Supplementary Online Content

Feliciano JL, Waldfogel JM, Sharma R, et al. Pharmacologic interventions for breathlessness in patients with advanced cancer: a systematic review and meta-analysis. *JAMA Netw Open*. 2021;4(2):e2037632. doi:10.1001/jamanetworkopen.2020.37632

eAppendix. Methods Details

eTable 1. Definitions of the Grades of Overall Strength of Evidence

eTable 2. Characteristics of Included Studies

eTable 3. Summary of Findings for the Effects of Pharmacological Interventions on Physiologic Outcomes in Patients With Advanced Cancer

eTable 4. List of Studies Reporting Harms and Dropouts in Studies of Pharmacological Interventions for Breathlessness in Patients With Advanced Cancer

eTable 5. Rate of Dropouts Due to Adverse Effects of Pharmacological Interventions for Breathlessness in Patients With Advanced Cancer

eTable 6. Risk of Bias of Randomized Controlled Trials (A) and Observational Studies (B) That Evaluate the Effects of Pharmacologic Interventions

eTable 7. Strength of Evidence of Studies That Evaluate the Effects of Pharmacologic Interventions

eFigure 1. Analytic Framework for Evaluating Interventions for Breathlessness in Patients wWth Advanced Cancer

eFigure 2. Study Search and Preferred Reporting Items for Systematic Reviews and Meta-analyses Flowchart

eFigure 3. Meta-analysis of the Effects of Exercise Capacity Measures in Randomized Controlled Trials Comparing Opioids With Placebo In Patients With Advanced Cancer

eFigure 4. Meta-analysis of the Effects of Placebo vs Opioids on Blood Pressure in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

eFigure 5. Meta-analysis of the Effects of Placebo vs Opioids on Heart Rate in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units (Charles, 2008 et al¹⁵ Saline vs Nebulized Hydromorphone Comparison) **eFigure 6.** Meta-analysis of the Effects of Placebo vs Opioids on Heart Rate in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units (Charles, 2008 et al¹⁵ Saline vs Systemic Hydromorphone Comparison) **eFigure 7.** Meta-analysis of the Effects of Opioids vs Opioids on Heart Rate in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

eFigure 8. Meta-analysis of the Effects of Placebo vs Opioids on Oxygen Saturation in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units (Charles, 2008 et al¹⁵ Saline vs Nebulized Hydromorphone Comparison)

eFigure 9. Meta-analysis of the Effects of Placebo vs Opioids on Oxygen Saturation in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units (Charles, 2008 et al¹⁵ Saline Vs Systemic Hydromorphone Comparison)

eFigure 10. Meta-analysis of the Effects of Opioids vs Opioids on Oxygen Saturation in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

eFigure 11. Meta-analysis of the Effects of Placebo vs Opioids on Respiratory Rates in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units (Charles, 2008 et al¹⁵ Saline vs Nebulized Hydromorphone Comparison)

eFigure 12. Meta-analysis of the Effects of Placebo vs Opioids on Respiratory Rates in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units (Charles, 2008 et al¹⁵ Saline vs Systemic Hydromorphone Comparison)

eFigure 13. Meta-analysis of the Effects of Opioids vs Opioids on Respiratory Rates in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

eFigure 14. Meta-analysis of the Effects of Placebo vs Opioids on Dizziness Outcomes in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

eFigure 15. Meta-analysis of the Effects of Placebo vs Opioids on Drowsiness Outcomes in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

eFigure 16. Meta-analysis of the Effects of Placebo vs Opioids on Fatigue Outcomes in Patients With Advanced Cancer in Inpatient Hospice or Palliative Care Units

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix. Methods details

Statistical heterogeneity

We evaluated statistical heterogeneity among studies using an I^2 statistic. We considered an I^2 value greater than 50% as substantial statistical heterogeneity. When we found substantial heterogeneity, we evaluated whether quantitative synthesis was appropriate or conducted sensitivity analysis when applicable.

