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S1. From multi-frequency impedance signals to cell dielectric parameters. 

Impedance cytometry measurements typically involve cells suspended in a conductive medium. When 

measurements at multiple frequencies are performed, impedance spectra are obtained. These spectra critically 

depend on cell dielectric properties, and thus could be used to extract the latter from the former. To this aim, 

Maxwell’s mixture theory (MMT) in conjunction with shell-models is typically used, by fitting simulated impedance 

spectra to measured ones (e.g. refs.1,2). However, measured impedance spectra depend not only on cell dielectric 

properties, but also on details of the measurement system, thus making the extraction process somewhat involved, 

as detailed below. 

Using the typical differential measurement scheme (see Scheme 2A of the main text), the peak value of the measured 

signal 𝑆 is given by the peak differential current 𝐼𝑑𝑖𝑓𝑓  multiplied by the transfer function of the acquisition system 

𝐻(𝜔): 

𝑆 = 𝐻(𝜔)𝐼𝑑𝑖𝑓𝑓   (1) 

where 𝜔 is the angular frequency. In turn, 𝐼𝑑𝑖𝑓𝑓  is given by: 

𝐼𝑑𝑖𝑓𝑓 =
𝑉𝑎𝑝𝑝𝑙

2𝑍𝑑𝑙+𝑍𝑚𝑒𝑑
−

𝑉𝑎𝑝𝑝𝑙

2𝑍𝑑𝑙+𝑍𝑚𝑖𝑥
≅ 𝑉𝑎𝑝𝑝𝑙

(𝑍𝑚𝑖𝑥−𝑍𝑚𝑒𝑑)

(2𝑍𝑑𝑙+𝑍𝑚𝑒𝑑)2 (2) 

where 𝑉𝑎𝑝𝑝𝑙 is the applied voltage, 𝑍𝑑𝑙 is the impedance associated with the electrode double layer capacitance, 

𝑍𝑚𝑒𝑑  and 𝑍𝑚𝑖𝑥  denote the impedances associated with medium‐filled channel and channel with a suspended cell, 
respectively, which can be written as: 

𝑍𝑚𝑖𝑥 =
1

𝑗 𝜔 �̃�𝑚𝑖𝑥 𝐺
   ,           𝑍𝑚𝑒𝑑 =

1

𝑗 𝜔 �̃�𝑚𝑒𝑑 𝐺
  (3) 

Here 𝑗2 = −1, 𝐺 is the geometric constant of the system, and  𝜀�̃�𝑖𝑥  and  𝜀�̃�𝑒𝑑  are the complex permittivities of the 

mixture and the medium, respectively, given by 

𝜀�̃�𝑖𝑥 = 𝜀�̃�𝑒𝑑
1+2𝜑�̃�𝐶𝑀

1−𝜑�̃�𝐶𝑀
  ,    𝜀�̃�𝑒𝑑 = 𝜀𝑚𝑒𝑑 + 𝜎𝑚𝑒𝑑/𝑗𝜔 (4) 

where 𝜀𝑚𝑒𝑑  and 𝜎𝑚𝑒𝑑  are the permittivity and conductivity of the suspending medium, 𝜑 is the volume ratio of the 

cell volume to the detection volume, and 𝑓𝐶𝑀 is the Clausius-Mossotti factor of the mixture, which is given by: 

𝑓𝐶𝑀 =
�̃�𝑐𝑒𝑙𝑙−�̃�𝑚𝑒𝑑

�̃�𝑐𝑒𝑙𝑙+2�̃�𝑚𝑒𝑑
     (5) 

where 𝜀�̃�𝑒𝑙𝑙  is the complex permittivity of the cell, which incorporates all the key information regarding the cell 

dielectric properties.  



