Supplementary Figure 2: Useful statistical formulas *Difference in means (SD) = Mean₂ – Mean₁ $(\frac{SD_1 + SD_2}{2})$ Mean₁ (SD₁) = Mean (SD) at baseline Mean₂ (SD₂) = Mean (SD) at follow up * Not the same as mean difference (MD), which is the mean value of the combined differences in means $$\mathbf{SD_{pooled}} = \sqrt{\frac{\left[SD_1^2(n_1 - 1)\right] + \left[SD_2^2(n_2 - 1)\right] + ... + \left[SD_k^2(n_k - 1)\right]}{(n_1 + n_2 + ... + n_k - \mathbf{k})}}$$ $SD_1 = SD$ from study 1, $SD_2 = SD$ from study 2 etc n_1 = sample size from study 1, n_2 = sample size from study 2 etc k=number of samples/studies ## **Optimal Information Size (OIS)** $$N = \frac{2(a+b)^2 SD^2}{(x_1 - x_2)}$$ N=the sample size required in each of the groups $x_1 - x_2$ = minimal clinically relevant difference (defined by authors) SD^2 = population variance (SD_{pooled} can be used) a = 1.96 (for 5% type I error) b = 0.842 (for 80% power) | Required statistic | Available statistic | Conversion | |--------------------|--|------------------------------------| | SD | SEM | $SD = SEM \times \sqrt{n}$ | | | IQR | SD = IQR / 1.35 | | | Range | SD = length of range / 4 | | | CI | (length of CI / 3.92) x \sqrt{n} | | 95% CI | Mean ₁ (SD ₁) and mean ₂ | $CI = mean_2 - mean_1 \pm $ | | | (SD ₂) | $1.96(SD_{pooled}/n)$ | | Mean | Median | Mean = Median | Useful statistical conversions. Cl, confidence interval; IQR, interquartile range; n, sample size; SD, standard deviation; SEM, standard error of mean.