<u>Clinically Important Difference</u>

Although a minimally clinically important difference (MCID) in breathlessness intensity has not been formally established, there are data available to help guide this determination. In heart failure, studies have identified a difference on the VAS between 10 and 21.1 mm as clinically significant¹⁻³. Similarly, data for chronic refractory breathlessness and COPD suggest a difference of 10mm on the VAS or 0.8 on the Borg scale as clinically.^{4,5} In a cancer population, data from a study of breathlessness from malignant pleural effusion suggest a difference on the VAS of 19mm is clinically significant and a population of advanced cancer patients admitted to a palliative care unit considered a difference on the NRS of 2.1 to be clinically important.^{6,7}. Given the available data, we considered a difference on the VAS of 10mm or greater as clinically meaningful.

Cross-over Trials

For cross-over trials, we treated data similarly to parallel studies, using the measurement from the intervention periods and the measurements from the control periods Where possible we used a correlation co-efficient to impute a corrected standard of error, as this method may result in slightly wider confidence intervals.⁸

References

- 1. Pang PS, Lane KA, Tavares M, et al. Is there a clinically meaningful difference in patient reported dyspnea in acute heart failure? An analysis from URGENT Dyspnea. *Heart & lung : the journal of critical care.* 2017;46(4):300-307.
- 2. Ander DS, Aisiku IP, Ratcliff JJ, Todd KH, Gotsch K. Measuring the dyspnea of decompensated heart failure with a visual analog scale: how much improvement is meaningful? *Congestive heart failure (Greenwich, Conn).* 2004;10(4):188-191.
- Oxberry SG, Bland JM, Clark AL, Cleland JGF, Johnson MJ. Minimally clinically important difference in chronic breathlessness: Every little helps. *American Heart Journal*. 2012;164(2):229-235.
- 4. Johnson MJ, Bland JM, Oxberry SG, Abernethy AP, Currow DC. Clinically important differences in the intensity of chronic refractory breathlessness. *Journal of Pain and Symptom Management*. 2013;46(6):957-963.
- Oliveira A, Machado A, Marques A. Minimal Important and Detectable Differences of Respiratory Measures in Outpatients with AECOPD(dagger). COPD. 2018 Oct;15(5):479-88. doi: 10.1080/15412555.2018.1537366.
- 6. Mishra EK, Corcoran JP, Hallifax RJ, Stradling J, Maskell NA, Rahman NM. Defining the minimal important difference for the visual analogue scale assessing dyspnea in patients with malignant pleural effusions. *PloS one*. 2015;10(4):e0123798.
- 7. Mercadante S, Adile C, Aielli F, et al. Personalized Goal for Dyspnea and Clinical Response in Advanced Cancer Patients. J Pain Symptom Manage. 2019;57(1):79-85.
- Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Chapter 23: Including variants on randomized trials. Cochrane Handbook for Systematic Reviews of Interventions version 6.1 (updated September 2020). Cochrane, 2020.

Grade	Definition
High	We are very confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has few or no deficiencies. We believe that the findings are stable (i.e., another
	study would not change the conclusions).
Moderate	We are moderately confident that the estimate of effect lies close to the true effect for this outcome. The body of evidence has some deficiencies. We believe that the findings are likely to be stable, but some doubt remains.
Low	We have limited confidence that the estimate of effect lies close to the true effect for this outcome. The body of evidence has major or numerous deficiencies (or both). We believe that additional evidence is needed before concluding either that the findings are stable or that the estimate of effect is close to the true effect.
Insufficient	We have no evidence, we are unable to estimate an effect, or we have no confidence in the estimate of effect for this outcome. No evidence is available, or the body of evidence has unacceptable deficiencies, precluding reaching a conclusion.

