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Response to reviewers 
Below we have reproduced the reviewers' comments, numbered them, and provided our 
detailed response in blue text. We submit two versions of the revised manuscript: one clean 
version with all changes accepted, and another with tracked changes in Word, and comments 
on the side to indicate which numbered comment the change is associated with. Line numbers 
below refer to the version with tracked changes. 
 
Reviewer #1: 
Comment 1.1. There is a good focus on the literature review within the introduction, however, I 
recommend the authors to rewrite the introduction section, as some sections of it, is difficult to 
follow, specifically connections between biological concepts. 
 
Thank you for the suggestion. We have revised a paragraph in the Introduction to better explain 
the connection between concepts, while adding three new references on the topic of tissue-of-
origin on pan-cancer drug response predictions.  
 
The revised paragraph from the revised Introduction (lines 78-96): 
 
 Tissue-of-origin has a complex relationship with pan-cancer drug response predictions 
[14,15,25–27]. Some studies reported that pan-cancer models that include all available tissues 
may be outperformed by those that include only a well selected subset [25,26]. Others found 
that both drug response and molecular features (e.g. mRNA expression levels) often vary by 
tissue [27]. Thus, drug response can be predicted based on tissue type alone and tissue-
specific molecular properties can drive the performance of a pan-cancer model without 
necessarily being driven by inter-tumor differences within a cancer type [14]. It is also unclear if 
the prediction performance could vary among cancer types, a situation that would call for tissue-
specific guidelines of applying prediction models. In clinical practice, while therapeutic decisions 
are often made solely based on cancer type, there is often the additional need, and potential 
benefit, to predict variable response among tumors within a cancer type. 
 
Comment 1.2. “The observation that cell lines respond similarly to different MEK inhibitors 
indicates cross-MEKi predictions are feasible, provided the two compounds are chemically 
similar.” That means those who have similar drug response have similar compound structure. 
Did you study if other way around is also valid? Meaning that if two compounds are similar then 
their drug responses are similar? Or with further analysis (i.e. stringing, REFINED, 
OmicsMapNet, and etc) that includes fingerprints for the compounds. 
 
We now realize that mentioning chemical similarity among drugs for the same target opens 
many new questions regarding the physiochemical properties of compounds and their 
pharmaceutical activities, a topic that warrants a separate study on its own. Ultimately, we are 
unprepared to address questions in medicinal chemistry. The original intention of the statement 
was to clarify that our modeling, while focused on tissue-tissue differences, are potentially 
generalizable to compounds with a shared protein target or inhibition mechanism. To avoid 
confusion, we have removed the clause "…provided the two compounds are chemically similar." 
in the revised manuscript (lines 146-147). 
 
Comment 1.3. Authors have claimed that “Cell lines from the same primary tissue tend to be 
present in similar regions of the PC1-PC2 space (Figure 1E)”. It is nice to visualize in such a 
approach, however the conclusion is not necessarily correct, as only for one tissue we can 
confidently make such a conclusion not for the rest. That may be because of information loss 
that embedded in any dimensionality reduction technique such as PCA. To ensure that the 
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conclusion is correct I urge the authors to consider applying other dimensionality reduction 
techniques such as MDS, Isomap, t-SNE, or so many others to evaluate if they can reach such 
a conclusion. 
 
The reviewer is correct that the PC1-PC2 plot (previous Figure 1E) did not allow visualization of 
how similar tissues are separated. We have performed an alternative dimensionality-reduction 
analysis, t-SNE, which projects isolated clusters for cell lines of lymphoid, breast, and skin origin 
(see the figure below). Other tissue types - ovary, liver, pancreas, brain, and stomach/colorectal 
- also appear more tightly clustered than in PCA. In contrast, the lung cancer-derived cell lines 
are still highly heterogeneous.  

 
We replaced Figure 1E with the new t-SNE plot and moved the original PCA plots as two new 
panels in Figure S1. The associated text (lines 148-154) and figure legends were revised 
accordingly. 
 
Comment 1.4. It was mentioned in the paper that “Cell lines from the same primary tissue tend 
to be present in similar regions of the PC1-PC2 space (Figure 1E) and have correlated RNA 
expression levels (Figure S1), highlighting that cell lines derived from the same primary tissue 
have similar transcriptomic features.” Seems like authors are considering correlation between 
0.3-0.4 as high correlation. I don’t think that is a fair call, and the threshold must be larger value. 
On the other hand, correlation has its own problems that are well known in stat community. For 
instance, correlation between to signals (sin(x) and cos(x)) is zero, however we know that they 
are the exact same signal with some delay, which indicates correlation cannot capture some 
important information. For more accurate analysis, I recommend authors to consider other 
metrics such as Cosine similarity, R2 or mutual information, to measure similarity between RNA 
expressions. 
 
Whether a correlation value in the range of 0.3-0.4 is high or low needs to be evaluated against 
a baseline, i.e., a null distribution. In the revised manuscript we emphasized the comparative 
nature of the analysis: cell lines from the same tissue had more similar expression patterns 
compared to cell lines from different tissues (lines 154-159). This is not a controversial 
statement (see for example PMID: 10963602, PMID: 12086872). 
 
The decision of choosing a distance measure, with options such as cosine similarity, r2 or 
mutual information, is also based on their relative effectiveness in a comparative setting, rather 
than any pre-defined thresholds. For the specific datasets we analyze, the tissue label has a 
major influence on the sample-sample transcriptome heterogeneity, even though different 
methodologies bring different appearances, as can be seen in the PCA and t-SNE plots.  
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Our revised sentence:  
"These results indicate that cell lines derived from the same primary tissue have more similar 
transcriptomic profiles than cell lines from different tissues, a pattern that is consistent with 
previous cancer subtype analyses [29,30]". 
 
