
Supplement

Supplement : A Simple, Interpretable Conversion from
Pearson’s Correlation to Cohen’s d for Meta-Analysis

1. Derivation of point estimate d

Suppose that Y = β0 +βX + ε with homoskedastic errors, X q ε, and E[ε] = 0. Let s2
X and 2

Y

denote marginal sample variances, let s2
Y |X denote the conditional sample variance of Y , and

let r denote the sample correlation between Y and X. Define the Cohen’s d of interest as the
increase in Y associated with a ∆-unit increase in X, taking c to be an arbitrary constant:

d =
E[Y | X = c+ ∆]− E[Y | X = c]

sY |X

By homoskedasticity, s2
Y |X = E[s2

Y |X ], yielding:

=
E[Y | X = c+ ∆]− E[Y | X = c]√

s2
Y − Var (E[Y |X])

=
E[Y | X = c+ ∆]− E[Y | X = c]√

s2
Y − β̂2s2

X

=
β̂∆

sY
√

1− r2

=
r∆

(s2
X)1/2

√
1− r2

2. Derivation of standard error for d

Let ρ denote the population correlation, and let σX and σY respectively denote the population
standard deviations of X and Y . We first develop a supporting lemma establishing the
asymptotic independence of the sample estimates r and sX .
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Lemma 2.1. Suppose that r and sX are estimated in the same sample of size N . Assume
the distribution of (Xi, Yi) satisfies the following regularity condition. Namely, letting

κab = E

[(
Xi

σX

)a(
Yi
σY

)b]

denote the abth mixed standardized moment, we assume that κ31, κ22, and κ40 are all finite
(which we will show to hold for the bivariate normal distribution). Then limN→∞Cov(r, sX) =

0.

Proof. Let (V1, . . . , VN) be an independently and identically distributed sample from a
bivariate distribution Vi = [Xi, Yi]

′ fulfilling the above regularity condition, and let

Σ = Cov(Vi) =

[
σ2
X ρσXσY

ρσXσY σ2
Y

]

Without loss of generality, assume E[Vi] = 0. The sample covariance

SN =
1

N − 1

N∑
i=1

(Vi − V̄N)(Vi − V̄N)′ =
1

N − 1

∑
i=1

ViV
′
i −

N

N − 1
V̄N V̄

′
N

is asymptotically unbiased and consistent for Σ, and in fact

√
N(SN − Σ)→D N(0,Λ)

for some asymptotic covariance matrix, Λ. We now focus on determining this matrix. First,

for a symmetric matrix A =

[
a b

b c

]
, let Ã = [a, b, c]′ denote the “vectorization” of its upper

triangle. Now consider a single element of the average that enters into the first term (i.e., the
scatter matrix) of SN :

Z̃i = ṼiV ′i =

 X2
i

XiYi

Y 2
i


The covariance matrix of these individual squared observations and their cross-product can
be expressed in terms of the mixed standardized moments, κab, as:

Λ = Cov(Z̃i) = E[Z̃iZ̃i
′
]− E[Z̃i]E[Z̃i]

′ = K− Σ̃Σ̃′ (2.1)
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where

K =

 κ40σ
4
X κ31σ

3
XσY κ22σ

2
Xσ

2
Y

κ31σ
3
XσY κ12σXσ

2
Y κ13σXσ

3
Y

κ22σ
2
Xσ

2
Y κ13σXσ

3
Y κ04σ

4
Y


We now turn to estimating Cov(r, sX) using Equation (2.1) and the delta method. Define
the transformation g(x, y, z) =

(
x, y√

x
√
z

)
on S̃N . This provides the bivariate distribution of

(sx, r). By the delta method and the asymptotic normality of SN :

√
N
(
g(S̃N)− (ρ, σ2

X)′
)
→D N

(
0,J(Σ̃)′Λ̃J(Σ̃)

)
(2.2)

where J(Σ̃) is the Jacobian of g evaluated at (σ2
X , ρσXσY , σ

2
Y ), which is equal to:

J(Σ̃) =


1 − ρ

2σ2
X

0 1
σXσY

0 − ρ
2σ2

Y



From Equation (2.2), we thus have:

Λ̃ ≈ J(Σ̃)′
[
K− Σ̃Σ̃′

]
J(Σ̃)

In terms of the mixed standardized moments of the bivariate distribution of (Xi, Yi), the
entry of interest simplifies to:

N × Cov(r, sX) ≈ Λ̃22 ≈ σ2
X

(
κ31 −

ρ (κ22 + κ40)

2

)
Thus, limN→∞Cov(r, sX) = 0 for any bivariate distribution satisfying the regularity condition.
For example, for the bivariate normal distribution, applying Isserlis’ Theorem regarding
mixed standardized moments1 yields k31 = 3ρ, k22 = 1 + 2ρ2, and k40 = 3, so the regularity
condition holds and limN→∞Cov(r, sX) = 0.

We now derive an approximate standard error of d using the delta method. Let zf = arctanh(ρ)

denote the Fisher-transformed population correlation and ẑf its sample estimate, which is
asymptotically normal with variance 1

N−3
. Suppose s2

X is estimated in a sample of size Ns,
such that Ns = N if s2

X is estimated in the same sample used to estimate r. Assuming that
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X is approximately normal, then asymptotically in Ns, s2
X is approximately normal with

variance 2(s2x)2

Ns−1
. Let δ denote the population standardized mean difference and correlation.

Define g as the function mapping zf and σ2
X to δ:

g(x1, x2) =
∆tanh (x1)

(x2)1/2
√

1− tanh2 (x1)

Thus, g(zf , σ
2
X) = δ. The gradient evaluated at the population parameters is:

O
∣∣
(zf ,σ

2
X)

=

[
∂g
∂zf
∂g
∂σ2

X

]
=

 ∆

σX
√

sech2(zf )

−1
2
(σ2

X)−3/2 ρ∆√
1−ρ2

 =

 ∆

σX
√

1−ρ2

−1
2
(σ2

X)−1δ

 =

[
δ/ρ

−1
2
(σ2

X)−1δ

]

Note that Lemma (2.1) regarding the asymptotic independence of zf and sx also implies that
r and sx are asymptotically independent because r is a function only of zf . Thus, applying
the delta method yields:

ŜE(d) ≈
√

Ô2
1 ŜE

2
(zf ) + Ô2

2 ŜE
2
(s2
X)

=

√
(d/r)2

1

N − 3
+

1

4
(s2
X)−2d2

2(s2
X)2

Ns − 1

= |d|

√
1

r2(N − 3)
+

1

2(Ns − 1)

If r = 0 exactly, the standard error estimate is undefined, so could be replaced by:

lim
r→0

ŜE(d) =
|d|
sX

√
1

N − 3
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