Under the assumption of small volume fraction (i.e., 𝜑 ≪ 1), substituting eqs. (2)-(4) in eq. (1) results in: 

𝑆 ≅ −𝐻(𝜔)
𝑉𝑎𝑝𝑝𝑙

𝑍𝑚𝑒𝑑

1

[1+(2𝑍𝑑𝑙/𝑍𝑚𝑒𝑑)]2 3𝜑𝑓𝐶𝑀  (6) 

Eq. (6) proves that the measured signal 𝑆 approximately linearly depends on 𝜑, conveying information on cell size, 

and 𝑓𝐶𝑀, conveying information on cell dielectric properties. However, 𝑆 also depends on details of the measurement 

system (e.g., transfer function, applied voltage, double-layer impedance, medium properties).  

The task of extracting 𝜑 and 𝑓𝐶𝑀 from the measured signal S is usually accomplished by using reference beads. 

Denoting by 𝑆𝑐𝑒𝑙𝑙  and 𝑆𝑏𝑒𝑎𝑑  the signals respectively recorded under cell or reference-bead passage, Eq. (6) yields: 

𝑆𝑐𝑒𝑙𝑙
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    (7) 

where, assuming the cell is spherical, 𝑟𝑐𝑒𝑙𝑙  and 𝑟𝑏𝑒𝑎𝑑respectively denote cell and bead radii. It is important to point 

out that details of the measurement system have been effectively cancelled out. Eq. (7) is then usually recast as: 

𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 (

𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑)
3

= 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑 𝑆𝑐𝑒𝑙𝑙

𝑆𝑏𝑒𝑎𝑑           (8) 

Here 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑  and 𝑟𝑏𝑒𝑎𝑑, relevant to reference beads, can be regarded as known quantities, whereas 𝑓𝐶𝑀

𝑐𝑒𝑙𝑙  and 𝑟𝑐𝑒𝑙𝑙  

are to be determined. The cell radius 𝑟𝑐𝑒𝑙𝑙  is usually determined using measurements at low-frequency, where the 

cell behaves like an insulating particle due to the presence of the plasma membrane, so that the Clausius-Mossotti 

factors 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  and 𝑓𝐶𝑀

𝑏𝑒𝑎𝑑  in Eq. (8) approximately cancel out, yielding: 

(
𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑)
3

=
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𝑆𝑏𝑒𝑎𝑑@𝑙𝑜𝑤 𝑓𝑟𝑒𝑞
           (9) 

After computing 𝑟𝑐𝑒𝑙𝑙  from Eq. (9), Eq. (8) can be recast as: 

𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 = 𝑓𝐶𝑀

𝑏𝑒𝑎𝑑 (
𝑟𝑏𝑒𝑎𝑑

𝑟𝑐𝑒𝑙𝑙 )
3

𝑆𝑐𝑒𝑙𝑙

𝑆𝑏𝑒𝑎𝑑           (10) 

emphasizing the linear relationship between 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  and the measured signal 𝑆𝑐𝑒𝑙𝑙 . In fact, 𝑓𝐶𝑀

𝑐𝑒𝑙𝑙  can be regarded as a 

normalized signal, conveying information on cell dielectric properties. 

It remains to extract cell dielectric properties from the spectrum of 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 , as supplied in Eq. (10) by a simple 

normalization of the measured spectrum 𝑆𝑐𝑒𝑙𝑙 . The most typical method employed to extract cell dielectric 

properties from 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  relies on standard shell-models3–5, providing modelled data to be fitted to the spectrum of 

collected experimental data on 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 . While cells have an intricate internal structure surrounded by a membrane, a 

simplified approximation can be used based on single-shell or multi-shell models, wherein a cell is described as one 

or a series of n concentric shells with defined dielectric properties. Accordingly, the modelled 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  is obtained by 

Eq. (5), whereby 𝜀�̃�𝑒𝑙𝑙 is an aggregation of the complex permittivities of all the n shells modelled. As an example, for 

the case of single-shell model, it can be computed as6: 

𝜀�̃�𝑒𝑙𝑙 = 𝜀�̃�𝑒𝑚

𝛾3+2(
�̃�𝑖𝑛𝑡−�̃�𝑚𝑒𝑚
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)

𝛾3−(
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)

