Supporting Information

Solar Light Irradiated Photocatalytic Degradation of Model Dyes and Industrial Dyes by a Magnetic CoFe₂O₄-gC₃N₄ S-Scheme Heterojunction Photocatalyst

Debika Gogoi, Priyanka Makkar, Narendra Nath Ghosh*

Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, Goa-403726, India

*Corresponding author. Tel. /fax: +91 832 2580318/25570339.

*E-mail address: naren70@yahoo.com (N. N. Ghosh)

Author's email addresses: p20180429@goa.bits-pilani.ac.in (Debika Gogoi),

priyankamakkar1991@gmail.com (Priyanka Makkar)

1. Details of Chemicals

Cobalt Nitrate Co(NO₃)₂.6H₂O (Merck, India), Ferric Nitrate Fe(NO₃)₃.9H₂O (Fisher Scientific), polyethylene glycol (PEG-400) (Fisher Scientific), Sodium Hydroxide (NaOH) (Fisher Scientific) were used for the synthesis of CoFe₂O₄ nanoparticles. Melamine (Molychem) was used for the synthesis of graphitic carbon nitride (gC₃N₄). Other chemicals used were 30% H₂O₂ (Merck, India), Methylene Blue (Fisher Scientific), Methyl Orange (Fisher Scientific), Congo Red (Loba Chemie Pvt. Ltd.), Drimaren Turquoise CL-B p (Archroma), Drimaren Yellow CL-2R p (Archroma) and Drimaren Red CL-5B p (Archroma). De-ionized water was used for all the experiments and all the chemicals were used as purchased without further purification.

2. Details of Instruments

The synthesized materials were characterized by- X-ray diffraction (XRD) by using a powder Xray diffractometer (Mini Flex II, Rigaku, Japan) with Cu K α (λ =0.154 nm), thermogravimetric analysis (TGA) by using a DTA-60 (Shimadzu, Japan), Field Emission Scanning Electron Microscopy (FESEM) by using Quanta 250 FEG (FEI), Energy Dispersive X-ray Spectra (EDS) by using an EDAX ELEMENT electron microscope, Fourier Transform Infrared (FT-IR) spectroscopy by using an FT-IR spectrophotometer (IR Affinity-1, Shimadzu, Japan), Raman spectroscopy by using a Horiba via Raman microscope with a 532 nm laser excitation and UV-Vis diffuse reflectance spectroscopy (DRS) by using a JASCO V-770 spectrophotometer. A 150 W Xenon lamp (400-1000 nm) was used as an irradiation source. OCT-L TOC analyser (Shimadzu, Japan) was used to determine the TOC removal ratio of dye solutions.

S. No.	Photocatalyst	Catalyst dose (g L ⁻¹)	Dye Used	Conc. of dye solution (ppm)	Irradiation Source Xe lamp (W)	Degradation %	Time (h)	Reference
1	gC_3N_4 - Bi_2WO_6	1	MO	5	300	93%	2	33
2	BaTiO ₃ @ gC ₃ N ₄	0.5	MO	5	200	76%	6	79
3	gC ₃ N ₄ - Bi ₂ MoO ₆	1	MO	5	300	100%	2	80
4	$\frac{MnFe_2O_4/gC_3N}{4/TiO_2}$	0.5	MO	10	150	99.27 %	3	71
5	$ZnAl_2O_4/g-C_3N_4$	1	MO	10	500	96%	2	81
6	gC ₃ N ₄ -BiVO ₄	1	MO	5	300	~80%	2	82
			MB	10		94%	1.5	
7	gC ₃ N ₄ /ZnWO ₄	0.5	MB	3	500	94.1%	3	83
8	Graphene/ gC ₃ N ₄	3	MB	0.2	300	77%	1.66	84
9	PANI-gC ₃ N ₄	2	MB	10	500	92.8%	2	40
10	gC ₃ N ₄ - TiO2@PANI	0.2	CR	20	Solar light (12450-13174 Lux)	100%	3	85
11	SiO_2/gC_3N_4	2	CR	60	500	~90%	6	86
12	BN/gC ₃ N ₄	0.5	CR	20	350	91.9%	1.5	87
13	50CF-50gC ₃ N ₄	0.5	MB	25	150	~100%	0.75	Our work
14	50CF-50gC ₃ N ₄	1	МО	10	150	~100%	1.5	Our work
15	50CF-50gC ₃ N ₄	0.5	CR	25	150	~100%	1.5	Our work
16	50CF-50gC ₃ N ₄	0.5	Turq CL-B	25	150	~100%	1.5	Our work
17	50CF-50gC ₃ N ₄	0.5	Yell CL- 2R	25	150	~100%	0.75	Our work
18	50CF-50gC ₃ N ₄	0.5	Red CL- 5B	25	150	~100%	1	Our work

Table S1. Comparison of photocatalytic efficiency of $50CF-50gC_3N_4$ with other gC_3N_4 based photocatalyst.

Figure S1. XRD patterns of pure CoFe₂O₄.

Figure S2. XRD patterns of pure gC₃N₄.

Figure S3. XRD patterns of (a) $95CF-5gC_3N_4$, (b) $90CF-10gC_3N_4$, (c) $85CF-15gC_3N_4$ and (d) $75CF-25gC_3N_4$.

Figure S4. EDS of 50CF-50gC₃N₄.

Figure S5. FT-IR spectra of (a) CF, (b) 50CF-50gC₃N₄ and (c) gC₃N₄.

Figure S6. Raman spectra of (a) CF, (b) 50CF-50gC₃N₄ and (c) gC₃N₄.

Figure S7. TGA curves of (a) Pure gC_3N_4 , (b) $50CF-50gC_3N_4$, (c) $75CF-25gC_3N_4$, (d) $85CF-15gC_3N_4$, (e) $90CF-10gC_3N_4$, (f) $95CF-5gC_3N_4$ and (g) Pure CF in the temperature range $35^{\circ}C-800^{\circ}C$.

Figure S8. UV-Vis diffuse absorption spectra of (i) Pure gC_3N_4 , (ii) $50CF-50gC_3N_4$, (iii) $75CF-25gC_3N_4$, (iv) $85CF-15gC_3N_4$, (v) $90CF-10gC_3N_4$, and (vi) $95CF-5gC_3N_4$.

Figure S9. (a-d) Time dependent UV-Vis spectral changes of photodecomposition reaction of MB catalysed by different CF- gC_3N_4 nanocomposites (e) Photodegradation rates of the MB catalysed by different CF- gC_3N_4 nanocomposites.

Figure S10. (a-d) Time dependent UV-Vis spectral changes of photodecomposition reaction of MO catalysed by different CF- gC_3N_4 nanocomposites (e) Photodegradation rates of the MO catalysed by different CF- gC_3N_4 nanocomposites.

Figure S11. (a-d) Time dependent UV-Vis spectral changes of photodecomposition reaction of CR catalysed by different CF- gC_3N_4 nanocomposites (e) Photodegradation rates of the CR catalysed by different CF- gC_3N_4 nanocomposites.

Figure S12. (a) XRD plot, (b) FESEM image of the used 50CF-50gC₃N₄ catalyst.