Comment 1.5. Authors must explain how they pick the threshold value for dichotomizing the cell 
lines responses as sensitive and resistive. 
 
Thank you for this suggestion. The IC50 distributions for all MEKi's examined in this study are 
clearly bimodal (see figure inserted below). For 3 of the 4 MEKi's, the bimodal distribution is 

readily split at 1 M (indicate by the vertical line), justifying it as the threshold to define sensitive 

and resistant cell lines. We note that 1 M is the threshold used in other studies for MEK 
inhibitors (PMID: 20215513). For the 4th MEKi screen (GDC-0973 in Klijn 2015), the IC50 
distribution has a wider spread in the mid-range and can be split at a higher threshold, such as 

6 M. These figures were added as the new Figure S2A-D.  
 

 
We tested if classification models (trained with logistic regression and random forest) using 6 

M as the alternative threshold could have produced different conclusions (described in the 

Methods section). We found that using the 6 M threshold led to similar or lower performance 

than using the 1 M threshold. We added these results in the new Figure S2E-F.  
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Because the original threshold of 1 performed better, we retained to the results using 1 M in 
the revised manuscript.  
 
Relevant text from the revised Methods section (lines 557-570):  
Distributions of drug response by IC50 were bimodal for all four MEKi screens (Figure S2A-D). 
As a result, we tested classification-based algorithms trained with cell lines binarized as 
sensitive or resistant based on IC50 thresholds alongside regression-based algorithms that 
considered log IC50 values directly. The threshold to binarize cell lines as sensitive or resistant 

to a drug was set at 1 M, a value that readily split the bimodal IC50 distributions for 3 of 4 
MEKi screens and has been used previously to define cell lines as sensitive to MEK inhibition 

[48]. For the 4th MEKi screen, GDC-0973 in Klijn 2015, an alternative threshold, 6 M, better 
separated the IC50 distribution. For the GDC-0973 screen in Klijn 2015, we generated 

classification-based prediction models using both 1 M and 6 M IC50 thresholds. We found 

that models trained using the 6 M threshold performed similarly or worse than those using a 

threshold of 1 M (Figure S2E,F), depending on the MEKi screen predicted.  We therefore 

opted to use the results from the 1 M threshold classification prediction models for GDC-0973 
throughout the study. 
 
Comment 1.6. Authors must report NRMSE, NMAE, and R2 for their predictive models, as one 
model can have high correlation value and high error value at the same time. On the other 
hand, the scatter plot of the models in figure 2C doesn’t show a good performance by the 
models. For instance, there are so many observed values of log(IC50) = 2 that are predicted 
ranging from -5 to 5. 
 
We have added a new Supplemental Table 1 to include the requested performance metrics, 
NRMSE, NMAE, r, r2 and concordance, for the regularized and logistic algorithms (described in 
lines 205-208). These new metrics led to similar results and the same conclusions as those we 
used, rho and auROC.  
 
A technical note: The distribution of the observed IC50 values varies by drug and dataset, and 
the distribution of predicted values varies by algorithm and dataset, making it all the more 
important to focus on the comparative patterns rather than the high and low of absolute values. 
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For the calculation of NRMSE and NMAE, we standardized both the predicted and the observed 
drug response values. Standardization was performed by scaling the values linearly from their 
original range to the interval of [0,1], and then subtracting the scaled mean. 
 
Comment 1.7. How do you perform auROC for a regression task? Could you please show a 
reference for that? As far as I know auROC is only possible when you have probability value for 
a classification task. 
 
Thank you for raising the question that a regression task is rarely evaluated by auROC. While 
we followed the usual practice of reporting rho for regression models and auROC for 
classification models, we also wanted to compare between these two classes of models. For 
this purpose, we made the unusual decision to add the reporting of auROC for regression and 
rho for classification tasks.  
 
To answer the reviewer's question: for the regression models, auROC is calculated based on 
the ordered series of 2-by-2 count matrices of true and false positives and true and false 
negatives, iterated through the range of predicted values. Using the top panel of Fig 2C as an 
example, each point on the ROC was calculated by setting a predicted log(IC50) as the 
threshold for predicting sensitive and resistant samples, to populate a 2-2 counts table and 
calculate the FP and FN rates.  
 
Comment 1.8. Authors should mention which statistical test did they use for the “Between- and 
within-tissue performance of pan-cancer MEKi response predictions” section. 
 
The p-values in the first paragraph were for testing if the rank correlation coefficients, rho, 
between the observed and predicted tissue-average IC50 values, are at 0 (null hypothesis) or 
non-0 (alternative hypothesis), given the number of observations (n=10 tissue types). The p 
values were calculated by using the cor.test command in R. We added this detail to the revised 
Results section (line 226).  
 
In the third paragraph, we reported how the rho values were consistently reduced from one set 
of modeling results to another set, for either 8 models (Figure S4) or 16 models (Figure 4C and 
D combined). Here the p values were based on Mann Whitney paired U tests, as implemented 
in the wilcox.test command in R. 
 
In the fourth paragraph, we tested if the distribution for the 50 markers are different from that of 
all the other markers (applied four times, for Figure S5 A-D, the left panel). We applied the non-
parametric Mann Whitney U test.  
 
