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1. DATA ANALYSIS OF ANGLE- AND ENERGY-RESOLVED PATTERNS

On the 2D CCD of the spectrometer in the 4D STEM-CL setup, information on energy is encoded in the horizontal
direction while information on the angle θ is mapped onto the vertical axis. In practice, the chromatic aberration
induced by the measurement optics in the optical path to the CCD camera makes the magnification of the image
dependent on energy. To properly obtain the spectrum at a certain angle θ, we need to extract the signal at a different
vertical position for each energy on the CCD plane, with the chromatic aberration taken into account. We correct
this vertical shift by performing a calibration by fitting the energy dispersion curves with a model function of θ. The
angle θ is assumed to be mapped to the position y on the CCD camera through the following function, based on the
lens maker’s equation and using the mask position p, corresponding to the angle θ, on the mask plane:

y = [An(λ) +B] tan−1 [(p− p0)/C] +D, (S1)

where n(λ) is the wavelength-dependent refractive index of the used lens (fused silica) and p0 is the offset from the
true optical axis. The fitting parameters A, B, C, and D are obtained by adjusting the experimental energy dispersion
curves using the least square method. First, for obtaining a calibration dataset (energy dispersion curves), the pinhole
mask for angle selection is set at the mask position, from where it is then scanned from the bottom to the top of the
mirror to measure CCD images at each angle. The CCD image obtained at each pinhole mask position shows the
trace of the corresponding angle θ at each energy, thus determining the projection position on the CCD plane at a
certain angle and a certain energy. Figure S1 shows an example of the obtained fitting curves. The displayed image
is the sum of data acquired at all angles, while the fitted curves are superimposed as horizontal yellow lines in Figure
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S1. The effectiveness of the fitting curve is confirmed by matching the position of the upper and lower holes of the
mirror for the electron beam path to θ = 0 and 180◦, respectively, and the sample shadow to θ = 90◦ (horizontal
lines in Figure S1). The parameter p0 is adjusted manually to best match all the fitting curves. This fitting function
is used to extract accurate data at a specific angle and energy. In order to remove noise from the CCD image, a 2D
wavelet-denoising process is followed.

Figure S1. Signal extraction after correcting for chromatic aberration based on Eq. (S1). The horizontal yellow lines are the
fits to the data. The blue, green, and red horizontal lines correspond to fitted spectral curves at angles θ = 0◦, 90◦, and 180◦,
respectively.

2. PHASE SHIFT CAUSED BY THE ALUMINUM PARABOLIC MIRROR

We correct for the phase shift due to reflection on the aluminum parabolic mirror to appropriately obtain the
relative phase δ. The polarization state is affected by this reflection due to the angle-dependent phase difference
between s- and p-polarized light. Since the experimentally measured phase difference δ is directly affected by this
reflection phase shift, we correct δ at each angle and energy using the calculated reflection phase shift as shown in
Figure S2. We find the reflection phase to be close to π for all energies and angles, with slight deviations from this
value at directions near perpendicular emission (θ = 0◦ and 180◦). Observing the emitted photons from the detector,
s-polarized light undergoes a phase shift π with respect to p-polarized light at normal reflection (θ = 90◦), which
corresponds to an inversion of the handedness of CPL upon reflection.

3. 4D DATASET OF CL MAPS

The proposed 4D STEM-CL allows us to collect CL maps at all energies and angles θ simultaneously. Actually,
through a single raster scan for mapping, we can obtain a dataset map that consists of 255 angles × 1024 photon
energies at maximum resolution. In practice, we reduce the data size, reduce the noise, and speed up the readout by
acquiring 51× 256 (=13,056) photon maps (i.e., binning 5 pixels in the vertical direction (angle) and 4 pixels in the
horizontal direction (energy)). Parts of such mapping datasets are shown in Figures S3, S4, and S5.
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Figure S2. Dependence of the phase shift produced by the aluminum mirror on photon energy and emission angle θ.

Figure S3. Simultaneously obtained photon maps with 0◦-polarization.
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Figure S4. Simultaneously obtained photon maps with 90◦-polarization.

