entropy loss is minimum with the training images as input to the model. Mini-batch 

stochastic gradient descent (SGD) is one of the widely used methods to find the best model parameters 

over iterations, and was used for all model trainings in this study, where the batch size (i.e., the number 

of the images) was set to 16, and the learning rate of the SGD method was initially set to 0.01 and 

divided by 10 after every 35 epochs. Each epoch consisted of a sequence of training iterations through 

which all training images were fed into the model once. The maximum number of epochs was set to 

210 before which each model has been well trained without much change in model parameters.    
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To improve the generalizability of each SE-ResNet, besides the ensembled learning mentioned in 

the main text, a few effective tricks were also applied for model training. First, considering that there 

were fewer images for the BA class than for the non-BA class, the cross-entropy loss was slightly 

modified using the well-known cost-sensitive learning 4 to improve the influence of BA each image. 

Second, a pre-trained SE-ResNet based on the large-scale natural image dataset ImageNet was used to 

initialize the model parameters, because such initialization has been experimentally proven effective 

in improving the classification performance particularly for new classification tasks with relatively 

small training dataset 5. The last fully connection layer in the SE-ResNet was randomly initialized for 

our binary classification task, as commonly adopted when using a pre-trained model. Third, the drop-

out operation was only applied to the last fully connect layer of the SE-ResNet, which has shown to 

reduce the potential inter-dependence between neurons in the network and therefore improve the 

generalizability of the model 6. The rate of dropout was set to 0.2 for all training period in this study. 

In addition, besides the random crop mentioned above, the horizontal flipping of each training image 

at a probability 0.5 was also used as part of data augmentation during model training. 

 

Supplementary Note 4: Alternative training strategies and CNN backbones 

The proposed ensemble model was empirically compared with a few alternatives, including (1) an 

individual CNN model trained with the entire training dataset (Tables 6-9, fourth row), (2) the general 

ensemble model (of 5 and 10 individual models respectively) where each individual model was trained 

with the entire training dataset (Tables 6-9, last two rows), (3) the ensemble model with the proposed 

k-fold ensemble strategy, but with different k values (k= 3 and 10 respectively, Tables 6-9, second and 

third row), (4) the individual and various ensemble models with different CNN backbones (Tables 6-
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9), and (5) the ensemble of five different individual models with different backbones (SE_ResNet-152, 

DenseNet-201, EfficientNet-B7, ResNet-152 and Vgg-19). When using the entire training dataset to 

train an individual model, each individual model was trained to the maximum number of epochs (i.e., 

210 epochs), with consistent observation of training convergence.  

From Tables 6-9, it could be observed that the proposed ensemble model (first row) consistently 

performed better (in AUCs) than the either the individual model (four row) or the ensemble of multiple 

individual models (last two rows) where each individual model was trained with the entire training 

dataset, no matter which model backbone was used (Tables 6-9). While the proposed ensemble model 

was based on 5-fold cross validation, different number of folds could be used. In this study, the 

diagnostic performance of the ensemble models trained with 3-fold and 10-fold cross-validation 

(second and third row) was either lower or comparable to that of the model based on the 5-fold cross-

validation. The number of folds in the proposed ensemble strategy could be considered as a 

hyperparameter and experimentally determined for any specific application. In addition, when 

combining five different individual models (SE_ResNet-152, DenseNet-201, EfficientNet-B7, 

ResNet-152 and VggNet-19) to form an ensemble model, the ensemble model yielded a sensitivity 

80.5% and a specificity of 93.9% (AUC 0.925) when trained by 5-fold cross validation, and yielded a 

sensitivity 72.9 % and a specificity of 97.0% (AUC 0.901) when trained with the entire dataset for 

each individual model. These two AUCs were clearly lower than the result (AUC 0.942) obtained by 

the ensemble model of five SE_ResNet-152 models based on the proposed ensemble strategy (Table 

6, first row).  