Comment 1.9. In the section where authors investigated “if pan-cancer prediction models can 
outperform those generated by considering a single cancer type.”, there are so many avenues 
for improvement as it is very interesting to perform such an investigation, however authors 
couldn’t achieve superior performance. To this end, I recommend authors to perform some 
other non-linear regression model such as Random forest, XGBoost and so on. Also perform 
robustness analysis similar to the community effort paper: 
https://www.nature.com/articles/nbt.2877 
 
Our plan is to compare performance for similar algorithms under similar settings, without 
seeking a threshold for claiming "superior performance" in the absolute sense. We explored 
eight model combinations to cover the avenues commonly used in predictive modeling, 
including random forest, with the main interest in comparing pan-cancer models with tissue-
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specific models. Whether one model is "superior to" another depends on the tissue type and the 
four dataset combinations, as shown in Figure 5. The reviewer's suggestion, if we understood 
correctly, is to explore additional avenues to see if the performance, for either pan-cancer or 
tissue specific models, can be improved further. We agree that there are many worthy 
directions. However, at this point the revision already added many new results, and we do not 
feel it is feasible to add more analyses.  
 
On the reviewer's excellent suggestion of assessing robustness, we have (1) previously used 
down-sampling to evaluate the impact of sample size, and (2) added a parameter-sweep 
analysis over a grid of parameter values, as explained below in response to Comment 2.2.13. 
 
Comment 1.10. In the “Estimating sample sizes required for optimal prediction performance” 
section, an interesting investigation is provided, however authors can improve the estimation 
power on the sample size by performing evaluation on increasing the sample size in addition to 
reducing it. For instance, one can simply perform boot strap sampling or more advanced data 
augmentation methods: https://link.springer.com/article/10.1007/s12065-019-00283-w 
 
We performed the suggested analysis by up-sampling of instances (i.e. sampling with 
replacement), with ninstances = 300, 500, 750, and 1000. We trained models using one MEKi 
response series from the CCLE dataset (yC1) along with the CCLE features (xC), applied the 
models to the Klijn 2015 dataset (xK), and evaluated performance by comparing with the Klijn 
2015 PD-901 MEKi response (yK1). The Spearman’s rho values for n=300 was 0.58, which did 
not increase with larger samples: rho=0.49, 0.56, and 0.58 for n=500, 750, and 1000, 
respectively. This result, that bootstrap up-sampling did not increase performance, is not 
surprising as the approach merely replicated some of the samples to increase apparent sample 
size, without increase the number of unique instances. We do not discuss this analysis in the 
revised manuscript. 
 
Reviewer #2: 
This is a quite interesting and well-written manuscript, that was a pleasure to read, including a 
number of useful conclusions and lessons for the researchers who are developing drug 
response prediction models in cancer cell line panels. This reviewer especially enjoyed the last 
results section and conclusions at the end of discussion about the required number of cell lines 
to construct a robust drug response prediction model. However, there remain several issues 
that will need to be addressed (see below) to make this work more rigid in terms of the statistical 
analyses, and even more useful for the computational biology community. 
 
Major comments: 
Comment 2.1.1. Although the results are interesting, these are not entirely novel. The authors 
should put their results and conclusion into the context of previous related works (e.g., PMID: 
27444372, PMID: 26274927, PMID: 29016819, PMID: 29186355, PMID: 31208429, PMID: 
30704458). They should also reword lines 77-80 in the Introduction and cite the existing studies 
on this topic. In the discussion, please state whether your results confirm previous observations 
for tissue-specific contribution to pan-cancer modelling, and what are the novel findings from 
this work, compared to the previous investigations. 
 
We thank the reviewer for providing a particularly useful list of references, all of which have 
been added to a revised Introduction section, as refs 14, 15, and 24-27. PM31208429 and 
PM30704458 have also been added to the revised Discussion.  
 
The new paragraph in Introduction (lines 78-96) is copied here: 
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Tissue-of-origin has a complex relationship with pan-cancer drug response predictions 
[14,15,25–27]. Some studies reported that pan-cancer models that include all available tissues 
may be outperformed by those that include only a well selected subset [25,26]. Others found 
that both drug response and molecular features (e.g. mRNA expression levels) often vary by 
tissue [27]. Thus, drug response can be predicted based on tissue type alone and tissue-
specific molecular properties can drive the performance of a pan-cancer model without 
necessarily being driven by inter-tumor differences within a cancer type [14]. It is also unclear if 
the prediction performance could vary among cancer types, a situation that would call for tissue-
specific guidelines of applying prediction models. In clinical practice, while therapeutic decisions 
are often made solely based on cancer type, there is often the additional need, and potential 
benefit, to predict variable response among tumors within a cancer type. 
 
Below we explain in more detail how we assessed each reference for its relationship with our 
study and clarified the novelty of our study in the context of each. 
 

• PMID 31208429 has the greatest conceptual similarity with our study. The authors evaluated 
a range of model-building and feature-selection techniques for pan-cancer models of cytotoxic 
drug response. Importantly, they found that tissue-of-origin label is a major factor in pan-
cancer prediction models, a conclusion similar to what we arrived at independently (without 
being aware of this study). Nonetheless, the novelty of our study are 1) providing a framework 
to estimate the effect size of between-tissue signals on pan-cancer analysis (e.g. the Cigar 
Plot), 2) documenting how pan-cancer prediction performance varies across cancer types – 
an observation of practical value in the clinic, 3) studying the between-tissue effects for a 
targeted therapy (MEKi), whereas PM31208429 was on generalized cytotoxic therapies, 4) 
comparing pan-cancer prediction models with tissue-specific models, and 5) estimating the 
number of cell lines required to saturate prediction performance. 

• PMID 27444372 is a review of cancer drug response prediction models. It mentioned many of 
the same considerations regarding tissue-of-origin effects as we addressed, such as asking 
whether drug responses should be formulated in a tissue-specific or pan-cancer manner. 
However, it did not specifically answer these questions. 