  ,     𝛾 =
𝑟+𝑑𝑚𝑒𝑚

𝑟
 (11) 

where 𝜀�̃�𝑒𝑚 and  𝜀�̃�𝑛𝑡 are the complex permittivities of the membrane and of the intracellular space, respectively, 

𝑑𝑚𝑒𝑚  is the membrane thickness, and 𝑟 is the cell radius. Under the assumption 𝑑𝑚𝑒𝑚 ≪ 𝑟 it simplifies to: 

𝜀�̃�𝑒𝑙𝑙 ≅ 𝜀�̃�𝑛𝑡
𝜒

1+𝜒
  ,           𝜒 =

�̃�𝑚𝑒𝑚 𝑑𝑚𝑒𝑚⁄

�̃�𝑖𝑛𝑡 𝑟⁄
  (13) 

The complex permittivities of each specific component can in turn be calculated using: 



𝜀�̃�𝑒𝑚 = 𝜀𝑚𝑒𝑚 + 𝜎𝑚𝑒𝑚/𝑗𝜔 ,   𝜀�̃�𝑛𝑡 = 𝜀𝑖𝑛𝑡 + 𝜎𝑖𝑛𝑡/𝑗𝜔 (14) 

where 𝜀 and 𝜎 are modelled permittivities and conductivities for each component of the shell-model. In the 

simplified case of neglecting medium and intracellular permittivities, as well as membrane conductivity (i.e., 𝜀𝑚𝑒𝑑 =

𝜀𝑖𝑛𝑡 = 0, 𝜎𝑚𝑒𝑚 = 0), 𝑓𝐶𝑀 obeys a Debye relaxation: 

𝑓𝐶𝑀 = 𝑓𝐶𝑀.∞ +
𝑓𝐶𝑀.0−𝑓𝐶𝑀.∞

1+𝑗𝜔𝜏
                  (15) 

where 

𝑓𝐶𝑀,∞ =
𝜎𝑖𝑛𝑡−𝜎𝑚𝑒𝑑

𝜎𝑖𝑛𝑡+2𝜎𝑚𝑒𝑑
  ,   𝑓𝐶𝑀,0 = −

1

2
  ,   𝜏 =

𝑟𝜀𝑚𝑒𝑚

𝑑𝑚𝑒𝑚
(

1

𝜎𝑖𝑛𝑡
+

1

2𝜎𝑚𝑒𝑑
)       (16) 

These simplified formulas show that the features of the experimental spectrum of 𝑓𝐶𝑀 convey information on cell 

constituents: e.g., the high-frequency behaviour is related to the intracellular conductivity, whereas the relaxation 

frequency 1/(2𝜋𝜏) conveys information on membrane properties. 

In the general case, the modelled permittivities and conductivities can be comprised of a range of values which will 

be iterated by the fitting algorithm. This fitting process relies on the acquisition of data at a wide frequency range, 

so that the different cellular components probed at each frequency region can provide information about the overall 

mixture. The developed models are then iterated in order to identify the specific combination of dielectric 

parameters which give an optimal fit to the data. The specific fitting process implemented (e.g. least mean squares) 

can be developed based on the computational tools available. 

Effectively, a series of modelled 𝑓𝐶𝑀 values are calculated based on iterative dielectric properties. A common practice 

is to calculate the Real (ℜ(𝑓𝐶𝑀)) and Imaginary (ℑ(𝑓𝐶𝑀)) parts of the Clausius-Mossotti factor, and to generate the 

corresponding relaxation curves. Both population-based spectra1 (Fig. S1A) and single-cell spectra2 (Fig. S1B) have 

been presented in the literature. By fitting each curve to the Real and Imaginary parts of the experimental impedance 

data and obtaining the optimal fit, the dielectric properties of the particle can be estimated (Fig. S1). 

 

Fig. S1 – Multi-shell model fitting to experimental data of (A) malaria parasite infected-RBCs and (B) a ghost RBC for both the Real 
and Imaginary parts of the mixture impedance. Images were adapted with permission from (A) ref. 1, copyright 2018 The Royal 
Society; and (B) ref. 2, copyright 2020 American Chemical Society. 