Figure S5. Simultaneously obtained photon maps of S3.
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4. ANALYTICAL MULTIPOLE DECOMPOSITION (AMD)

We are interested in calculating the far field produced by the passage of an electron through a self-standing sphere,
as shown in Figure S6. We assume that the sphere of radius a centered at the origin can be described by a local,
frequency-dependent permittivity ε(ω), while the electron with the elementary charge −e is treated as a classical point
charge following a straight-line trajectory with constant velocity vector v = vẑ. The time-dependent electron position
is then rt = (R0, vt), where R0 = (x0, y0) is an impact parameter vector in the plane perpendicular to the trajectory
and the electron reaches its minimum distance to the sphere center at t = 0. In our analysis, we first consider an
electron moving inside a homogeneous material and decompose the external electric field that it produces as1
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k = ω/c, k′ = k
√
ε, r< = min{r, rt}, r> = max{r, rt}, L = (l,m) runs over angular momentum components with

l = 0, 1, . . . and |m| ≤ l, YL are spherical harmonics, and jl and h
(+)
l are spherical Bessel and Hankel functions,

respectively.
We now divide the problem into two contributions corresponding to inner and outer parts of the electron trajectory,

as illustrated in Figure S6. In particular, the outer trajectory (electron in the vacuum region II) produces an external
field outside and near the sphere surface given by
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√
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0 is the point at which the electron crosses the sphere surface and the second line incorporates

the analytical solution of the first integral1, 2 in terms of the coefficients A+
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for m ≥ 0 and satisfying A+

l,−m = (−1)mA+
l,m. Here, Cµν [x] are Gegenbauer polynomials,3, 4 γ = 1/

√
1− v2/c2, and

ϕ0 is the azimuthal angle of R0. Equation (S3) allows us to write a multipolar decomposition of the field outside and
near the sphere surface as1, 5

Eext,II(r, ω) = LψM,ext,II − i

k
∇× LψE,ext,II, (S4)

in terms of the angular momentum operator L = −ir×∇ and the scalar functions

ψν,ext,II =
∑
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iljl(kr)YL(Ωr)ψ
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with expansion coefficients ψν,ext,IIL determined from the relations ψM = (1/L2)L · E and ψE = (i/kL2)(L × ∇) · E.
Inserting Eq. (S3) into these expressions, substituting the squared operator L2 by l(l + 1) in each L term, and using
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the recursion properties of the spherical Bessel and Hankel functions in a way similar to previous work,1 we find after
some algebra
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0 + z2, and θ = cos−1(z/r).
The induced field produced upon scattering by the sphere admits the same decomposition as in Eq. (S4) with

ψν,ext,II replaced by1
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are Mie scattering coefficients in which ρ0 = ka, ρ1 = ka
√
ε, and the prime denotes differentiation with respect to the

argument (ρ0 or ρ1 in each case). Here, square roots are taken to yield positive real parts.
The induced field receives an additional contribution from the inner part of the trajectory (see Figure S6). From

Eq. (S2), the corresponding external field inside and near the sphere surface admits the expression
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Now, performing a similar multipolar expansion for this inner part of the trajectory as done above for the outer part,
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and expansion coefficients
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This induced field is transmitted from inside to outside the sphere in the form of outgoing waves similar to those of
Eq. (S8) with coefficients
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are Mie transmission coefficients.
The above contributions to the induced field produced outside the sphere refer to the direct field of the electron

in the outer and inner parts of the trajectory after scattering or transmission via the corresponding Mie coefficients.
There is however an additional contribution indicated with a second red arrow in the central sphere of Figure S6
corresponding to the direct field produced by the interrupted outer trajectory of the electron, which, unlike the
infinite electron trajectory, gives rise to a finite contribution to the far-field cathodoluminescence (CL) emission. This
contribution is the sum of the field produced by an infinite trajectory (which does not produce a propagating far field,
but only an evanescent field accompanying the electron) minus the field produced by a finite electron trajectory of
the same extension as the inner part considered above, but now evaluated in a vacuum. The resulting contribution
to the far field is then similar to that of Eqs. (S10) (i.e., evaluated at positions of radial vector larger than those of
the source), but with the permittivity set to the vacuum value ε = 1. This leads to an additional contribution
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to the induced far field.

Finally, we can calculate the frequency- and angle-dependent far-field CL scattering amplitude as6

fCL(Ω, ω) =
1
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where we define the vector spherical harmonics

~ζL(Ω) = LYL(Ω) =
1

2

[
C−L Yl,m−1(Ω) + C+

L Yl,m+1(Ω)
]
x̂ +

i

2

[
C−L Yl,m−1(Ω)− C+

L Yl,m+1(Ω)
]
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The multipolar coefficients of the induced field in Eq. (S13) are given by the sum of all of the above contributions as

ψν,indL = Bνl ψ
ν,ext,I
L + tνl ψ

ν,ext,II
L + ψν,ind,II,directL ,

where the different elements are defined in Eqs. (S5), (S6), (S7), (S9), (S10), (S11), and (S12). Equation (S13) directly
allows us to calculate the contribution to the far field amplitude originating in different multipoles. It also allows us
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to obtain the polarization of the emitted light. The CL photon emission probability is then obtained from the far-field
Poynting vector divided by the photon energy ~ω,1 which leads to

ΓCL(Ω, ω) =
1

4π2~k
|fCL(Ω, ω)|2.