• PMID 26274927 and PMID 29186355 discussed the effects of tissue type on pan-cancer 
prediction models but focus on how tissue-of-origin effects can reduce the performance of 
pan-cancer predictions when pan-cancer datasets are not properly stratified. PMID 26274927 
describes an algorithm to separate biomarkers that are cancer type-specific from those that 
are shared across cancer types, while PMID 29186355 discussed how the expression of a 
biomarker (ERBB2 protein) correlates with sensitivity to lapatinib in a subset of cancer types 
(breast and ovary), but is not a useful predictor across all cancer types. Thus, both studies 
suggested that identifying the appropriate multi-cancer subsets can be a critical consideration. 
By contrast, our study focuses on tissue identity as the main feature, rather than considering a 
specific molecular feature stratified by tissue identity. 

• PMID 29016819 described how most drugs show tissue-specific sensitivity. In our manuscript, 
we describe how the tissue effects in pan-cancer models will contribute to prediction 
performance for drugs with sensitivity that varies by tissue. Therefore, PM29016819 is an 
important reference to cite, one that suggested that these effects may contribute to most pan-
cancer drug response predictions, regardless of the drug. 

• PMID 30704458 described an interesting approach to drug response predictions using the 
large sample size provided by the TCGA dataset to develop deep learning autoencoders that 
are then used in pan-cancer drug response predictions. This study did not address how 
tissue-of-origin effects may contribute to pan-cancer prediction performance. 
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Comment 2.1.2. Many of the results are based on Spearman rank-correlation, which is a robust 
measure of rank association between observed and predicted responses. However, since the 
significance of correlation effects sizes depends on the number of cell lines, correlation values 
are not directly comparable when comparing pan-cancer and tissue-specific models based on 
different cell line numbers. It is therefore important to always specify the p-value for the 
correlations. One can also plot -log (p) to make the comparisons easier to interpret statistically 
in those plots where the sample sizes are different. 
 
The reviewer is correct that the significance of correlation effects sizes depends on the number 
of cell lines. A lower sample size tends to have larger estimation errors of the correlation effect 
size, but does not necessarily bias towards larger effect sizes per se. In this manuscript, even 
though pan-cancer models were trained on a larger number of cell lines than tissue-specific 
models, the analyses have taken sample size into account. As described above in the response 
to Comment 1.8, there are at least two scenarios: 
1. When assessing if a correlation value is significantly above 0, the number of samples used in 
calculating the correlation is incorporated into the test. 
2. When assessing if one set of models out-performances another set of models, such as when 
comparing tissue-specific and pan-cancer models, the correlations were calculated using the 
same sample size, i.e, the number of cell lines for each tissue type (e.g. Figure 5). Here one 
group of rho's are directly comparable to the second group of rho's. The reviewer is correct to 
express a concern whether such a comparison was based on different sample sizes. 
 
Comment 2.1.3. The authors need to better justify why AUC (not auROC) and rank correlation 
were used for binary and continuous prediction problems, respectively. Concordance index (CI) 
would provide an alternative evaluation metric that can be used in both setups, and would make 
the comparisons easier to interpret (e.g., Fig. 4C,D). The use of rank correlation in Figure 3 is 
bit misleading (the same for Figure 4A,B), since Spearman correlation considers variation of 
ranks, not absolute values or linear fits, like illustrated in these figures. The authors should use 
Pearson correlation or coefficient of determination in these plots. 
 
This question was partially addressed in our response to Comment 1.6. We have calculated 
additional performance comparison metrics for the regularized and logistic algorithms, including 
concordance, r, r2, normalized root mean squared error, and normalized mean absolute error. 

These metrics are provided in the new Table S1. For Figure 4A-B we initially chose  as it is 
more robust to outliers. We agree with the reviewer that since the fitted lines are from linear 

modeling, not robust linear modeling, it is better to use r rather than . We have replaced  with 
Pearson’s r in cases where lines of best fit were plotted (Figure 3 and Figure 4A-B). The r 

values are similar to the  values. 
 
Comment 2.1.4. The section “Sample size advantage…” gives a more direct comparison of 
pan-cancer and tissue-specific models, where the latter are trained using cell lines from each 
tissue only. Fig. 5 is a nice comparison, but the authors should specify the number of cell lines 
used for each tissue-specific models on its x-axis. Also, instead of marking p_1/2, please align 
p-values to the two columns being compared. The authors should also make one main figure for 
the comparison of the model features. Suppl. Fig. 3 style is bit hard to access, and simple Venn 
diagrams might work better for showing overlapping features. 
 
We have edited Fig 5 as requested. First, the number of cell lines used to train tissue-specific 
and downsampled pan-cancer prediction models are now included on the x-axis in Panel A. 
Second, we added bars indicating the two groups being compared and generated the p-values. 
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We agree with the reviewer that the comparison of the top 50 model features with the other 
features, previously in Figure S3, warrant inclusion as a main text figure. We have added this 
comparison for PD-901, in boxplots, as new Figure 4 F and H (shown below). Figure 4F and 4H 
corresponds to the left and right panels, respectively, of Figure S3-A (the new Figure S5-A). 
The new Figure 4G is for showing example calculations for Figure 4H for three features. We 
revised the paragraph discussing the analysis to provide greater detail (lines 265-283). 
 

 
 
We also generated a new Supplemental Table 2 displaying the overlap in top 50 biomarkers 
among the four regularized regression models (lines 281-283). 
 
Comment 2.1.5. The current results focus only on three MEK inhibitors (PD-0325901, GDC-
0973 and Selumetinib), out of which only two are shared between the two datasets. The authors 
are recommended to extend these analyses also other classes of inhibitors to guarantee that 
the conclusions they make in the end are generalizable also to other drug and target classes. If 
needed, there are also other large-scale drug testing datasets available, e.g., DGSC and CTRP 
v.2, which include many dugs and various molecular profiles. The authors could check from 
PharmacoDB suitable datasets for other kinase inhibitors. 
 
