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Supplementary Methods 

Removing Batch-effects in Nasal Samples 

Because the study spanned three winter seasons (October 2012 through April 2015) samples were processed 

in six library batches. This resulted in significant batch effects in total number of mapped reads (Supplementary 

Figure E1). In addition, analysis of variance (ANOVA) F-test with false discovery rate (FDR) controlled at 0.05 

level, found 3,984 genes (28.8% of the reported transcriptome) had significantly different mean expressions 

across batches. Based on these observations, we applied ComBat to remove batch effects. After applying 

ComBat, none of the genes had significant batch effects based on ANOVA F-test, and pairwise correlation 

analysis showed that the average Pearson correlation between the original and ComBat processed data was 

0.987. This suggests that ComBat only removed batch effects with minimum impact on the remaining 

information. 

 

 

Supplementary Figure E1. Relationship between the total number of mapped reads, enrollment years, and 
batches in library preparation.  

 

Model Developing and Cross-validation 

Identification of supplementary genes.  

Both NGSS1 and NGSS2 were developed from top correlates (genes with significant marginal correlation with 

the GRSS) and some supplementary genes that contain information complementary to those top correlates. 

Specifically, we first performed principal component analyses (PCA) based on the decomposition of the 

correlation matrix of the top correlates (66 genes for NGSS1, and 44 genes for NGSS2), and used the leading 

principal component (PC1) to represent the collective information of those top correlates. Next, we conducted 

regression analyses with gene expressions as the response variables and the PC1 from the PCA as the 

covariate (𝑋𝑖𝑗 = 𝛽𝑖0 + PC1 ⋅ 𝛽𝑖1 + 𝜖𝑖𝑗) for all genes except the 66 top correlates and recorded the residuals as 

𝑅𝑖 = 𝑋𝑖𝑗 − �̂�𝑖0 − 𝑃𝐶1 ⋅ �̂�𝑖1. Here 𝑋𝑖𝑗 was the expression of the 𝑖th gene sampled from the 𝑗th subject, and 𝑅𝑖 

represented the information in 𝑋𝑖𝑗 that was uncorrelated with PC1. Finally, we computed 𝜌𝑖, the Pearson 

correlation between 𝑅𝑖 and the GRSS, and select those genes with the largest |𝜌𝑖| as the supplementary 

genes (10 for NGSS1 and 5 for NGSS2). 

 

Model selection strategies.  
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Two model selection strategies were used for developing predictive models based on multivariate regression 

analyses in which the GRSS was the response variable and genes were predictors. Visit age and days since 

disease onset were also included as candidate features. The first and primary strategy was a combination of 

stepwise model selection and an exhaustive search of a subset of all combinations of covariates. The second 

strategy is based on the elastic-net regularized regression (1, 2) and parameter refinement (3-5) based on the 

ordinary least-squares (OLS) criterion. 

 

Strategy 1. We applied bi-directional stepwise model selection based on Akaike Information Criterion (AIC) to 

select an initial model. To further reduce model complexity, we selected a subset of least informative genes, 

defined as those with the smallest absolute values of the regression t-statistics in the initial model, and 

exhaustively searched the best sub-model of the initial model that do not include some of these 10 least 

informative genes (a total of 1023 combinations). Here the “best” sub-model was defined as the one with the 

smallest cross-validated residual sums of squares (CVRSS). 

 

Strategy 2. As an alternative, we tried another model selection procedure based on regularized regression. 

Specifically, we first applied the elastic-net regularized regression, which uses both 𝐿1 (LASSO) and 𝐿2 (ridge) 

regression to produce a sparse regression model. The R package glmnet (2, 6) was used for this purpose. 

Regularization parameters were selected by an initial ten-fold cross-validation. After we obtain a sparse 

regression model, we re-estimate linear coefficients by OLS-based procedures to improve the accuracy of 

modeling fitting. The parameter refinement strategy can improve the prediction accuracy and was widely used 

in high-throughput data analysis (3-5). 

 

Based on the empirical evidences in our study, we found that that Strategy 1 worked better than Strategy 2 for 

both NGSS1 and NGSS2, so we decided to use Strategy 1 for model selection and reported results based on 

Strategy 1 in the main text. A detailed comparison between these two strategies is provided in the following 

summary table. 

 

Supplementary Table E1. Comparing the performance of two model selection strategies. For both NGSS1 

and NGSS2, Strategy 1 worked better than Strategy 2 therefore it was selected in our study (see Table 2 in the 

main text). 