 

  



S2. Comparison of modelling approaches used in microfluidic impedance cytometry 

Table S1: Comparison of the three modeling approaches (cf. Section 3.2 of the main text and Refs.7,8) 

Modelling approach Advantages Disadvantages Main application 

Maxwell’s mixture 
theory (MMT) 

Closed form description of cell 
polarization in electric fields; 
Useful to understand the physics 
behind the experimental 
phenomenon; 
Low computational cost. 
 

Limited to:  
low volume fraction; 
spherical/ellipsoidal particles and 
associated single/multi shell 
models; 
quasi-homogeneous fields 
distribution (i.e., cell centred 
between electrodes). 

It is the standard approach to 
compute cell dielectric properties 
by fitting simulated impedance 
spectra to measured ones. 

Equivalent circuit 
models 

Easy to understand from an 
electrical engineer point of view; 
Low computational cost;  
Easily integrated with circuit 
analysis software to simulate the 
whole measurement system. 

Not direct link with cell intrinsic 
biophysical properties;  
Such link requires introducing 
further modelling (e.g., MMT and 
shell-models), thus inheriting their 
limitations. 

Useful for measurement system 
optimization (e.g., to find the 
optimal frequency to achieve the 
maximum measurement 
sensitivity). 

Finite element 
method 

The analysis can be performed for 
any channel/cell geometry and 
dielectric structure, and for any cell 
position in the channel. Therefore, 
the impedance trace recorded as 
the cell flows through the device 
can be simulated. 

High computational cost to obtain 
accurate results; 
Need for suitably designed meshes; 
Long simulation times. 
 
 

It is a powerful tool for in-silico 
chip design and optimization; 
Simulated impedance traces are 
useful to interpret the 
experimental ones and can be 
used to test signal-processing 
routines.  

 

 

  



S3. An approach for high-throughput quantification of bioelectrical markers (Zhang et al.9) 

 

Fig. S2: Microfluidic platform and associated equivalent circuit model developed by Zhang et al. 9. The equivalent circuit model is 
used to quantify single-cell intrinsic bioelectrical markers (specific membrane capacitance Csm, cytoplasm conductivity σcy and cell 
diameter of Dc) by using the electrical features extracted from the impedance amplitude and phase waveforms at two frequencies 
(100 kHz and 250 kHz), along with geometrical parameters of the constriction channel. Reprinted with permission form ref. 9, 
copyright 2020 Elsevier B.V.. 

 

  



S4. Machine learning-based analysis of impedance cytometry data 

Table S2: Survey of recent works using machine learning to analyze impedance cytometry data streams or impedance-based 
cell features (RNN: Recurrent Neural Network; bi-LSTM: bidirectional long short-term memory; FEM: Finite Element Method; 
RMSE: root mean squared error). For an introduction to the basic glossary and concepts of machine learning in microfluidics the 
Reader is referred to e.g. Riordon et al.10. 

Neural-networks for processing of impedance cytometry data streams 

Application Network type Data set  Results Ref. 

Real-time 
processing of 
impedance 
cytometry data 
streams. 

Regression RNN with 4 layers 
(input, bi-LSTM, fully connected, 
regression). 
The bi-LSTM layer has one 
hundred hidden units and uses 
a hyperbolic tangent activation 
function. 

Synthetic (FEM) datasets 
(known target features); 
Experimental datasets 
relevant to beads (5,6, and 
7 μm diameter), yeasts, 
RBCs. Target features are 
obtained with a template-
fitting approach. 

Prediction of cell/particle diameter, 
velocity and position; RMSE of 
predicted values with respect to 
target values (bead mixture): 0.09 μm 
(diameter), 2.2% (velocity), 2.4% 
(position). 
Unit prediction time below 0.4 ms. 

