Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in App^{NL-G-F} , App^{NL-F} , and wild type mice

Payel Kundu^{1*}, Eileen Ruth S. Torres^{1*}, Keaton Stagaman², Kristin Kasschau², Mariam Okhovat³, Sarah Holden¹, Samantha Ward³, Kimberly A. Nevonen³, Brett A. Davis³, Takahashi Saito⁴, Takaomi C. Saido⁵, Lucia Carbone^{3, 6-8}, Thomas J. Sharpton^{2,9}, Jacob Raber^{1,10#}

Supplementary Table Legends

Table S1. Reduced Representation Bisulfite Sequencing of genome-wide patterns of DNA methylation in the hippocampus of the female App^{NL-G-F} , App^{NL-F} and WT control mice show low levels of CHG and CHH methylation. H is A, T or C (CHG: $0.9\% \pm 0.26$ and CHH: $1.1\% \pm 0.25$; mean \pm stdev), indicative of successful bisulfite conversion.

Table S2. Comparison of genome-wide DNA methylation levels in pair-wise comparisons of each of the App^{NL-G-F} and App^{NL-F} mice to age-matched wild-type controls. A total of 628 and 562 unique significant differentially methylated regions (DMRs; q-value < 0.05) were identified.

Table S3. Analysis of enrichment of gene ontology (GO) terms among DMR-containing genes. A significant enrichment of several GO terms related to AD was found among the App^{NL-G-F} DMRs (for example, Regulation of long-term synaptic potentiation (GO:1900271) and Positive regulation of synaptic transmission (GO:0050806); p-value <0.05), but not among App^{NL-F} DMR-containing genes. Some GO terms relevant to AD are indicated in orange.

Table S4. Significant Enrichment of DMR-containing genes in App^{NL-G-F} , but not App^{NL-F} , mice for genes associated with several AD-related phenotypes in the National Human Genome Research Institute catalog of published genome-wide association studies (NHGRI-GWAS).