 

number of 
genes 

selected 
Naïve RSS 

Naïve 
Correlation 

Naïve 
misclassified 

subjects 
(out of 106) 

CV RSS 
CV 

Correlation 

CV 
misclassified 

subjects 
(out of 106) 

NGSS1, 
Strategy1 41 genes 0.884 0.935 9 2.681 0.813 11 
NGSS1, 
Strategy2 20 genes 1.725 0.869 17 2.617 0.800 23 
NGSS2, 
Strategy1 13 genes 2.549 0.800 16 3.215 0.741 17 
NGSS2, 
Strategy2 20 genes 2.606 0.795 16 3.816 0.688 20 

 

In either case, the final predictor is a linear combination of gene expressions, which can be expressed as 

follows 

𝑁𝐺𝑆𝑆𝑗 = �̂�0 +∑𝑋𝑖𝑗�̂�𝑖

𝑝

𝑖

, 

where  �̂�0 stands for the intercept, 𝑋𝑖𝑗 is the expression of the 𝑖th gene sampled from the 𝑗th subject, and �̂�𝑖 is 

the linear coefficient corresponding to the 𝑖th gene.  

 

These estimates are summarized in Supplementary Tables E1 and E2. 
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Cross-validation. For both strategies, we evaluate the performance of the fitted models by leave-one-out cross-

validations. The residual sum of squares (RSS), Pearson correlation between the actual and predicted GRSS, 

and prediction accuracy based on the 3.5 cutoff for mild versus severe symptoms, are recorded in these CV 

studies. 

 

Supplementary Table E2. List of genes used in NGSS1 (Model 2) and the corresponding linear 

coefficients. Source: “Sig.” one of the original 66 significant genes; “Supp.”: a supplemental gene. 

Gene symbol 

Estimated linear 

coefficient ( ̂ ) 
Marginal 
p-value Source 

Intercept (�̂�0) 0.703269912 6.85E-01 - 

ST3GAL1 0.059521015 1.21E-03 Sig. 

VIM 0.003782824 1.41E-01 Sig. 

VCAN -0.010671636 3.60E-02 Sig. 

CXCL2 0.012153063 2.36E-02 Sig. 

PTPRC -0.009655874 1.31E-02 Supp. 

FKBP1A -0.043599137 1.05E-05 Sig. 

pk 0.122119918 8.70E-06 Sig. 

CCDC80 -0.007741724 2.38E-02 Sig. 

HMOX1 -0.02629094 8.67E-02 Sig. 

NKG7 -0.001696102 5.20E-01 Sig. 

LPXN 0.018386158 2.95E-01 Sig. 

PHACTR2 0.069346751 7.53E-03 Sig. 

TIA1 -0.033380848 2.83E-02 Sig. 

ATP10B 0.027307907 1.97E-01 Sig. 

TNFSF10 -0.0018723 2.96E-02 Sig. 

INHBA -0.022899548 3.61E-02 Sig. 

MMP19 0.021311619 1.42E-01 Sig. 

SMUG1 -0.012079396 2.43E-01 Supp. 

MPP1 -0.010764038 2.10E-01 Sig. 

RPS15A 0.004696851 8.16E-05 Supp. 

CTSL -0.007780092 7.84E-05 Sig. 

HAVCR2 0.073470635 6.43E-06 Sig. 

GNS 0.105879463 1.13E-04 Sig. 

IL6 0.012406829 2.53E-02 Sig. 

SLC39A8 -0.034782958 8.17E-02 Sig. 

PTPN7 -0.036920209 1.85E-02 Sig. 

RABGAP1L -0.007262571 2.92E-01 Sig. 

SLC7A7 0.02358896 1.27E-01 Sig. 

ITGA5 -0.033753825 1.75E-02 Sig. 

PPM1M 0.053787695 9.91E-03 Sig. 

ARFIP1 0.03076839 1.21E-02 Sig. 

MFSD4 -0.007710719 1.34E-01 Sig. 

CD163 0.007982385 6.33E-03 Sig. 

SHMT2 0.017423769 1.61E-01 Supp. 

SERHL2 0.04069629 3.42E-05 Supp. 

MAFB 0.080380399 1.53E-02 Sig. 
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C10orf128 0.037369718 5.12E-02 Sig. 