We agree that this study can be expanded with additional drugs and datasets, similar to 
Comment 1.9, suggesting that we test additional models/algorithms. To keep the scope 
manageable, we decided to only take up one of suggestions: to examine the generalizability of 
our results to other drugs. We added a new analysis to quantify the proportion of variance of 
drug response accounted for by tissue types for the 29 drug screens in the Klijn 2015 and CCLE 
2019 datasets. As shown in the newly added Figure 4E, the 4 MEKi screens ranked 3, 4, 6, and 
8 among the 29 drug screens, significantly enriched in the high end (p < 0.02, U test). Thus, we 
expect that the drugs with comparable rank (such as those ranked among the top 10) as MEKi 
screens would have a similar impact of between-tissue effects on pan-cancer response 
predictions. We have added this analysis in the Results section (lines 261-264). 
 
Specific comments: 
 
Comment 2.2.1. Figure 1C. Statistical testing of the number of sensitive cell lines would make 
the plot more convincing. Please also justify why threshold of IC50 = 1uM was chosen to 
determine if a cell line is sensitive to a drug. Ideally, such threshold should depend on a specific 
drug, relative to other drugs in the cell line. 
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Regarding statistical testing of the number of sensitive cell lines in Figure 1C, the null 
hypothesis is that the frequency of sensitive cell lines are the same across the 10 tissue types. 

For each of the 4 drugs we used the 2 x 10 contingency table of cell line counts to conduct a  
test of independence. We found that the frequency of sensitive lines varied significantly between 
tissues (p < 2x10-9 for all 4 drugs). The statistical tests are added to the revised Results (lines 
132-133) and to Figure 1C. 
 

Regarding the justification for the 1 M threshold for IC50, please see the response to 
Comment 1.5. 
 
Comment 2.2.2. Figure 2D. Comparison of predictions across datasets (red and pink symbols) 
and within datasets is borderline significant. It would be good to analyze this bit further, as it 
would be quite surprising result if these prediction accuracies are overall similar, as is currently 
stated in the results (lines 185-187). 
 
In the initial submission, the statistical tests were separated by dataset, so that within- and 
between-dataset performances in the Klijn 2015 dataset were tested separately from those in 
the CCLE dataset. We updated our comparison so that within- and between-dataset 
performances for both datasets were tested together. Based on this updated analysis, we find a 
significantly higher performance by Spearman’s rho (p < 0.04). We have updated the discussion 
in the main text to reflect the new analysis (lines 210-213). 
 
Comment 2.2.3. Figure 3. The “cigar plots” are very illustrative but they only show the mean 
observed and predicted log(IC50) from around 0 to 1. However, according to Figure 2C, the 
observed log(IC50) can be up to 2 and the predicted log(IC50) can be up to 5. Why is there so 
much difference between the two plots? 
 
The mean observed log(IC50) values for the 10 tissue types, and similarly the mean predicted 
values, were scaled linearly from their original range to the range between 0 and 1 prior to 
plotting the cigar plots. This was a global transformation for all cell lines from the 10 tissues, for 
the x values and separately for the y values. The purpose of the scaling is to prevent the 
ellipses from being distorted because the observed and the predicted values are not in the 
same range. We have updated the figure to include “(scaled)” in the axis labels. 
 
Comment 2.2.4. Figure 6. This is a nice analysis, but may give somewhat simplified view of the 
pan-cancer model performance as its prediction performance may not only be related to the 
sample size, but also to the correlations between the tissue groups. This should be further 
investigated, or at least discussed. 
 
Thank you for this insightful comment. The performance of the pan-cancer model does indeed 
depend on the composition of the tissue types, the number of cell lines in them, and the 
"distance" among tissue types for both their drug sensitivity and their molecular features. The 
quantitative results we reported are therefore influenced by these characteristics of the CCLE 
and Klijn datasets. We have revised the Discussion to include the following: “However, more or 
fewer cell lines will likely be required to saturate prediction performances based on the number 
of cell lines present for each tissue, as well as the relationships between the tissue groups.” 
(lines 366-368). 
 
Comment 2.2.5. Even if the language is good, there are certain bit cryptic sentences and terms 
that needs to be made more specific; for instance ”group” on lines 92 (“contributions of both 
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group and individual identity”), and line 215 (“this is because the two tissues, at the group 
level”); please reword and make clearer. 
 
In this study "tissue", "tissue type" and "group" are synonymous to each other. For the two 
examples highlighted by the reviewer: 1) we have clarified that group indicates tissue (line 104), 
and 2) we have removed group as the concept as it is not necessary for the point we are 
making (line 244). 
 
Comment 2.2.6. Abstract and page 12: “a 22% decrease” is difficult to be understood. What 
does a 22% decrease in the Spearman correlation coefficient mean? Before and after 
correlation would be better. Further, since this is an average number, confidence interval or a 
range of correlations should be reported, too. 
 
We agree that % decrease in a correlation coefficient can be difficult to interpret. As suggested, 
we have replaced the % decrease language with before-and-after range of performance in the 
Abstract (lines 43-44) and Results (lines 252-253). 
 
Revised Abstract text: Between-tissue differences make substantial contributions to the 
performance of pan-cancer MEKi response predictions, as exclusion of between-tissue signals 

leads to a decrease in Spearman’s  from a range of 0.43-0.62 to 0.30-0.51. 
 
Revised Results text: Compared to the initial performance, the rank correlation coefficients 
using tissue-standardized observed and predicted log(IC50) values were reduced from a range 
of 0.43-0.62 to 0.30-0.51 (paired U test, p < 0.008), depending on the algorithm and 
training/testing data (Figure 4C, D). 
 