eTable 1. Definitions of the grades of overall strength of evidence

eTable 2. Characteristics of included studies

Author, year	Participants,	Cancer type	Setting	Age	Followup			~			Risk of
	n					S		cit			bias
Study design						Jes		ba		0	
						SSI		Ca		gio s	
						Je	≳	ise	Ļ	olo me	
						atl	xie	S	ð	/si co	
						Bre	Any	Т. Ш	A R	Phy out	
<u>Placaba va</u>						-			_		
Anxiolytics											
Hardy 2016 ³¹	73	Cancer (not	Hospital	Median	14 days	X	X				Low
1 lal dy, 2010	10	specified)	Hospice	70	14 duyo	~	~				2011
RCT		opeenieu)	(inpatient)								
Peoples, 2016 ²¹	379	Lung,	Oncology	62.9-64	28 days	Х	Х				Some
		Breast,	clinic								concerns
RCT		Gastrointestinal,									
		Other									
Placebo vs											
Corticosteroids	4.4		0	00	44.1	X			V		
Hul, 2016 ²²	41	NSCLC, small cell	Oncology,	63	14 days	X			X		LOW
RCT		Mesothelioma other									
Placebo vs											
Opioids											
Bruera, 1993 ²⁰	10	Lung (others not	Not reported	NR	60	Х				Х	High
		specified)			minutes						Ū.
RCT: Crossover											
Charles, 2008 ¹⁵	20	Breast, Lung,	Hospice	69	60	Х				Х	High
DOT 0		Mesothelioma,	(home),		minutes						
RCT: Crossover		Prostate, Renal	Hospice								
Hui 201418	20	Breast		55	160	X		x		Y	
1101, 2014.	20	Gastrointestinal	clinic	55	minutes	^		^		^	LOW
RCT		Genitourinary			minuco						
		Gynecologic, Lung,									
		Sarcoma									

Hui, 2016 ¹⁷	24	Breast,	Palliative	52.4	172 minutos	Х	X	Х	Low
RCT		Genitourinary,			minutes				
		Gynecologic, Lung,							
		Hematologic, Other							
Hui, 2017 ¹⁶	20	Breast, GI, GU, Gyn,	Palliative	55	6 minutes	Х	X	X	Low
PCT		Lung, Other	care clinic						
Pinna 2015 ¹⁹	13	Breast Kidney Lung	Palliative	65.2	7 Davs	X	×	X	Some
1 mma, 2010		Stomach	care clinic	00.2	7 Days				concerns
RCT: Crossover									
Opioids vs									
Anxiolytics									
Navigante,	63	Breast, Head and	Oncology	Range	5 Days	Х		Х	Some
201025		neck, Lung, Other	clinic	30-82					concerns
RCT									
Opioids vs									
Anxiolytics vs									
Combination	404	Luce Device		50.0	40.1	X		X	
Navigane, 200620	101	Lung, Breast,	Hospital	50.9-	48 nours	X		X	High
RCT		Sarcomas Unknown		57.0					
		primary, Colorectal.							
		Other							
Opioids vs									
Corticosteroids									
VS Branchadilatora									
Tion 201629	242	Broast Colorostal	Hospital	52.1	60	v		v	Sorious
11a11, 2010	545	Gastric Lung Other		54.2	minutes	^		^	Serious
Retrospective		(not specified)		04.2	minutes				
cohort		(
Opioids vs									
Opioids									
Aabom, 2019 ³²	12	Lung and non-lung	Palliative	74.8	20	X			Low
			care clinic		minutes				
Allard 100028	33	Breast Lung/Plaura	Palliative	63.3	240	v		Y	Some
Allalu, 1999	55	Other (not specified)	care clinic	00.0	minutes			^	concerns
	1								5011001110

RCT Bruera, 2005 ²⁷ RCT: Crossover	12	Lung, Gastrointestinal, Other	Not reported	Median 58	2 days	x		High
Gamborg, 2013 ²⁴ RCT	20	NR	Hospice (inpatient)	NR	1 hour	X	X	High
Hui, 2019 ³⁰ RCT	30	Breast, Gastrointestinal, Genitourinary, Gynecological, Head and neck, Respiratory, Other (not specified)	Oncology, Palliative care clinic	52	NR	X	X	Low
Simon, 2016 ²³ RCT: Crossover	10	Lung, Hematology, Breast, Ovary, Esophagus, Melanoma	Inpatient	58	60 minutes	X	X	High

