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SUPPLEMENTARY METHODS 

Datasets and samples 

A systematic search was performed in January 2018 to identify publicly available 

datasets that included gene expression profiles of malignant pleural mesothelioma 

(MPM) tumor samples. To perform this search, several platforms were used: Gene 

expression omnibus (GEO)[1] using the query “(("pleura"[MeSH Terms] OR pleural[All 

Fields]) AND ("mesothelioma"[MeSH Terms] OR mesothelioma[All Fields])) AND 

"Homo sapiens"[porgn] AND ("gse"[Filter] AND "Expression profiling by 

array"[Filter]))”; and ArrayExpress[2] using the query “pleural mesothelioma” and 

filtered by organism “Homo sapiens”, experiment type “rna assay”, and enabling the 

filter AE only to show results from within ArrayExpress. Moreover, we also used 

PubMed to search for datasets related with known biomedical literature studies.  

To increase the accuracy and reproducibility of the analyses performed along this 

study, we included datasets that had at least 30 samples, and covered most of the 

transcriptome. As a result, eight datasets remained, yet one of them[3] was discarded 

to avoid potential sample redundancies due to same authorship and nearby 

publication period, we kept the dataset with higher sample size. Therefore, seven gene 

expression datasets were included in this study,[4–10] constituting a total of 516 MPM 

tumor samples.  

 

Data downloading and processing 

Data downloading 

RNA-seq and whole exome sequencing raw data from Bueno et al. dataset was 

downloaded from the European Genome-Phenome Archive[11] upon request to the 

data access committee. Data from Hmeljak et al. dataset was downloaded from GDC 

data portal[12] for somatic variants (MAF file with MuTect2 algorithm from data release 

10.0). Copy number alterations was downloaded from cBioPortal/GDAC Firehose 

(level 3 data; GISTIC2 lesions). Finally, gene expression quantification was 

downloaded from TCGA2BED FTP repository[13] in transcripts per million (TPM).  

Gene expression profiles from Lopez-Rios et al. dataset were downloaded from the 

link supplied in supplementary materials and those of the remaining four datasets 

(Suraokar et al., De Reyniès et al., Bott et al., and Gordon et al.) were downloaded 

from GEO and ArrayExpress repositories. When available, raw data was prioritized to 

process all samples homogenously. 

 

RNA-seq data processing and quantification 

To obtain gene expression profiles from Bueno et al. dataset, raw reads were 

processed using the pipeline described hereafter. First of all, multiple quality control 
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checks on raw sequenced data were performed to check any potential issues using 

FastQC version 0.11.4 (Simon Andrews, 2010). Adapter removal and trimming of low-

quality quality reads (Q<25) was then performed using Trimmomatic version 0.32.[14] 

Furthermore, a custom Python script (run with Python version 2.7.13) was used to 

remove reads with undetermined bases. Alignment of processed reads was performed 

using STAR version 2.5.3a[15] using GENCODE release 26 (GRCh38.p10)[16] as the 

reference genome. Quantification of aligned reads to TPM was done with RSEM 

version 1.3.0.[17] 

 

Expression array processing 

When raw expression data from Affymetrix platforms was available, datasets were 

processed using robust multiarray average algorithm[18] implemented in the affy 

package version 1.56[19] available through the Bioconductor software project.[20] 

Probe-set to gene mapping was done using BioMart web services via biomaRt R 

package version 2.34,[21] selecting the most expressed probe as representative of 

gene expression when multiple mapping probes occurred to avoid duplicated genes. 

 

Somatic variant calling 

In order to have a homogenous set of somatic variants between Bueno et al. and 

Hmeljak et al. study, Bueno et al. reads were reprocessed from raw sequencing data. 

Like for RNA-seq data, low-quality (Q>25) reads filtering, adapter trimming, and 

malformed reads removal was performed. Then, following Broad Institute’s best 

practices,[22,23] variant discovery analysis was done using Genome Analysis Toolkit 

(GATK) version 3.7-0.[24] Processed reads were aligned using the reference genome 

from NCBI (GRCh38) and BWA-MEM algorithm from Burrows-Wheeler Alignment tool 

version 0.7.15.[25] SAMtools version 1.3[26] was used to convert file from SAM to 

BAM format and the set of command line tools Picard release 2.9.2 

(http://broadinstitute.github.io/picard) were used to sort, index, and mark duplicate 

reads. In order to detect and avoid systematic errors in base quality scores, a base 

quality score recalibration was performed using GATK. Then, using the MuTect2 tool 

from GATK, somatic variants were called via local re-assembly of haplotypes.[27] In 

more detail, StrandOddsRatio, DepthPerAlleleBySample, 

BaseQualitySumPerAlleleBySample, TandemRepeatAnnotator, and 

OxoGReadCounts annotations were added to the MuTect2 results and were used for 

variant filtering in a subsequent step.  

To get a set of high confidence somatic variants and reduce false positive calls due to 

technical artefacts, a set of filters were applied as described hereunder. Regarding 

allele frequency, only somatic variants having 0% in normal samples and more than 

5% in tumor samples were kept. Moreover, the variants must be supported by at least 

10 reads in either normal and tumor samples and at least 5 reads with the alternative 
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allele in tumor samples. SQSS quality score is the sum of base quality scores for each 

allele divided by its allele depth, and we required score of at least 25 in the alternative 

allele in tumor samples to consider the variant. A filter to detect strand bias was also 

set using the symmetric odds ratio test implemented in MuTect2, and variants with a 

score greater than 3 in the test were discarded. Finally, variants with oxidative DNA 

damage during sample preparation were discarded, following authors’ 

recommendations.[28] The final set of variants were functionally annotated with the 

web server tool wANNOVAR.[29] 

 

Genomic analyses 

Mutational signatures 

Mutational signatures are patterns in the occurrence of somatic single-nucleotide 

variants that can reflect underlying mutational processes. The R package 

deconstructSigs (v.1.8.0)[30] was used to infer the mutational signatures from exonic 

single-nucleotide variants data in Bueno et al. and Hmeljak et al. datasets. 

 

Neoepitope prediction 

Four-digit HLA types were determined for each sample with raw exome sequencing 

data available, using OptiType version 1.3.1.[31] Variants from genes with low 

expression levels (i.e., log2(TPM) < 4) were excluded from the input VCF file. Mutant 

peptide sequences of 15 amino acids were obtained using Ensembl protein sequence 

file from release 93 (GRCh38). NetMHCcons[32] was used with default parameters to 

assess binding affinity of mutant peptides according to HLA-types.  

 

Methylation data 

β values from Illumina’s Infinium HumanMethylation450K BeadChip were downloaded 

from GDC Data Portal.[12] Probes were summarized to gene level using the median 

beta value and according to probe location surrounding transcription start sites up to 

200 bp upstream.[33] Analysis of variance was performed for each gene adjusting for 

sex, age, stage, and histology covariates. FDR was applied to correct for multiple 

testing. 

 

All downstream statistical analyses were done with the free software environment R 

version 3.5.0.[34]  
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