 

Supplementary Note 5: Libraries 

The image processing libraries used for training model included PyTorch (1.5.1), torchvision 
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(0.6.1), NumPy (1.17.0), scikit-learn (0.21.3), TensorboardX (1.8), PIL (7.1.2), tqdm (4.32.1), 

SimpleITK (1.2.0), pandas (0.25.0), Matplotlib (3.1.1), pretrained-models (0.7.4, 

https://github.com/Cadene/pretrained-models.pytorch), and EfficientNet-PyTorch (0.6.3, 

https://github.com/lukemelas/EfficientNet-PyTorch). 
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Supplementary Tables 

Supplementary Table 1. Comparison of the diagnostic performances at the image level between 

the model and two radiologists under various scanning conditions on the internal cross-

validation dataset. 

Condition Training# Test#  AUC Sensitivity 

(%) 

Specificity 

(%) 

P 

value* 

 

 

 

 

 

Frequency 

 

 

＜14 

(n=1467) 

 

 

≥14 

(n=2238) 

AI model 0.931 

(0.919 - 0.941) 

83.5 

(79.8 - 86.8) 

95.6 

(94.5 - 96.5) 

- 

Expert A 0.773 

(0.755 - 0.790) 

93.9 

(91.3 - 95.9) 

60.6 

(58.3 - 62.9) 

<.001 

Expert B 0.828 

(0.811 - 0.843) 

73.5 

(69.3 - 77.5) 

92.0 

(90.6 - 93.2) 

<.001 

 

 

≥14 

(n=2238) 

 

 

＜14 

(n=1467) 

AI model 0.835 

（0.815 - 0.853） 

64.2 

（59.7 - 68.6） 

91.4 

（89.5 - 93.1） 

- 

Expert A 0.676 

（0.652 - 0.700） 

93.8 

（91.1 - 95.8） 

41.5 

（38.4 - 44.6） 

<.001 

Expert B 0.842 

（0.822 - 0.860） 

79.1 

（75.1 - 82.7） 

89.2 

（87.1 - 91.1） 

.677 

 

 

 

 

 

Screening 

time 

 

≤2018 

(n=2477) 

 

>2018 

(n=1228) 

AI model 0.900 

（0.882 - 0.916） 

90.9 

（88.0 - 93.3） 

77.8 

（74.6 - 80.8） 

- 

Expert A 0.641 

（0.613 - 0.668） 

96.2 

（94.1 - 97.7） 

32.0 

（28.7 - 35.5） 

<.001 

Expert B 0.810 

（0.786 - 0.831） 

79.8 

（75.9 - 83.2） 

82.2 

（79.2 - 84.9） 

<.001 

>2018 

(n=1228) 

≤2018 

(n=2477) 

AI model 0.832 

（0.817 - 0.847） 

68.0 

（63.3 - 72.4） 

87.7 

（86.2 - 89.1） 

- 

Expert A 0.763 

（0.746 - 0.780） 

91.2 

（88.1 - 93.7） 

61.5 

（88.1 - 93.7） 

<.001 

Expert B 0.833 

（0.818 - 0.847） 

72.4 

（67.9 - 76.6） 

94.2 

（93.1 - 95.2） 

0.964 

 

 

 

 

 

 

 

 

 

Machine 

Mindray + 

the others  

(n=2332) 

Supersonic 

(n=1373) 

AI model 0.807 

(0.784 - 0.829) 

85.4 

(82.3 - 88.0) 

66.1 

(62.1 - 69.9) 

- 

Expert A 0.585 

(0.556 - 0.613) 

95.5 

(93.5 - 97.0) 

21.5 

(18.2 - 25.0) 

<.001 

Expert B 0.760 

(0.735 - 0.784) 

81.3 

(78.0 - 84.3) 

70.8 

(66.9 - 74.4) 

.007 

Mindray + 

Supersonic 

(n=2492) 

The others 

(n=1213) 

AI model 0.787 

(0.762 - 0.811) 