Outcome	Comparison	Number of	Findings	Conclusion		
		Studies				
		Reporting				
		(N)				
Blood press	sure					
	Opioid vs. placebo	2 RCTs	Pooled analysis:	There was no		
			• Diastolic, SMD: 0.243; 95%	difference between		
	Fentanyl vs. placebo	(N=44)	CI, -0.23 to 1.41	opioids and		
	(2)		 Systolic, SMD: 0.478; 95% 	placebo in the		
			CI, -0.13 to 1.09	effect on blood		
	Onioid ve onioid		Diastolia difference between	Thoro was no		
		11013	beginning and end of walk.	 Inere was no significant change 		
		(N=30)	calculated SMD: 0.14; 95%	in blood pressure		
	High dose vs. low dose	· · ·	CI, -0.54 to 0.81	in patients in either		
	fentanyl		 Systolic, difference between 	arm		
			beginning and end of walk,			
			calculated SMD: 0.17 ; 95%			
Heart rate	1	1	01, -0.01 10 0.04			
Trout rate	Opioids vs. placebo	3 RCTs	Pooled analysis with Charles	There was no		
			2008 et al. ¹² saline vs.	significant		
	Fentanyl vs. placebo	(N=64)	nebulized hydromorphone	difference between		
	(2)		comparison:	opioids and		
	Hydromorphone		• SMD: -0.14 (95% CI: -0.57	placebo in the		
	(nepulized) vs.		to 0.29),	effect on heart		
	or SC) vs. placebo		• I-squared=0.0%, p=0.66	Tale.		
	(nebulized) (1)		Pooled analysis with Charles.			
	,,,,		2008 et al. ¹² saline vs. systemic			
			hydromorphone comparison:			
			• SMD: -0.03 (95% CI: -0.46			
			to 0.4)			
			• I-squared=0.0%, p=0.46			
	Onioid vs. onioid	3 RCTs	Pooled analysis:	 There was no 		
		U NOTO	• SMD: 0.11: 95% Cl0.3 to	significant		
	sublingual vs.	(N=75)	0.52	difference between		
	subcutaneous		 I-squared=0.0%, p=0.79 	opioids in the effect		
	morphine (1)			on heart rate		
	High dose vs. low dose					
	Hydromorphone					
	(nebulized) vs.					
	, hydromorphone (Oral					
	or SC) vs. placebo					
	(nebulized) (1)					
Oxygen sat	Uration	6 PCTo	Pooled analysis with Charles	a Thorowson		
	Opiola vs. placeno	URGIS	2008 et al ¹² saline vs	 There was no difference 		
	Fentanyl vs. placebo	(N=107)	nebulized hydromorphone	between opioids		
	(4)	l`´´	comparison:	and placebo in		
	Hydromorphone		• SMD: -0.07 (95% CI: -0.40	the effect on		
	(nebulized) vs.		to 0.25),	oxygen		
	nyaromorphone (Oral		• I-squared=0.0%, p=0.65	saturation.		
	(nebulized) (1)		Pooled analysis with Charles			
	Morphine vs. placebo		$2008 \text{ et al.}^1 \text{ saline vs. systemic}$			

eTable 3. Summary of findings for the effects of pharmacological interventions on physiologic outcomes in patients with advanced cancer