This quantity is normalized in such a way that the integral over angle and frequency
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where the sum runs over electric (ν =E) and magnetic (ν =M) multipoles L = (l,m).

v
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= +R0
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Figure S6. Elements involved in the description of CL emission by an electron traversing a homogeneous sphere. The emission
is decomposed into the contributions coming from the inner and outer parts of the electron trajectory.

5. COMPARISON OF THE CL SPECTRA BY AMD CALCULATION AND THE OPTICAL
SCATTERING CROSS SECTION BY MIE CALCULATION

In this section, we show the CL intensity spectra obtained by using the AMD approach for particles of the same
size as those used in experiment (250 nm and 170 nm, see STEM images in Figures 3a and 8a) and compare them
to the scattering cross-section spectra obtained from Mie theory under plane-wave light irradiation. Figures S7a
and b show CL spectra integrated in emission directions (θ = 0-180◦, φ = 0-360◦) and averaged over electron beam
positions scanning the entire particle, as calculated from the AMD method. The results are in good agreement with
the measured CL intensity spectra shown in the main text (Figures 2c and 8c). We attribute the slight blue shifts
observed in the calculated spectrum compared to experiment to an overestimate of the particle size in the latter,
and a possible effect of surface oxidation. In conventional Mie scattering calculations for dielectric spheres, there
are some notable features found in the scattering spectra, such as an anapole that involves no radiation and results
in dips in the scattering cross section. Here, we focus on this anapole feature and compare AMD calculations to
Mie scattering calculations. Although the CL spectra obtained by the AMD method exhibit similar shapes to the
scattering cross-section spectra obtained from Mie theory (Figures S7c and d), there are some remarkable differences,
especially for ED modes. The ED modes with different radial orders cancel each other at certain energies, resulting
in zero radiation emission; this condition coincides with non-radiative dips in the Mie calculation around 2.0 eV in
Figure S7c and 2.5 eV in Figure S7d. In contrast, the AMD calculations (Figures S7a and b) show no such feature.
This difference must originate in the excitation source: the Mie calculation incorporates a plane wave excitation that
involves only m = ±1 modes (e.g., iED, but not pED with m = 0) due to the symmetry of the plane wave; in the
AMD calculation a point-source-like electron beam moving along the z direction can excite different modes, including
pED, depending on the electron beam position.

To understand this phenomenon in more detail, we compare the profiles of pED and iED modes as we change
the excitation beam position from the center to the edge of the sphere. Figure S7e summarizes the spectral changes
of ED (iED + pED) modes at different excitation beam positions (radius distance r = 4-124 nm). An anapole like
feature (dip in the spectrum) is found around 2 eV when excited at the edge (blue curve in Figure S7e), which starts



S9

disappearing as the beam is moved inside the sphere, and then reappears at 1.7 eV as the beam continues to approach
the sphere center. This position-dependent spectra of the ED1 mode explain why there is no clear anapole dip in the
spatially integrated spectra in Figures S7a and b.

To clarify the contributions of pED1 and iED1 modes, spectra of each component are separately plotted in Figures
S7f and g, respectively. In the iED spectra (Figure S7g), the anapole feature appears around 2.0 eV and is present
only when exciting near the edge, but it disappears when the beam approaches the sphere center. The spectra with
the beam near the sphere edge are similar to the optical scattering cross section calculated from Mie theory, where
the ED2 mode is excited through the field at the edges and its far-field is canceled out by the ED1 mode. Indeed,
this anapole energy of 2.0 eV in the CL calculation matches that of Mie scattering theory in Figure S7c. However,
when excited near the center, no anapole-like feature appear in the spectra. We attribute this effect to the selective
excitation of the internal dipole of iED2, which is possible only by the electron beam, and also, the phase of the
ED2 mode coincides with the ED1 phase, resulting in no far-field cancellation. This phase flip of iED2 depending on
the beam position can be experimentally seen in the mapping shown in Figure 5 in the main text. Interestingly, the
anapole dips of pED modes keep appearing for all beam positions at different photon energies in the 1.7-2.0 eV range,
as shown in Figure S7f. This implies that the phase of the field at the outermost layer is almost constant regardless
of the beam position. The shift in dip energy can be attributed to a phase shift of pED around 1.7-2.0 eV, as shown
in Figure S9. To grasp the radiation of each mode, we also show the radiation pattern of each mode resolved by
polarization in Figure S8.

Figure S7. Comparison between AMD and Mie calculations for CL and light scattering, respectively. (a,b) CL spectra integrated
over all emission angles and beam positions on the sphere, calculated by using the AMD approach for (a) 250 nm and (b)
170 nm Si spheres. (c,d) Mie scattering cross-section spectra of (c) 250 nm and (d) 170 nm Si spheres. (e-g) AMD-calculated
partial CL spectra contributed by (e) ED (iED + pED), (f) pED, and (g) iED with the excitation beam position at radius r
varying from 4nm (red curve) to 124 nm (dark blue curve). The diameter of the Si nanosphere is 250 nm. (h) Illustration of
the color-coordinated beam positions considered in the spectra plotted in (e-g).