Comment 2.2.7. Abstract “RNA, SNP and CNV data”; these needs to be made more explicit 
when first time used, e.g., “mRNA expression, point mutations and copy number variation”; the 
authors should mention in discussion that also other data (e.g. methylation and proteomics) are 
being used in prediction models. 
 
We have updated the wording in the Abstract to reflect the reviewer’s suggestion (lines 38-39): 
Here, we built a series of pan-cancer models using two datasets containing 346 and 504 cell 
lines, each with MEK inhibitor (MEKi) response and mRNA expression, point mutation, and copy 
number variation data […] 
 
We have added in Discussion the point that additional data types, while not present in our study, 
may be added when available (lines 348-351): Pan-cancer drug response predictions can also 
incorporate additional data types, such as methylation and proteomics data. We expect that 
prediction performances based on any data types that vary with tissue-of-origin will be similarly 
affected by both between- and within-tissue signals. 
 
Comment 2.2.8. Lines 59-60: For within a cancer type prediction model, the authors should cite 
such prediction models, e.g., the DREAM7 drug sensitivity prediction challenge in breast cancer 
cell lines (PMID: 24880487), which is still consider a state-of-the-art in the field of drug response 
prediction in cancer cell lines. 
 
We have added the DREAM7 reference to the introduction and to the section “Sample size 
advantage of pan-cancer models over tissue-specific models” in Results (Reference #13 in the 
revised manuscript). 
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Comment 2.2.9. Page 12: the first sentence "five tissues whose within-tissue variability was 
accurately predicted". Please define what does it mean to be “accurately predicted“? For 
instance, specify a threshold for the Spearman correlation coefficient to determine whether the 
prediction is accurate or not. 
 
We have added a stated threshold of mean rho > 0.5 for this analysis (lines 232-234), which 
was based on the clustering of the within-tissue prediction performance in Figure S3. 
 
Comment 2.2.10. Line 119: Between- and within-tissue performance of pan-cancer MEKi 
response predictions section. Please emphasize whether these results are based on the pan-
cancer model or tissue-specific model (c.f. the next section: Sample size advantage…)? It 
seems the former, but good to specify in the text. 
 
The reviewer is correct that the results are from the pan-cancer predictions. As suggested, we 
have clarified that the results are from pan-cancer models in lines 223 and 229. 
 
Comment 2.2.11. Line 358: ”We further standardized RNA expression data for each gene by 
linearly scaling values across cell lines to a range between 0 and 1 and shifting the scaled 
values by subtracting the scaled mean”; the rationale of this post-processing remains unclear 
and needs to be justified in the Methods section. 
 
We standardized RNA expression levels for each gene, so that genes are present in similar 
scales and can contribute comparably to prediction models. In addition, standardization brings 
the RNA data from Klijn 2015 and CCLE 2019 datasets into similar ranges, allowing a model 
from one dataset to be effectively applied to the second dataset. We have added this detail to 
Methods (lines 432-435). 
 
Comment 2.2.12. Methods. Please give more details of the assays of the two studies. For 
instance, SNP arrays and exome-seq are quite different for detecting point mutations. How does 
that affect the results? Were the same cut-offs for gene amplifications and deletions used in 
both studies. No details of the drug assays provided. 
 
We have added additional details as suggested. 
 
For the drug assays, we included information on replicates and drug dose ranges, and 
discussion of the challenges of using IC50 as a drug response metric (lines 410-419):  
Klijn 2015 tumor cell lines were screened with 3-4 replicates across 9 drug doses (range: 0.15 

nM to 20 M); while the CCLE cell lines were screened with at least 2 replicates across 8 drug 

doses (range: 2.5 nM to 8 M). The resulting dose response curves were summarized with the 
IC50 value: the dose at which 50% of cells are non-viable; lower IC50 values indicate greater 
sensitivity. IC50 can be difficult to interpret, as it does not account for different shapes in dose 
response curves or for differences in minimum viable cells observed. However, IC50 was used in 
this study as it was the sole drug response measure in common between the Klijn 2015 and 
CCLE 2019 datasets. 
 
We added more details for the DNA variants, noting that the difference in the number of SNP 
calls is tempered in part due to aggregating SNP and CNV data to the gene level (lines 474-
478):  
The CCLE dataset contains more than 5 times as many missense and nonsense SNP calls than 
the Klijn 2015 dataset, which is largely due to the different platforms employed for genotyping 
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(i.e. SNP array vs. exome-seq). The effects on downstream analysis brought by differences in 
the total number of SNP calls between the two datasets is tempered by mapping of SNPs to the 
gene level.  
 
Last, we added the threshold used in the CCLE dataset for calling gene amplifications and 
deletions from SNP array data (Klijn 2015: line 465, included in initial submission; CCLE 2019: 
lines 483-484). The thresholds for amplifications and deletions were 1 and -0.75, respectively, 
for Klijn 2015, and 0.7 and -0.7, respectively, for CCLE 2019. 
 
Comment 2.2.13. In the binary problem, the authors use logistic regression with LASSO to first 
select features. Instead of that, logistic LASSO regression might be a better and more 
straightforward option which is also implemented in the glmnet package. The authors should 
consider using that in the revised work. 
 
We followed reviewer's 
suggestion to apply a 
regularized logistic regression 
approach using the glmnet 
package, selecting optimal 
alpha and lambda values with 
a parameter sweep within the 
training set (alpha options: 0, 
0.25, 0.5, 0.75, and 1; lambda 
options: 0.001, 0.01, 0.1, and 
1; 4x5=20 total parameter 
sets tested). When the logistic 
regression models were 
applied to validation sets and 
across datasets, we found a 
near-identical performance 
compared with the original 
logistic regression with 
LASSO feature selection 
approach (see plot). Because 
the performance is similar, we 
opted to retain the logistic 
regression results currently in 
the text (i.e. not replaced with 
regularized logistic regression 
results). 
 