62.1 

(55.9 - 68.0) 

87.8 

(85.4 - 89.9) 

- 

Expert A 0.722 

(0.694 - 0.748) 

92.3 

(88.4 - 95.3) 

52.0 

(48.6 - 55.4) 

.004 

Expert B 0.817 

(0.793 - 0.840) 

70.1 

(64.2 - 75.6) 

93.4 

(91.5 - 94.9) 

.199 

Supersonic + 

the others 

(n=2586) 

Mindray 

(n=1119) 

AI model 0.950 

(0.937 - 0.960) 

83.7 

(69.3 - 93.2) 

99.3 

(98.6 - 99.6) 

- 

Expert A 0.741 

(0.717 - 0.764) 

79.1 

(64.0 - 90.0) 

69.2 

(66.6 - 71.6) 

<.001 

Expert B 0.702 

(0.677 - 0.726) 

41.9 

(27.0 - 57.9) 

98.5 

(97.7 - 99.1) 

<.001 

Note: #Numbers of training and test images are included in brackets in the second and third columns. 

95% confidence intervals are included in brackets in other relevant columns. 

*The P values were from the comparison between the AUC of the ensemble deep learning model and the 

AUCs of two human experts. Differences between various AUCs were compared using a Delong test. 

‘AI’, artificial intelligence; ‘AUC’, area under receiver operating characteristic curve. 
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Supplementary Table 2. Comparison of the diagnostic performances at the patient level between 

the model and two radiologists under various scanning conditions on the internal cross-

validation dataset. 

Condition Training# Test#  AUC Sensitivity 

(%) 

Specificity 

(%) 

P 

value* 

 

 

 

 

 

Frequency 

 

 

＜14 

(n=624) 

 

 

≥14 

(n=517) 

AI model 0.921 

(0.902 - 0.945) 

83.6 

(77.3 - 88.7) 

94.5 

(92.0 - 96.3) 

- 

Expert A 0.739 

(0.704 - 0.772) 

90.4 

(85.1 - 94.3) 

57.5 

(53.0 - 61.9) 

<.001 

Expert B 0.804 

(0.772 - 0.833) 

63.8 

(56.3 - 70.9) 

96.9 

(95.0 - 98.3) 

<.001 

 

≥14 

(n=517) 

 

＜14 

(n=624) 

AI model 0.828 

(0.796 - 0.856) 

69.2 

(62.7 - 75.2) 

86.3 

(82.5 - 89.5) 

- 

Expert A 0.715 

(0.678 - 0.750) 

89.3 

(84.5 - 93.0) 

53.8 

(48.7 - 58.7) 

.030 

Expert B 0.821 

(0.789 - 0.851) 

68.8 

(62.2 - 74.8) 

95.5 

(93.0 - 97.3) 

.098 

 

 

 

 

 

Screening 

time 

 

≤2018 

(n=881) 

 

>2018 

(n=260) 

AI model 0.911 

(0.888 - 0.934) 

93.9 

(87.8 - 97.5) 

78.9 

(71.4 - 85.2) 

- 

Expert A 0.643 

(0.582 - 0.701) 

91.2 

(84.5 - 95.7) 

37.4 

(29.6 - 45.8) 

<.001 

Expert B 0.811 

(0.759 - 0.857) 

68.4 

(59.1 - 76.8) 

93.9 

(88.7 - 97.2) 

.122 

>2018 

(n=260) 

≤2018 

(n=881) 

AI model 0.820 

(0.791 - 0.852) 

72.2 

(65.7 - 78.1) 

82.4 

(79.3 - 85.2) 

- 

Expert A 0.757 

(0.727 - 0.785) 

89.4 

(84.5 - 93.1) 

62.0 

(58.1 - 65.7) 

.496 

Expert B 0.809 

(0.781 - 0.834) 

64.4 

(57.6 - 70.7) 

97.4 

(95.9 - 98.5) 