Honrado et 
al. 202011 
 

Pattern 
recognition in 
signal 
waveforms from 
a Coulter sensor 
network, 
including 
interference 
patterns. 

Region Proposal Network (RPN) 
followed by Sensor Classification 
Network (SCN). 
They are Convolutional Neural 
Networks (CNN), with several 
layers including: convolutional 
layers, rectified linear units 
(ReLU), pooling layers and fully 
connected layers.  

Experimental data from 
human ovarian, breast and 
prostate cell lines. 
Data augmentation based 
on power and duration 
scaling. 
Correlation-based labelling 
of the signal waveform. 
Benchmarking against 
optical images. 

Prediction of size, velocity and 
location of each particle detected. 
Recognition of interference patterns 
of Coulter sensor waveforms to 
resolve data from coincidence 
particles. 
Unit prediction time 0.61 ms (RPN) 
and 0.67 ms (SCN). 

Wang et al. 
201912  

Fast coincidence 
resolution for 
increased 
throughput. 

Classification RNN with 5 layers 
(input, bi-LSTM, fully connected, 
softmax, classification) followed 
by Regression RNN with 4 layers 
(input, bi-LSTM, fully connected, 
regression). 

Synthetic (FEM) datasets 
(known target features); 
Artificial dataset created 
by superposition of single-
particle events.  

Prediction of event class: singlet, 
doublet, triplet, quadruplet; 
Prediction of single-particle event 
features (amplitude, width, transit 
time).  

Caselli et al. 
202013  

Machine learning for feature-based population clustering 

Application Network type/Approach Data set Results Ref. 

Pattern 
recognition to 
classify cell 
types based on 
characteristic 
dielectric 
properties of 
single cells 

Feed forward neural network 
with 2 layers (hidden and 
output), and with sigmoid 
hidden and softmax output 
neurons. A loop function was 
used to enumerate the hidden 
neuron number to avoid 
inappropriate selections of 
neuron numbers. 

Estimated dielectric 
properties data from lung 
cancer cell lines A549 & 
H1299; 
Data was divided into 
training (70%), validation 
(15%) and testing (15%) 
subsets. 

Cell classification success rates of 
89.1% when using Csm alone, 81.2% 
when using σcy alone and 90.9% when 
taking in consideration both dielectric 
properties, were obtained between 
H1299 and HeLa cells. 
Cell classification success rates of 
71.7% when using Csm alone, 74.2% 
when using σcy alone and 76.5% when 
taking in consideration both dielectric 
properties, were obtained between 
A549 and EMT-activated A549. 

Zhao et al. 
201814 

Classification of 
cell types based 
on measured 
impedance and 
deformability 
parameters of 
single cells 

Back propagation neural 
network with 3 layers (input, 
hidden and output) and a 
sigmoid activation function. 

Measured impedance and 
deformability data of MCF-
7 cells; 
Data was divided into 
training (70%), validation 
(15%) and testing (15%) 
subsets. 

Cell classification success rates of 
87.8% when using impedance alone, 
70.1% when using total transit-time 
alone, 42.7% when using relaxation 
index alone and 93.3% when taking in 
consideration impedance, transit-
time and relaxation index were 
obtained between MCF-7 cells with 
different drug treatments. 

Yang et al. 
201915 
 

Prediction of 
cell viability 
based on 
measured 
impedance data 
of single cells 

Support vector machines for 
classification and regression with 
a Gaussian Kernel for calculation 
of the Euclidian distance squared 
between two feature vectors, 
and a 8-feature matrix 
(impedance data at 4 different 
frequencies). 

Measured impedance data 
of T47D cells; 
Training dataset 
comprised of 3 different 
tumor cell test samples of 
varying viability (90% live, 
50% live and 82% live) 

Viability classification of cells using 
impedance magnitude and phase 
data at 500 kHz, 20 MHz, 25 MHz and 
30 MHz resulted in a confusion matrix 
with a classifier accuracy of 95.9%, a 
True Positive rate of 95% and a True 
Negative rate of 97%. 

Ahuja et al. 
201916 
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