 
Comment 2.2.14. It has been shown that cancer tissue type may directly contribute to the 
prediction of drug sensitivity in the pan-cancer models. It remained unclear whether the tissue-
of-origin was used as predictor in any of the analyses; and if not, the authors need to explain 
why it was not included in any of the models? 
 
We generated a new set of models using regularized regression that, along with the RNA 
expression and DNA variant features, added the 11 binary features for tissue-of-origin. These 
models performed similarly to those without the tissue-label features (p = 0.74, paired Mann 
Whitney U test). As before, performance is reduced when the observed and predicted drug 
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response values were standardized within tissue (p < 0.008, paired U test). That inclusion of 
tissue label does not lead to increased performance is not surprising, as tissue type is aligned 
with a subset of molecular features, thus adding tissue label did not add much new information. 
We described this new analysis in Results (lines 255-261) and added a new Figure S4. 
 
Comment 2.2.15. Supplementary Table 1 shows boundary lambda in model f_C1 and model 
f_C2 for the regularised regressions. Please re-tune these parameters. Further, it remains 
unclear whether the parameters of random forest regression were optimized or not, including 
"number of tree to grow”, “cutoff”, etc? 
 
We ran an additional parameter sweep for the fC1 and fC2 regularized regression models, testing 
lambdas of 1, 10 (original max), 100, 1000, and 10000 with alphas of 0 (original max), 0.1, and 
0.2. Thirty models for parameter sweeps were generated for each drug, each considering a 
randomly-selected 70% of cell lines as the training set. For each of the thirty models, the 30% of 
cell lines not selected for model-building are used to assess performance, using Spearman’s 
rho, and the mean rho of the 30 replicates are used to compare across parameter sets. Based 
on this analysis, for the fC2 model, lambda = 10 and alpha = 0 remained as the optimal 
parameter set. For the fC1 model, an alternative parameter set, lambda = 1, alpha = 0, had 
optimal performance. This is somewhat surprising, as this parameter set was available in the 
initial sweep. We think there are likely multiple sets of parameters that provide similar, near-
optimal performance, and that the final optimal set is influenced by the random selection of 
training instances during the parameter sweep model building. As a result, we have opted to 
maintain the original parameter set of alpha = 0 and lambda = 10 for the fC1 model and have 
added the discussion of this analysis with additional lambda parameters in Methods (lines 592-
602). 
 
In addition, we re-ran the random forest analysis by tuning 3 additional parameters: 1) number 
of trees, 2) number of features available as candidates at each tree split, and 3) node size, 
which affects tree size/depth. With the updated random forest models, we found similar results 
as before, where random forest performs similarly to regularized and logistic regression, except 
for fC2, which has lower performance than fK1, fK2, and fC1. We have updated Figure 2D to reflect 
RF performance with additional parameter tuning, updated the Methods accordingly (lines 575-
590), and added a new Table S2 to list the optimal parameters.  
 
Reviewer #3: 
Inter-tumor heterogeneity in molecular characteristics and phenotypes are well known, but 
analyzing pan-cancer dataset may yield a uniformly predictive molecular signature among 
different cancers for certain cancer drugs. Lloyd et al. studied the impact of inter-cancer 
heterogeneity and intra-cancer heterogeneity on pan-cancer predictions of drug sensitivity. 
Authors extensively explored the performance of the pan-cancer predictions only for one 
targeted cancer drug family, MEK Inhibitors. [Comment 3.0] I thus strongly suggest authors 
to publicly share their analysis codes and datasets used in this study that will enable 
oncologists and cancer biologists to explore inter-cancer heterogeneity in responses to 
other anti-cancer therapeutics. [/Comment 3.0] in the manuscript, there are paragraphs that 
need more description and clarification. Please find my comments below. 
 
We agree completely that the community benefits from access to the codes and the processed 
datasets. Toward this goal, we have made available the codes needed to run the model-building 
and parameter sweeps through GitHub 
(https://github.com/johnplloyd/R_prediction_model_building).  
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Additionally, processed drug responses and molecular features (mRNA expression and DNA 
variants) used in our analyses have been uploaded to the CyVerse Data Store 
(https://de.cyverse.org/dl/d/43AB0125-4826-4599-9337-
E8B61F41DBA4/lloyd_etal_pancancer_MEKi_processed_data.zip).  
 
Links to these resources are provided in (lines 491-494 and 590-591) of Methods. 
 
Comment 3.1. Page 6: Line 126-129: Figure 1D. For Drug response correlation, a correlation 
coefficient of PD-901 sensitivities between two cell line panels of 0.81 is lower than correlation 
coefficients of two different drugs in each of the two studies (r=0.88 between PD-901 and GDC-
0973 in Kijin and r=0.83 between PD-901 and Selumetinib). Does the lower correlation 
coefficient for the same drug imply a larger study-specific batch effect on drug sensitivity 
measurements? 
 
There are two possible explanations for the lower cross-dataset correlation of PD-901 than the 
within-dataset correlation between PD-901 and GDC-0973. First, as suggested by the reviewer, 
there could be study-specific technical differences in measuring IC50, including differences in 
cell viability assays, and the dose and duration of the drug exposure. Second, cell lines continue 
to evolve when they are kept in different laboratories, and their drug sensitivities may have 
changed over time, producing genuine biological differences for the same cell lines measured in 
different laboratories. We have updated Results to discuss these possibilities (lines 141-145). 
 
Comment 3.2. Page 7: Line 144-146: Please describe a rationale for a thrould of IC50 <=1nM 
with which cell lines were stratified as sensitive to a drug. 
 