6. SIMULATED PHASE LINE PROFILES

This section provides additional information supporting the discussion of the spectral line profiles of the emission
phase calculated by using the AMD approach in the main text (Figure 4). The spectral line profiles of the phase of p-
and s-polarization emission components, together with the phase difference δ, are calculated including multipoles up
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Figure S8. Angular distribution of (a) magnetic and (b) electric charges, along with their radiation patterns for different
detector-selected polarizations.

Figure S9. Spectral line profile of the emission phase calculated by using the AMD approach. (a, b) Calculated line profiles
of the radiation phase of (a) the p-polarized electric field component extracted only from the pED mode with (l,m) = (1, 0),
and (b) the p-polarized electric field extracted only from pED and EQ (with (l,m) = (2, 0) in the latter). The electron beam
is scanned across the center of a 250 nm Si sphere along the y direction. The detection angle is set to θ = 135◦. The black
vertical dotted lines at positions y = −125 nm, 125 nm, and 0 nm indicate the edges and the center of the sphere. (c) Integrated
spectra of all the modes (dashed curve) and extracted iEDs (light blue curve) plotted in semilog scale. The energies of ED
modes are indicated by horizontal dashed lines across all panels.
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to the 4th order (i.e., l ≤ 4). The p-polarized total radiation plotted in Figure 4c in the main text shows an almost
homogeneous phase distribution. To clarify which modes mainly contribute to this phase distribution, we calculated
the spectral line profile of p-polarized pED {(l,m) = (1, 0)} and pED + EQ {(l,m) = (2, 0)} contributions, as shown
in Figures S9a and b, respectively. In Figure S9a, in the photon energy range between ED1 and ED2, the phase is
almost constant regardless of the excitation position, except in the 1.7-2.0 eV range, where the phase at the edge
is reversed. Around the photon energies of ED3, the phase is inverted well inside the sphere. This inhomogeneity
of the phase is somehow canceled by including the contribution of EQ {(l,m) = (2, 0)}, as shown in Figure S9b,
where we plot the spectral line profile of pED + EQ {(l,m) = (2, 0)}. The interference of these two modes makes the
phase distribution homogeneous; they dominantly contribute to the total p-polarized radiation in such a way that the
resulting phase can be used as a nearly constant reference, as shown in Figure 4c in the main text.

7. EQUIVALENCE OF BEAM ROTATION AND DETECTION ROTATION

In this section, we explain how the S3 polar plot in Figure 8e is reconstructed. Figure 8e shows the angular radiation
distribution pattern in θ and φ when the electron beam excites the particle at the φ = 0◦ edge: (x, y) =(78 nm, 0 nm).
This plot is reconstructed from the θ-resolved angle dispersion patterns with φ = 0◦, sampled from the photon maps
along the edge of the sphere. Note that this equivalence of rotating the beam with a fixed φ and rotating the detection
angle φ with a fixed beam position is possible thanks to the rotational symmetry of the sample about the z axis. For
instance, detection at φ = 0◦ with the electron beam passing near the sphere edge at (r, φ) =(78 nm, 90◦) is identical
to detection at φ = −90◦ with the electron beam placed at (r, φ) =(78 nm, 0◦). This equivalence is depicted in Figure
S10. Since the angular dependence on the θ angle is simultaneously obtained in each 4D STEM-CL measurement, by
collecting data for different angles φ we can construct a polar plot in θ − φ, as shown in Figure 8e in the main text.

Figure S10. Schematics showing the equivalence of (left) beam rotation around the z -axis with a fixed detection angle and
(right) detector rotation with a fixed electron beam position. This equivalence applies to rotationally symmetric systems, such
as the individual spheres under consideration.

8. ANGULAR PLOTS REVEALING INTERFERENCE OF ED AND MD MODES

This section describes S3 angular dispersion patterns of MD + ED interference. In Figure 8e we show the θ − φ
polar plot of S3 at a photon energy of 2.18 eV, which is reconstructed from the photon maps at varying θ for fixed
φ = 0◦ detection. However, the polar plot in Figure 8e gives no energy spectral informational. To complement it, we
here show in Figure S11 the angular spectral patterns of S3 and the unpolarized radiation intensity at the locations
corresponding to the four S3 hotspots in Figure 8d.
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Figure S11. Angle-dispersion patterns at φ = 0◦ showing the Stokes parameter S3 and the unpolarized radiation intensity at
the positions corresponding to the black cross marks, namely (x, y) =(-60 nm, -60 nm), (-60 nm, 60 nm), (60 nm, -60 nm), and
(60 nm, 60 nm).
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