FTLP3 0.012010208 5.11E-02 Sig. 

RP11-206L10.8 -0.048018562 8.85E-04 Sig. 

N4BP2L2 -0.011088274 1.28E-02 Sig. 

VCAN-AS1 -0.014399275 1.31E-01 Sig. 
 

 

Supplementary Table E3. List of genes used in NGSS2 (Model 4) and the corresponding linear 

coefficients. Source: “Sig.”: one of the 44 original significant genes; “Supp.”: a supplemental gene. 

Gene symbol 

Estimated linear 

coefficient ( ̂ ) 
Marginal 
p-value Source 

Intercept (�̂�0) 5.47173684 9.43E-05 - 

EXOSC10 -0.05176355 7.20E-03 Sig. 

PPIC -0.05462252 1.94E-05 Sig. 

CCNI 0.01055988 7.07E-06 Sig. 

BCKDK 0.06716161 5.04E-04 Sig. 

MAP3K13 -0.01209091 1.26E-02 Sig. 

MT1G 0.00242952 5.62E-02 Sig. 

APOC1 -0.00404016 4.64E-02 Sig. 

QTRTD1 -0.04002261 7.18E-03 Sig. 

DDRGK1 -0.02822089 2.94E-02 Sig. 

SEPHS2 0.07799082 2.65E-03 Sig. 

PLK2 0.03691206 2.02E-02 Sig. 

CLDN10 0.01013402 4.33E-04 Supp. 

PXN -0.07814369 1.29E-04 Supp. 
 

An Alternative Method Based on CrossNorm 

It is known that the choice of normalization procedures can have substantial impact on downstream 

machine learning algorithms. In addition to using the standard FPKM normalization procedure, we also tried 

associating GRSS with expression profiles processed by CrossNorm, a normalization procedure designed for 

processing gene expression data with skewed patterns, and is known to improve the prediction accuracy of 

downstream machine learning models.(7-10) Below we describe technical details we used for this comparison. 

1. The same ComBat procedures used for the FPKM normalized data were applied to CrossNorm 

processed data. 

2. To ensure that transcriptome profiles processed by both FPKM and CrossNorm are directly 

comparable, the same set of 6,844 genes (filtered by FPKM) were used for both data. 

3. For CrossNorm processed data, the initial Pearson correlation test identified 68 genes with significant 

association with GRSS at FDR<0.05 level. The majority of them (39) were also detected by the FPKM 

normalized data, which showed that the two normalization methods are largely comparable. 

4. Using these 68 genes plus ten supplementary genes identified by PCA as candidate genomic features, 

we developed Model 2b with the two model selection strategies we used for the FPKM data described 

earlier. Strategy 1 (bi-directional stepwise model selection based on AIC) selected 31 genes and visit 

age as informative features. Among them, ten genes were also used in Model 2 build with the FPKM 

data.  

5. Using LOOCV (leave one out cross-validation), we compared Model 2b with Model 2 in terms of 

CVRSS, correlation, and misclassified subjects. The results are provided in Supplementary Table E4. 
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Supplementary Table E4. The performance of Model 2b with two model selection strategies. Just like we 

have seen for Model 2 (NGSS1) trained with FPKM normalized data, Strategy 1 worked better than Strategy 2. 

Based on this table, we find that Model 2b’s performance is slightly worse than that of Model 2 (see 

Supplementary Table E1) in most comparisons, with the only exception of cross-validated RSS. For 

convenience, the corresponding results for Model 1 (NGSS1) are provided in this table as well. 

 

number of 
genes 

selected 
Naïve RSS 

Naïve 
Correlation 

Naïve 
misclassified 

subjects 
(out of 106) 

CV RSS 
CV 

Correlation 

CV 
misclassified 

subjects 
(out of 106) 

Model 2b, 
Strategy 1 

31 genes and 
visit age 1.259 0.907 16 2.679 0.804 23 

Model 2b, 
Strategy 2 15 genes 2.379 0.815 22 3.331 0.734 28 
NGSS1, 
Strategy1 41 genes 0.884 0.935 9 2.681 0.813 11 
NGSS1, 
Strategy2 20 genes 1.725 0.869 17 2.617 0.800 23 

 

From this table, we find that although Model 2b (with Strategy 1) is slightly more accurate than Model 2 in 

terms of CVRSS (2.679 versus 2.681), it misclassified significantly more subjects than Model 2 in LOOCV.  
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