.169 

 

 

 

 

 

 

 

 

 

Machine 

Mindray + 

the others  

(n=828) 

Supersonic 

(n=313) 

AI model 0.805 

(0.769 - 0.833) 

87.8 

(82.3 - 92.0) 

63.9 

(56.0 - 71.2) 

- 

Expert A 0.619 

(0.567 - 0.670) 

91.3 

(86.5 - 94.9) 

32.5 

(25.5 - 40.2) 

<.001 

Expert B 0.789 

(0.743 - 0.830) 

70.4 

(63.5 - 76.7) 

87.4 

(81.3 - 92.0) 

.345 

Mindray + 

Supersonic 

(n=779) 

The others 

(n=362) 

AI model 0.761 

(0.728 - 0.796) 

63.1 

(53.9 - 71.7) 

83.0 

(78.6 - 86.8) 

- 

Expert A 0.766 

(0.725 - 0.804) 

89.3 

(82.5 - 94.2) 

63.9 

(58.6 - 68.9) 

.303 

Expert B 0.803 

(0.764 - 0.838) 

61.5 

(52.2 - 70.1) 

99.1 

(97.5 - 99.8) 

.053 

Supersonic + 

the others 

(n=675) 

Mindray 

(n=466) 

AI model 0.954 

(0.935 - 0.969) 

83.3 

(51.6 - 97.9) 

99.0 

(97.1 - 99.8) 

- 

Expert A 0.694 

(0.640 - 0.745) 

75.0 

(42.8 - 94.5) 

63.8 

(58.1 - 69.2) 

.015 

Expert B 0.663 

(0.608 - 0.716) 

33.3 

(9.9 - 65.1) 

99.3 

(97.6 - 99.9) 

.011 

Note: #Numbers of training and test patients are included in brackets in the second and third columns. 

95% confidence intervals are included in brackets in other relevant columns. 

*The P values were from the comparison between the AUC of the ensemble deep learning model and the 

AUCs of two human experts. Differences between various AUCs were compared using a Delong test. 

‘AI’, artificial intelligence; ‘AUC’, area under receiver operating characteristic curve. 
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Supplementary Table 3. Consistency assessment of regions of interest between one individual 

model within the ensemble deep learning model and human radiologists on the external 

validation dataset. 

AI Model Real diagnosis Regions of interest 

Consistent Inconsistent Total 

 

Correctly diagnosed 

Biliary atresia 206 (98.6%) 3 (1.4%) 209 

Non biliary atresia 566 (99.8%) 1 (0.2%) 567 

Total 772 (99.5%) 4 (0.5%) 776 

 

Incorrectly 

diagnosed 

Biliary atresia 27 (100%) 0 (0%) 27 

Non biliary atresia 38 (100%) 0 (0%) 38 

Total 65 (100%) 0 (0%) 65 

Note: Data are numbers of images and the percentage in parentheses. 

      The attended regions obtained by the class activation map during diagnosis by the individual model 

which was within the ensembled deep learning model but had strong activation and the same classification result 

as that of the ensemble deep learning model. 

     ‘AI’, artificial intelligence. 
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Supplementary Table 4. Statistics of subject information in this study.  

Note: ‘N’, number of subjects; ‘Q’, quartile; ‘BA’, biliary atresia; ‘TB’, total bilirubin; ‘DB’, direct bilirubin; 

‘IB’, indirect bilirubin; ‘ALT’, alanine aminotransferase; ‘AST’, aspartate aminotransferase. 

