Supplementary Information for

Characterization of mitochondrial health from human peripheral blood mononuclear cells to cerebral organoids derived from induced pluripotent stem cells

Angela Duong^{1,2}, Alesya Evstratova¹, Adam Sivitilli³, J. Javier Hernandez^{4,5}, Jessica Gosio^{4,5}, Azizia Wahedi⁶, Neal Sondheimer^{4,6}, Jeff L. Wrana^{4,5}, Jean-Martin Beaulieu^{1*}, Liliana Attisano^{3,6*}, Ana C. Andreazza^{1,2,7*}.

¹Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.

²Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.

³Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.

⁴Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.

⁵Lunenfeld-Tanenbaum Research Institute, Toronto, ON, M5G 1X5, Canada.

⁶Program in Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.

⁷Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.

⁸Department of Psychiatry, University of Toronto, Toronto, ON, M5S 1A8, Canada.

*Correspondence to: martin.beaulieu@utoronto.ca (J.M.B.); liliana.attisano@utoronto.ca (L.A.); ana.andreazza@utoronto.ca (A.C.A.)

This PDF file includes:

Tables S1 to S11 Figures S1 to S2

Clinical and Demographi	c Characteristics
Sample Identification	MS005-2014
Sample Type	Whole Blood
Informed consent	Yes
Age	33
Sex	Female
BMI	24.6
Medication	None reported
Ethnicity	Caucasian
BP	120/92

Table S1. Clinical and demographic characteristics of the donor. BMI, body mass index; BP,

blood pressure.

	Antigen	Host	Dilution	Source	Identifier
	OCT4	Rabbit	1:400	Invitrogen	A24867
;DSC	SOX2	Rat	1:100	Invitrogen	A24759
IF SC	SSEA4	Mouse	1:100	Invitrogen	A24866
	TRA-1-60	Mouse	1:100	Invitrogen	A24868
СО	SOX2	Goat	3:200	R&D	AF2018
	NeuN	Rabbit	1:500	Cell Signaling	12943S
Mitochondria	TOMM-20	Rabbit	1:100	Abcam	ab186734
	NDUFS3	Mouse	1:100	Abcam	ab110246
	SDHA	Mouse	1:200	Abcam	ab14715
	UQCRC1	Mouse	1:50	Abcam	ab110246
	COXIV	Mouse	1:200	Abcam	ab33985
	ATP Synthase β	Mouse	1:500	Invitrogen	A-21351

Table S2. List of primary antibodies used for fluorescent immunohistochemistry

experiments. OCT4, octamer-binding transcription factor 4; SOX-2, sex determining region Ybox 2; SSEA4, stage-specific embryonic antigen 4; TRA-1-60, podocalyxin; NeuN, neuronal nuclei; TOMM-20, translocase of outer mitochondrial membrane 20; NDUFS3,

NADH:ubiquinone oxidoreductase core subunit S3; SDHA, succinate dehydrogenase complex flavoprotein subunit A; UQCRC1, ubiquinol-cytochrome C reductase core protein I; COXIV, cytochrome c oxidase subunit IV; ATP Synthase β , ATP synthase beta subunit; iPSC, induced pluripotent stem cells; CO, cerebral organoid.

	iPSC CO	H9 hESC CO
Electrophysiology	4	4
Cellular IF	2	2
Mitochondria	8	8
TOTAL	14	14

Table S3. Total number of whole cerebral organoids produced and allocated for each

assessment. iPSC CO induced pluripotent stem cells-derived cerebral organoids; H9 hESC CO,

H9 human embryonic stem cells- derived cerebral organoids; IF, immunofluorescence.

Assessment	Sample type	Specific Endpoints	Biological Replicates	Technical Replicates
		Karyotype	2	10
	iPSC	Alkaline phosphatase	3	3
Characterization		Pluripotency validation	3	3
	H9 hESC CO and iPSC CO	Cellular characterization	2	2
Noumanal	U0 hESC CO and	Action potential	4	7-12
Activity	iPSC CO and	Spontaneous activity	4	4-8
		Na+ and K+ currents	4	3-9
		MitoTracker	1	3
	PBMC	MMP	1	3
		OXPHOS	1	3
		ATP	1	3
		mtDNA genetics	1	2
		TEM	1	10
	110 bESCs and iDSCs	MitoTracker	3	3
		MMP	3	3
Mitochondrial		OXPHOS	3	5
Function	119 IILSUS and II SUS	ATP	3	2
		mtDNA genetics	3	1-3
		TEM	2	10
		MitoTracker	3	3
		MMP	4	3
	H9 hESC CO and	OXPHOS	3	5
	iPSC CO	ATP	3	3
		mtDNA genetics	3	1-3
		TEM	1	10

Table S4. Summary of biological and technical replicates used for each experiment. PBMC, peripheral blood mononuclear cells; iPSC, induced pluripotent stem cells; H9 hESC, H9 human embryonic stem cells; CO, cerebral organoids; MMP, mitochondrial membrane potential; OXPHOS; oxidative phosphorylation; ATP, adenosine triphosphate; mtDNA, mitochondrial DNA; TEM, transmission electron microscopy; Na+, sodium; K+, potassium.