	(1)		hydromorphone comparison: • SMD: -0.13 (95% CI: -0.45 to 0.19) • I-squared=0.0%, p=0.63	
	Opioid vs. opioid Fentanyl vs. morphine (1) High dose vs. low dose fentanyl (1) Hydromorphone (nebulized) vs. hydromorphone (Oral or SC) vs. placebo (nebulized) (1)	3 RCTs (N=65)	 Pooled analysis: SMD: -0.03; 95% CI, -0.44 to 0.37 I-squared=0.0%, p=0.60 	There was no difference in the effect on oxygen saturation between opioids.
	Opioid vs. anxiolytics Oral morphine vs. oral midazolam (1) Subcutaneous morphine vs. subcutaneous midazolam vs. combination (1)	2 RCTs (N=164)	90 minutes (calculated SMD: 0.001, 95% CI, -0.49 to 0.5) or Day 5 (calculated SMD: -0.003, 95% CI, -0.5 to 0.49) Second study reported no significant differences between groups. Unable to calculate SMD, no variability reported	There was no difference in the effect on oxygen saturation for opioids compared to anxiolytics
Respiratory	rate			
	Opioid vs. placebo Fentanyl vs. placebo (3) Hydromorphone (nebulized) vs. hydromorphone (Oral or subcutaneous) vs. placebo (nebulized) (1) Morphine vs. placebo (1)	5 RCTs (N=94)	 Pooled analysis with Charles, 2008 et al.¹² saline vs. nebulized hydromorphone comparison: SMD: 0.11 (95% CI: -0.25 to 0.47), I-squared=0.0%, p=0.44 Pooled analysis with Charles, 2008 et al.¹² saline vs. systemic hydromorphone comparison: SMD: 0.05 (95% CI: -0.31 to 0.41) I-squared=1.0%, p=0.40 	There was no difference between opioids and placebo in the effect on respiratory rate.
	Opioid vs. opioid Low dose vs. high dose opioid (drug unspecified) (1) Morphine vs. fentanyl (1) High dose vs. low dose fentanyl (1) Hydromorphone (nebulized) vs. hydromorphone (Oral or SC) vs. placebo (nebulized) (1)	4 RCTs (N=98)	 Pooled analysis: SMD: -0.23 (95% CI, -0.63 to 0.18) I-squared=0.0%, p=0.91 	There was no difference between opioids in the effect on respiratory rate

SMD: standardized mean difference, RR: relative risk, MBGD: mean between group difference; vs= versus

eTable 4. List of studies reporting harms and dropouts in studies of <u>pharmacological interventions</u> for breathlessness in patients with advanced cancer

Author, year	N	Central nervous system	Gastro- intestinal	Pruritus	Urinary retention	Dry mouth	Dropouts
		Opioi	ds vs. Place	bo			
Hui, 2017 ¹⁶	20	Х	X	Х			Х
Hui, 2016 ¹⁷	24	Х	х				
Hui, 2014 ¹⁸	20	Х	X	Х			
Pinna, 2015 ¹⁹	13		х				
Charles, 2008 ¹⁵	20						Х
		Anxioly	tics vs. Plac	ebo			
Peoples, 2016 ²¹	379						Х
Hardy, 2016 ³¹	73	Х					
		Placebo vs. Cor	ticosteroids	vs. Placeb	0		
Hui, 2016 ²²	41	Х	X				Х
	1	Opioi	ds vs. Opioi	ds		1	1
Kawabata, 2013 ³³ [retro]	95	Х	х	Х	Х		
Bruera, 2005 ²⁷	12	Х	х				
Hui, 2019 ³⁰	30	Х	х	Х			
		Opioids	s vs. Anxioly	rtics			
Navigante, 2010 ²⁵	63	Х	Х	Х		Х	Х
		Opioids vs. Anx	iolytics vs. (Combinatio	n	1	
Navigane, 2006 ²⁶	101	X	X			X	
	Ор	ioids vs. Corticos	steroids vs.	Bronchodil	ators	•	
Tian, 2016 ²⁹	343	Х	Х			Х	

N=sample size

eTable 5. Rate of dropouts due to adverse effects of pharmacological interventions for
breathlessness in patients with advanced cancer