 

 

Characteristic 

Training dataset 

/Internal validation dataset 

 External validation dataset 

Infants with jaundice Infants 

without 

jaundice 

 Infants with jaundice Infants 

without 

jaundice 
BA group Non-BA group  BA group Non-BA group 

Gender        

N (Missing) 330 (0) 531 (0) 280 (0)  102 (0) 137(0) 59 (0) 

Male (%) 180 (54.5) 352 (66.3) 182 (65)  50 (49) 84 (61.3) 36 (61) 

Female (%) 150 (45.5) 179 (33.7) 98 (35)  52 (51) 53 (38.7) 23 (39) 

        

Age (days)        

N (Missing) 330 (0) 531 (0) 280 (0)  102 (0) 137(0) 59 (0) 

Mean ± SD 60.0 ± 21.2 58.8 ± 24.7 52.8 ± 24.6  57.9 ± 26.0 57.4 ± 20.0 33.0 ± 26.9 

Min, Max 7.0, 141.0 5.0, 143.0 3.0, 145.0  18.0, 146.0 10.0, 120.0 11.0, 136.0 

        

TB (mmol/L)   -    - 

N (Missing) 328 (2) 496 (35)   94 (8) 137 (0)  

Median 166.8 136.3   173.9 116.6  

Q1, Q3 141.3, 201.9 98.8, 193.4   138.9, 225.0 76.2, 165.1  

DB (mmol/L)   -    - 

N (Missing) 328 (2) 496 (35)   94 (8) 137 (0)  

Median 106.3 85.2   117.4 73.8  

Q1, Q3 86.4, 126.0 61.3, 119.5   96.9, 150.2 48.6, 99.4  

        

IB (mmol/L)   -    - 

N (Missing) 328 (2) 496 (35)   94 (8) 137 (0)  

Median 61.1 45.8   51.1 44.0  

Q1, Q3 40.3, 83.6 27.6, 75.9   28.9, 78.6 25.9, 70.3  

        

ALT (U/L)   -    - 

N (Missing) 296 (34) 471 (60)   65 (37) 74 (63)  

Median 136.5 111.0   137.3 85.2  

Q1, Q3 90.3, 225.7 66.1, 192.8   96.0, 214.0 49.3, 147.5  

        

AST (U/L)   -    - 

N (Missing) 302 (28) 445 (86)   65 (37) 74 (63)  

Median 189.5 109.4   133.7 77.5  

Q1, Q3 135.4, 282.8 57.3, 191.0   85.5, 195.3 38.9, 159.0  
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Supplementary Table 5. The number of -patients and -images in training (internal validation) 

dataset and external validation dataset. 

 

Dataset 

 

Hospitals* 

Infants with jaundice Infants 

without 

jaundice 

 

Total BA group Non-BA group 

Training 5 925 (330) 2149 (531) 631 (280) 3705 (1141) 

External validation 6 236 (102) 467 (137) 138 (59) 841 (298) 

Note: Data are number of images and number of patients in brackets in the last four columns.  

*the number of the hospitals providing patient data. Training dataset and external validation dataset were 

from different hospitals. 

‘BA’, biliary atresia 
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Supplementary Table 6. Comparison of the diagnostic performances at the image level on 

SE_ResNet-152 using different ensemble methods on the external validation dataset. 

Ensemble Number of 

Individual 

models 

Training data 

for each 

individual 

model 

AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

P 

value* 

 5 Part 0.942  

(0.924, 0.957) 

88.6  

(83.8, 92.3) 

93.7  

(91.5, 95.5) 

92.3 84.6 95.5 - 

 3 Part 0.935 

(0.916, 0.951) 

85.6 

(80.5, 89.8) 

93.7 

(91.5, 95.5) 

91.4 84.2 94.3 .246 

 10 Part 0.938 

(0.920, 0.954) 

88.6 

(83.8, 92.3) 

94.1 

(91.9, 95.8) 

92.5 85.3 95.5 .448 

 1 All 0.930  

(0.911, 0.946) 

74.2  

(68.1, 79.6) 

95.4 

(93.4, 96.9) 

89.4 86.2 90.4 .299 

 5 All 0.898  

(0.876, 0.918) 

74.58  

(68.5, 80.0) 

97.0 

(95.3, 98.2) 

90.7 90.7 90.7 <.001 

 10 All 0.890  

(0.867, 0.910) 

75.4  

(69.4, 80.8) 

97.0  

(95.3, 98.2) 

91.0 90.8 91.0 <.001 

Note: 95% confidence intervals are included in brackets. 