Please see the response to Comment 1.5. 
 
Comment 3.3. Page 7: Line 148: Is logistic regression analysis a regularized logistic 
regression? 
 
No, the logistic regression itself was not regularized, but it was preceded by an upstream 
feature-selection step using LASSO. As discussed in response to Comment 2.2.13, we ran a 
regularized logistic regression, and found similar performances compared to logistic regression 
with LASSO feature selection (see plot in 2.2.13). 
 
Comment 3.4. Page 10: Line 187-189: In Figure 1D, there are many triangles (cross-MEKis 
prediction) with lower correlation coefficients and auROC values than circles (same MEKi). 
Although p-value is above 0.05, I don’t think it is reasonable to argue that cross-MEKis 
performed comparably. 
 
In the initial submission, the statistical tests were separated by dataset, so that the Klijn 2015 
performances were tested separately from those in the CCLE dataset. We updated our 
comparison so that within- and cross-MEKi performances for both datasets were tested 
together. Based on this updated analysis, we find a marginally-significant higher performance 
for within-MEKi comparisons by Spearman’s rho (p = 0.10). We have updated the Results to 
reflect this analysis (lines 213-217). 
 
Comment 3.5. Page 10: 187-190: please specify the ranges of observed spearman correlation 
coefficients and AUCs in addition to the reported U-test p-values. 
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We have added the means and ranges associated with the U tests in the revised text (lines 215 
and 216).  
 
Comment 3.6. Page 12: Line 204-206: I wonder how many cancer cell lines were originated 
from those five cancer types in the pan-cancer training dataset. These five cancers may account 
for the majority of cell lines in the training dataset and show a good prediction performance. 
 
These five cancer types account for roughly half of the cell lines in the training datasets (see Fig 
1B). As a result, only a portion of the overall performance can be attributed to the accurate 
within-tissue signals for these five tissues. 
 
Comment 3.7. Page 12: Line 213-216: Please describe How you choose these two cancer 
types? In Figures 4A and 4B, breast cancer cell lines had truncated IC50 at around 2. It may not 
make sense to calculate correlation coefficients with this truncated drug sensitivity data. 
 
For Figure 4A-B the goal was to illustrate how between-tissue predictions can impact overall 
prediction performance. To create an extreme example, we selected a pair of tissues, with one 
generally sensitive and the other generally resistant, but neither tissue had successful within-
tissue predictions. Increased prediction performance across the two tissues (e.g. black dotted 
line in Fig 4A) would therefore be mainly due to the between-group differences of the two 
selected tissues. In other words, a prediction considering these two tissues together provides 
little additional information than knowing the tissue-of-origin. 
 
Comment 3.8. Page 12: Line 215-217: To argue this, i think authors need to show that 
combining two nearest cancer types on PC values and IC50 such as colorectal and stomach 
does not improve an overall prediction performance. 
 
As explained in the response above, our goal is not to provide a generalized example, rather an 
extreme example to illustrate how tissue characteristics may contribute to overall prediction 
performance in a pan-cancer setting. We have revised the wording in this section to clarify that 
the two-cancer type comparison of brain and pancreas was driven almost solely by between-
tissue signals (lines 245-246). We followed up this extreme example by assessing the degree 
to which between-tissue signals were driving the performance for the full set of 10 tissues in the 
pan-cancer analysis through the comparisons of the initial and tissue-standardized performance 
(Figure 4C-D). 
 
Comment 3.9. Page 12: Line 217: Please clarify what between-tissue signal means. Does it 
mean difference in gene expression or drug sensitivities between brain and pancreatic cancer 
cell lines? 
 
It's both: the between-tissue signal refers to the differences in both drug response and 
molecular characteristics between tissues. We have revised the text (lines 244-246): […] the 
two tissues are different in both drug response and molecular profiles (Figure 1C, E) and the 
performance across the two tissues in this example is driven by between-tissue differences. 
 
Comment 3.10. Page 15: Line 239-241: It is an important research topic to identify predictive 
genetic and transcriptomic markers that determines the drug sensitivity of MEKi. It may [not] 
(sic) be a bad idea to elaborate about molecular features that were finally included in each of 
pan-cancer regression models and how many common features were across the models. 
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We agree that the biomarkers selected by the models would be a useful resource to the 
community. We have generated four supplemental datasets – one for each regularized model – 
with biomarker information. This information includes mean importance and the amount of 
within- and between-tissue MEKi response explained for all features. The new Supplemental 
Datasets are references on lines 279-281 in the revised Results. 
 
Additionally, we generated a new Supplemental Table 2 that indicates the counts of 
overlapping top 50 biomarkers between the four models. These results are described in the 
revised Results section (lines 281-283) 
 
Comment 3.11. Page 15: Line 245: This is a very interesting observation. During down 
sampling of the pan-cancer data, did you randomly sample cell lines or 
 
For the down-sampling, we randomly sampled without replacement from all available training 
cell lines. Tissues that are more prevalent in the full datasets tend to have more cell lines 
sampled, as we did not do weighted sampling. 
 
Comment 3.12. Page 17: Line 262-265: I don't think only ovarian cancer cell line will be 
benefited from a larger pan-cancer data training set. As the sample size of a training set 
increases, stomach cancer cell lines also seem to show persistently steep increment in tissue-
specific prediction performance. 
 
We have revised the wording to indicate that ovarian cancers are “particularly” well-suited to 
larger sample sizes (line 321), as ovarian cancer was the only type with no inflection point of 
diminishing returns. This updated wording is less exclusive to other cancer types, such as 
stomach, which also showed increasing, albeit diminishing, performance returns with additional 
cell lines. 
 