PCR	Primers for Sex Determination	Size
SRY F	CATGAACGCATTCATCGTGTGGTC	254 bp
SRY R	CTGCGGGAAGCAAACTGCAATTCTT	
PARP F385	AAGCTTTCCAGGAGATCCTAAC	498 bp
PARP R882	CCTTCACTGTAGGTCCCAAAT	

 Table S5. PCR primers used for sex determination as a quality control. SRY, sex

determining region of Y-chromosome; PARP, poly(ADP-ribose) polymerase; F, forward; R,

reverse; bp, base pair.

Sample	PARP	SRY	Sex
PBMC	+	-	F
iPSC	+	-	F
iPSC CO	+	-	F
Controls			
PC – SH-SY5Y	+	-	F
WG1669	+	+	М

Table S6. Sex determination as a quality control across all stages of cerebral organoid generation. There is preservation of the female karyotype across PBMC, iPSC and iPSC CO. SH-SY5Y human female neuroblastoma cell line was used as a female control and WG1669 male patient was used as a male control. PBMC, peripheral blood mononuclear cells; iPSC, induced pluripotent stem cells; H9 hESC, H9 human embryonic stem cells; CO, cerebral organoids; PC, positive control; SH-SY5Y, human neuroblastoma cell line; SRY, sex determining region of Y-chromosome; PARP, poly(ADP-ribose) polymerase; F, female; M, male.

Primers for mtDNA amplification for Illumina sequencing					
MT-COIII F	TCACAATTCTAATTCTACTGA				
MT-COIII R	CGGATGAAGCAGATAGTGAGG				
MT16425 F	CCGCACAAGAGTGCTACTCTCCTC				
MT16426 R	GATATTGATTTCACGGAGGATGGTG				

Table S7. Primers used for mtDNA amplification and sequencing. MT, mitochondrial;

F, forward; R, reverse.

	PBMC	iPSC	iPSC-derived CO	NC - SH SY5Y
A73G	+	+	+	-
A153G	+	+	+	-
T195C	+	+	+	-
G225A	+	+	+	-
A263G	+	+	+	+
A750G	+	+	+	+
G769A	+	+	+	-
A1438G	+	+	+	+
G1719A	+	+	+	-
A2706G	+	+	+	-
A4769G	+	+	+	+
T6221C	+	+	+	-
C6371T	+	+	+	-
C7028T	+	+	+	-
A8860G	+	+	+	+
T9722C	+	+	+	-
G11719A	+	+	+	-
C12705T	+	+	+	-
G13368A	+	+	+	-
A13966G	+	+	+	-
T14470C	+	+	+	-
C14766T	+	+	+	-
A15326G	+	+	+	+
G15650A	+	+	+	-
A15924G	+	+	+	-
T16189C	+	+	+	-
C16223T	+	+	+	-
C16278T	+	+	+	-
T16519C	+	+	+	+

Table S8. Mitochondrial DNA (mtDNA) variants for the X2g haplogroup across PBMCs, iPSCs and iPSC-derived COs validated by whole mtDNA sequencing and short mtDNA fragment sequencing. SH-SY5Y human neuroblastoma cell line was used as a negative control (NC), validated by only short fragment mtDNA sequencing. (+) denotes positive or presence; (-) denotes negative or absence. PBMC, peripheral blood mononuclear cells; iPSC, induced pluripotent stem cells; CO, cerebral organoids.