*The P values were from the comparison between the AUC of the proposed 5-fold ensemble deep learning 

model (‘Part’) and the AUCs of the others. Differences between various AUCs were compared using a Delong 

test. 

‘AUC’, area under receiver operating characteristic curve; ‘PPV’, Positive predictive value; ‘NPV’, 

Negative predictive value. 
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Supplementary Table 7. Comparison of the diagnostic performances at the image level on 

DenseNet-201 using different ensemble methods on the external validation dataset. 

Ensemble Number of 

Individual 

models 

Training data 

for each 

individual 

model 

AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

P 

value* 

 5 Part 0.893  

(0.870, 0.913) 

80.9  

(75.3, 85.7) 

83.8  

(80.6, 86.6) 

83.0 66.1 91.8 - 

 3 Part 0.888 

(0.864, 0.908) 

80.5 

(74.9, 85.4) 

84.3 

(81.1, 87.1) 

83.2 66.7 91.7 .305 

 10 Part 0.874 

(0.850, 0.896) 

79.2 

(73.5, 84.2) 

85.6 

(82.6, 88.3) 

83.8 68.2 91.4 .016 

 1 All 0.878  

(0.854, 0.899) 

69.5  

(63.2, 75.3) 

95.9  

(94.0, 97.3) 

88.5 86.8 89.0 .198 

 5 All 0.882  

(0.858, 0.903) 

72.5  

(66.3, 78.1) 

95.9  

(94.0, 97.3) 

89.3 87.2 89.9 .271 

 10 All 0.873 

(0.848, 0.894) 

73.7  

(67.6, 79.2) 

95.5  

(93.6, 97.0) 

89.4 86.6 90.3 .056 

Note: 95% confidence intervals are included in brackets. 
*The P values were from the comparison between the AUC of the proposed 5-fold ensemble deep learning 

model (‘Part’) and the AUCs of the others. Differences between various AUCs were compared using a Delong 

test. 

‘AUC’, area under receiver operating characteristic curve; ‘PPV’, Positive predictive value; ‘NPV’, 

Negative predictive value. 
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Supplementary Table 8. Comparison of the diagnostic performances at the image level on 

EfficientNet-B7 using different ensemble methods on the external validation dataset. 

Ensemble Number of 

Individual 

models 

Training data 

for each 

individual 

model 

AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

P 

value* 

 5 Part 0.945  

(0.927, 0.959) 

90.7  

(86.2, 94.1) 

89.9  

(87.2, 92.2) 

90.1 77.8 96.1 - 

 3 Part 0.949 

(0.932, 0.963) 

89.8 

(85.2, 93.4) 

89.6 

(86.9, 91.9) 

89.7 77.1 95.8 .356 

 10 Part 0.928 

(0.909, 0.945) 

89.0 

(84.3, 92.7) 

91.1 

(88.5, 93.2) 

90.5 79.5 95.5 .002 

 1 All 0.889  

(0.866, 0.909) 

74.2  

(68.1, 79.6) 

95.0  

(93.0, 96.6) 

89.2 85.4 90.4 <.001 

 5 All 0.903  

(0.881, 0.922) 

0.767  

(70.8, 81.9) 

94.9  

(92.8, 96.5) 

89.8 85.4 91.3 .002 

 10 All 0.895  

(0.872, 0.915) 

79.2  

(73.5, 84.2) 

96.0  

(94.2, 97.4) 

91.3 88.6 92.2 <.001 

Note: 95% confidence intervals are included in brackets. 
*The P values were from the comparison between the AUC of the proposed 5-fold ensemble deep learning 

model (‘Part’) and the AUCs of the others. Differences between various AUCs were compared using a Delong 

test. 