Drug Class	Intervention	Dropouts due to adverse effects, n (%)
Opioids	Fentanyl ¹⁶	1 (9.1%)
	Hydromorphone ¹⁵	4 (16%)
	Morphine ²⁵	1 (3.2%)
Anxiolytics	Midazolam ²⁵	1 (3.2%)
	Buspirone ²¹	10 (4.7%)
Corticosteroids	Dexamethasone ²²	1 (5.6%) – 1 (7.1%)

eTable 6a. Risk of bias of randomized controlled trials that evaluate the effects of pharmacologic interventions

Autho r, year	Domain 1: Randomizati on process	Domain 2: Deviations intended interventions (effect of assignment to intervention)	Domain 2: Deviations intended interventions (effect of adhering to intervention)	Domain 3: Missing outcome data	Domain 4: Measurement of the outcome	Domain 5: Selection of the reported result	Final Asses sment
Aabo m, 2019 ³²	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Allard, 1999 ²⁸	Some concerns	Low risk	NA	Low risk	Low risk	Low risk	Some concer ns
Bruera , 1993 ²⁰	Some concerns	Low risk	NA	Low risk	High risk	Low risk	High risk
Bruera , 2005 ²⁷	Some concerns	Low risk	NA	Some concerns	Low risk	Some concerns	High risk
Charle s, 2008 ¹⁵	Some concerns	Low risk	NA	Low risk	Low risk	Some concerns	High risk
Gamb org, 2013 ²⁴	Some concerns	Some concerns	NA	Low risk	Some concerns	Low risk	High risk
Hardy, 2016 ³¹	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Hui, 2014 ¹⁸	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Hui, 2016 ¹⁷	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Hui, 2016 ²²	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Hui, 2017 ¹⁶	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Hui, 2019 ³⁰	Low risk	Low risk	NA	Low risk	Low risk	Low risk	Low risk
Navig ante, 2006 ²⁶	Low risk	Some concerns	NA	Low risk	Some concerns	Some concerns	High risk
Navig ante, 2010 ²⁵	Low risk	Some concerns	NA	Low risk	Some concerns	Some concerns	Some concer ns

Peopl	Low risk	Low risk	NA	Some	Low risk	Low risk	Some
es,				concerns			concer
2016 ²¹							ns
Pinna,	Some	Low risk	NA	Low risk	Low risk	Low risk	Some
2015 ¹⁹	concerns						concer
							ns
Simon	Some	Low risk	NA	Some	High risk	High risk	High
,	concerns			concerns			risk
2016 ²³							

Author, year	Domain 1: Confounding	Domain 2: Patient Selection	Domain 3: Classifying Interventions	Domain 4: Deviations from intended interventions	Domain 5: Missing data	Domain 6: Measurement of outcomes	Domain 7: Selection of reported results	Overall Assessment
Kawabata, 2013 ³³	Critical	Serious	Low	No information	Moderate	Moderate	Serious	Critical
Tian, 2016 ²⁹	Serious	Moderate	Low	Moderate	Moderate	Moderate	Serious	Serious

eTable 6b. Risk of bias of observational studies that evaluate the effects of pharmacologic interventions

Key Outcome	Intervention	Number of studies (participants)	Study limitations	Directness	Consistency	Precision	Reporting bias	Strength of evidence
Breathlessness	Opioids vs Placebo	6 RCT (107 participants)	Low	Direct	Consistent	Precise	Undetected	Moderate
Breathlessness	Anxiolytics vs Placebo	2 RCT (452 participants)	Medium	Direct	Consistent	Imprecise	Undetected	Low
Breathlessness	Corticosteroids vs Placebo	1 RCT (41 participants)	Low	Direct	Unknown	Imprecise	Suspected	Insufficient
Breathlessness	Opioids vs Opioids	7 RCT (142 participants)	High	Direct	Consistent	Imprecise	Suspected	Low
Breathlessness	Opioids vs Anxiolytics	2 RCT (164 participants)	Medium	Direct	Inconsistent	Imprecise	Suspected	Low
Breathlessness	Opioids vs Corticosteroids vs Bronchodilators	1 retrospective cohort (343 participants)	High	Direct	Unknown	Imprecise	Suspected	Insufficient
Anxiety	Anxiolytics vs Placebo	2 RCT (452 participants)	Medium	Direct	Consistent	Precise	Undetected	Low
Health-related quality of life	Corticosteroids vs Placebo	1 RCT (41 participants)	Low	Direct	Unknown	Imprecise	Suspected	Insufficient
Exercise capacity	Opioids vs Placebo	4 RCT (77 participants)	Low	Direct	Consistent	Precise	Undetected	Moderate

eTable 7. Strength of evidence of studies that evaluate the effects of pharmacologic interventions