PCR Primers			Sequencing primers	SNPs sequenced				
F13464 R15211	CAGCCTAGCATTAGCAGGAATA GTATGGGATGGCGGATAGTAAG	F14368	CAATCCTACCTCCATCGCTAA C	T14470C	C14766T			
F458 R1997	CCTCCCACTCCCATACTACTAA GGTTTGTCGCCTCTACCTATAAA	R1927	CTTAGGTAGCTCGTCTGGTTTC	A1438G	G1719A			
F4708 R6882	TCTCCGGACAATGAACCATAAC GTGTGGCGAGTCAGCTAAATA	R5216 F5993	GAGGAGGGTGGATGGAATTA AG CACAGCTCTAAGCCTCCTTATT	A4769G T6221C	C5111T C6371T			
F14562 R16511	CCACACCGCTAACAATCAATAC GTAGGAACCAGATGTCGGATAC	F15264	CCACCCTCACACGATTCTTTAC	A15326G	G15650A	A15924G		
F8474 R11031	CCCTCACCAAAGCCCATAAA CGTGATAGTGGTTCACTGGATAAG	F8804 F9318	CACCAACCACCCAACTATCT CACTCCATAACGCTCCTCATA C	A8860G T9722C				
F11644 R14130	CCTCGTAGTAACAGCCATTCTC GGTTAGGATGAGTGGGAAGAAG	R11775 F13595 R13451	CTGTGAGTGCGTTCGTAGTT GCGCCTATAGCACTCGAATAA GAGGTTGAAGTGAGAGGGTATG G	G11719A A13966G C12705T	G13368A			
F15323 R943	GCAACACTCCACCTCCTATTC CTCTTTACGCCGGCTTCTATT	F458 R16548 F16536 R34	CCTCCCACTCCCATACTACTA A GGGAACGTGTGGGCTATTTA CCCACACGTTCCCCTTAAATA A CGTGAGTGGTTAATAGGGTGA TAGAC	A750G T16189C A73G T16519C	G769A C16223T A153G	C16278T T195C	G225A	A263G
F5317 R7608 F1562 R3717	CCACCATCACCCTCCTT CCTACTTGCGCTGCATGTGCC GTAACATGGTAAGTGTACTG GGCTACTGCTCGCAGTG	F6357 F2209	CTAGCAGGTGTCTCCTCTATCT GCTCAACACCCACTACCTAAA	C7028T A2706G				

Table S9. PCR primers and sequencing primers used for the determination of the

mitochondrial DNA haplogroup, X2g. F, forward; R, reverse; SNPs, single nucleotide

polymorphisms.

PCR Primers for mtDNA Copy Number						
mtDN A	MT-ND1 F	ATGGCCAACCTCCTACTCCT				
MIDNA	MT-ND1 R	CTACAACGTTGGGGGCCTTT				
Nuclear DNA	ß2M F	TGCTGTCTCCATGTTTGATGTATCT				
Nuclear DINA	β2M R	TCTCTGCTCCCCACCTCTAAGT				

Table S10. PCR primers used for mtDNA copy number determination. MT-ND1,

mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1; ß2M, Beta 2

Microglobulin; F, forward; R, reverse.

	Resting membrane potential (mV)			Membrane capacitance (pF)			Membrane resistance (MOhm)		
	Type 1	Type 2	Type 3	Type 1	Type 2	Type 3	Type 1	Type 2	Type 3
iPSC CO	42 ± 2	42 ± 3	47 ± 3	20 ± 3	29 ± 3	39 ± 3	1137± 214	847 ± 114	558 ± 48
H9 hESC CO	41 ± 4	47 ± 2	56 ± 3	22 ± 3	29 ± 3	32 ± 2	834 ± 175	577 ± 74	574 ± 102

Table S11. Electrophysiological properties of neurons from iPSC-derived CO and H9

hESC-derived CO. Type 1, immature neurons; type 2, developing neurons; type 3, mature neurons; iPSC, induced pluripotent stem cells; H9 hESC, H9 human embryonic stem cells; CO, cerebral organoids.

Fig. S1. Sex determination as a quality control. (A) Representative cerebral organoid culture in a 6well plate, H9 hESC-derived CO (top row) and iPSC-derived CO (bottom row). (B) A representative gel image of SRY and PARP PCR products. Left to right: PBMC, iPSC, iPSC-derived CO, SH-SY5Y neuroblastoma cell line, a male control and 100bp ladder.

Fig. S2. Mitochondrial function experimental quality control and proof-of-concept. (A) Bar graph summarizing mitochondrial membrane potential as red-to-green fluorescence ratio across CO generation in samples treated without JC-1 (negative control 1, NC-1) and those treated with FCCP and without JC-1 (negative control 2, NC-2), bars, mean \pm SD. **(B)** Bar graph showing intracellular ATP levels in iPSCs cultured in Mouse Embryonic Fibroblast (MEF)-Conditioned Media and Essential 8 Media. bars, mean \pm SD (i). Bar graph showing the intracellular ATP levels in iPSCs in two independent experimental runs, bars, mean \pm SD (ii). **(C)** Bar graph showing ATP levels expressed as percent of control in H9 hESCs, iPSCs and H9 hESC COs treated with oligomycin, bars, mean \pm SD. *p<0.01; **p<0.001. *P*-values were determined using the independent samples *t*-test.