‘AUC’, area under receiver operating characteristic curve; ‘PPV’, Positive predictive value; ‘NPV’, 

Negative predictive value. 
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Supplementary Table 9. Comparison of the diagnostic performances at the image level on 

ResNet-152 using different ensemble methods on the external validation dataset. 

Ensemble Number of 

Individual 

models 

Training data 

for each 

individual 

model 

AUC Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

PPV 

(%) 

NPV 

(%) 

P 

value* 

 5 Part 0.904  

(0.882, 0.923) 

82.2  

(76.7, 86.9) 

90.6  

(88.0, 92.8) 

88.2 77.3 92.9 - 

 3 Part 0.908 

(0.886, 0.927) 

80.5 

(74.9, 85.4) 

88.6 

(85.8, 91.0) 

86.3 73.4 92.1 .671 

 10 Part 0.906 

(0.884, 0.924) 

83.1 

(77.6, 87.6) 

89.9 

(87.2, 92.2) 

88.0 76.3 93.2 .772 

 1 All 0.867  

(0.842, 0.889) 

70.3  

(64.1, 76.1) 

95.5  

(93.6, 97.0) 

88.5 86.0 89.2 .020 

 5 All 0.887  

(0.864, 0.908) 

71.6  

(65.4, 77.3) 

95.7  

(93.8, 97.2) 

88.9 86.7 89.6 .200 

 10 All 0.871  

(0.846, 0.893) 

72.0  

(65.8, 77.7) 

96.0  

(94.2, 97.4) 

89.3 87.6 89.8 .021 

Note: 95% confidence intervals are included in brackets. 
*The P values were from the comparison between the AUC of the proposed 5-fold ensemble deep learning 

model (‘Part’) and the AUCs of the others. Differences between various AUCs were compared using a Delong 

test. 

‘AUC’, area under receiver operating characteristic curve; ‘PPV’, Positive predictive value; ‘NPV’, 

Negative predictive value. 
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Supplementary Figures 
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Supplementary Fig. 1 The ROC curves of the models trained and tested under various scanning 

conditions at the image level with two human experts' performance for comparison. a the ROC 

curve of the model tested with the images obtained by transducers of frequencies ≥14MHz. b the ROC 

curve of the model tested with the images obtained by transducers of frequencies <14MHz. c the ROC 

curve of the model tested with the images obtained in year 2019. d the ROC curve of the model tested 

with the images obtained in or before year 2018. e the ROC curve of the model tested with the images 

obtained by brand Supersonic. f the ROC curve of the model tested with the images obtained by brand 

Mindray. g the ROC curve of the model tested with the images obtained by the other brands. The blue 

star represents the performance of the model with the default threshold (0.5) to binarize outputs of the 

model. ‘ROC’, receiver operating characteristic. 
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Supplementary Fig. 2 The ROC curves of the model trained and tested under various scanning 

conditions at the patient level with two human experts' performance for comparison. a the ROC 

curve of the model tested with the images obtained by transducers of frequencies ≥14MHz. b the ROC 

curve of the model tested with the images obtained by transducers of frequencies <14MHz. c the ROC 

curve of the model tested with the images obtained in year 2019. d the ROC curve of the model tested 

with the images obtained in or before year 2018. e the ROC curve of the model tested with the images 

obtained by brand Supersonic. f the ROC curve of the model tested with the images obtained by brand 

Mindray. g the ROC curve of the model tested with the images obtained by the other brands. The blue 

star represents the performance of the model with the default threshold (0.5) to binarize outputs of the 

model. ‘ROC’, receiver operating characteristic. 
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a 

 

b 

Supplementary Fig. 3 The performance of the model and its combination with each human 

expert for the diagnosis of biliary atresia at the patient level on the external validation dataset, 

when the model made (a) majority vote diagnosis and (b) single-image diagnosis respectively at 

the patient-level. 
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Supplementary Fig. 4 The SE-ResNet model structure. 
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