RCT=randomized clinical trial

eFigure 1. Analytic Framework for Evaluating Interventions for Breathlessness in Patients with Advanced Cancer

eFigure 2. Study Search and Preferred Reporting Items for Systematic Reviews and Metaanalyses Flowchart

* Total exceeds the number of citations in the exclusion box, because citations could be excluded for more than one reason

eFigure 3. Meta-analysis of the effects on exercise capacity measures in randomized controlled trials comparing opioids with placebo in patients with advanced cancer

Blue dot size=corresponds to study size, Blue diamond=the result when all the individual studies are combined and averaged Length of the bar=corresponds to range of confidence interval.

eFigure 4. Meta-analysis of the effects of placebo vs opioids on blood pressure in patients with advanced cancer in inpatient hospice or palliative care units

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 5. Meta-analysis of the effects of placebo vs opioids on heart rate in patients with advanced cancer in inpatient hospice or palliative care units (Charles, 2008 et al.¹⁵ saline vs nebulized hydromorphone comparison)

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 6. Meta-analysis of the effects of placebo vs opioids on heart rate in patients with advanced cancer in inpatient hospice or palliative care units (Charles, 2008 et al.¹⁵ saline vs systemic hydromorphone comparison)

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 7. Meta-analysis of the effects of opioids vs opioids on heart rate in patients with advanced cancer in inpatient hospice or palliative care units

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 8. Meta-analysis of the effects of placebo vs opioids on oxygen saturation in patients with advanced cancer in inpatient hospice or palliative care units (Charles, 2008 et al.¹⁵ saline vs nebulized hydromorphone comparison)

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 9. Meta-analysis of the effects of placebo vs opioids on oxygen saturation in patients with advanced cancer in inpatient hospice or palliative care units (Charles, 2008 et al.¹⁵ saline vs systemic hydromorphone comparison)

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 10. Meta-analysis of the effects of opioids vs opioids on oxygen saturation in patients with advanced cancer in inpatient hospice or palliative care units

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 11. Meta-analysis of the effects of placebo vs opioids on respiratory rates in patients with advanced cancer in inpatient hospice or palliative care units (Charles, 2008 et al.¹⁵ saline vs nebulized hydromorphone comparison)

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 12. Meta-analysis of the effects of placebo vs opioids on respiratory rates in patients with advanced cancer in inpatient hospice or palliative care units (Charles, 2008 et al.¹⁵ saline vs systemic hydromorphone comparison)

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

eFigure 13. Meta-analysis of the effects of opioids vs opioids on respiratory rates in patients with advanced cancer in inpatient hospice or palliative care units

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference

Meta-analysis of harms of pharmacological interventions

eFigure 14. Meta-analysis of the effects of placebo vs opioids on dizziness outcomes in patients with advanced cancer in inpatient hospice or palliative care units

Relative Risk and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; NRS=Numerical Rating Scale; RR=relative risk

eFigure 15. Meta-analysis of the effects of placebo vs opioids on drowsiness outcomes in patients with advanced cancer in inpatient hospice or palliative care units

Relative Risk and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; NRS=Numerical Rating Scale; RR=relative risk

eFigure 16. Meta-analysis of the effects of placebo vs opioids on fatigue outcomes in patients with advanced cancer in inpatient hospice or palliative care units

SMD and 95% Confidence Intervals

CI=confidence interval; N=sample size; NR=not reported; SMD=standardized mean difference