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Supporting Information S3 – Additional performance evaluations 
For main article “Spec2Vec: Improved mass spectral similarity scoring through learning of 

structural relationships”, Florian Huber, Lars Ridder, Stefan Verhoeven, Jurriaan H. Spaaks, Faruk 

Diblen, Simon Rogers, Justin J.J. van der Hooft. 
 

Is this supplemental material we present additional evaluations of the modified cosine score 

reliability, and further inspect the computational performance of Spec2Vec (also in comparison 

to cosine-based scores). Finally we here further discuss the option to retrain pre-trained 

Spec2Vec model on additional data. 
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Analysis of modified cosine reliability 

We noted a large amount of false positive among the spectra pairs with high cosine or modified 

cosine scores. With false positives we here mean spectral pairs that receive a high spectra 

similarity but a low structural similarity score. This clearly shows in histograms of all structural 

similarities which belonged to pairs that received spectra similarity scores above a set threshold. 

For a given score, for instance modified cosine, we would select all pairs across the 

UniqueInchikey dataset (12,797 spectra, total of 81,875,206 unique pairs when excluding pairs 

of spectra with themselves) with a modified cosine score > 0.7, 0.8, etc. and create a histogram 

of the corresponding structural similarity values (Fig A). Even though we already use a relatively 

small peak m/z tolerance of 0.005 Da (preventing the collapse of too many mass fragments with 

different elemental formulas into one mass bin), the min_match criteria also clearly has to be 

raised to obtain acceptable results. In comparison, Spec2Vec similarities show a visibly lower 

amount of false positives (Fig A, lower right). 

We also consider this one of the reasons for the notably poorer correlation between cosine and 

modified cosines scores and structural similarities (Fig 3 in main manuscript). 
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Fig A. Histograms of all structural similarity scores (Tanimoto) within the UniqueInchikey dataset for which the respective 

similarity scores are above a set threshold. Scores between identical spectra are excluded here. Thresholds between 0.7 to 0.98 

were used to create the displayed histograms and are shown on the plot axis. The number of pairs that fitted the criteria (min-

match and > threshold) is written on the top right of each histogram. (A) Modified cosine scores without requiring multiple 

machine peaks between two spectra results in drastic numbers of false positives (=low Tanimoto scores despite spectra similarity 
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scores > threshold). (B) Raising the minimum number of matches to 6 already improves the reliability of the modified cosine score 

notably. Still, even for comparably high thresholds (scores > 0.9 or > 0.95) a considerable fraction of all pairs with high modified 

cosine scores do not correspond to similar molecules. (C) For a minimum of 10 matching peaks the reliability further improved, 

but also the number of pairs fulfilling this criteria continues to drop. (D) Spec2Vec similarities also show notable levels of false 

positives, in particular for lower thresholds (0.7), but generally are visibly more shifted towards high Tanimoto scores when 

compared to the modified cosine scores. Absolute threshold values are hard to compare. For instance, a Spec2Vec similarity of 

0.9 could be more or less common than a cosine score of 0.9 for a given setting. In (E) we hence compare three histograms that 

represent roughly equal numbers of spectra pairs (between 8,622 and 10,892). This shows that for comparable retrieval rates, 

high Spec2Vec scores  correlate less frequently with very low molecular similarities. 

 

Similarity score performance 

Jupyter notebook for performance analysis and plots: 

https://github.com/iomega/spec2vec_gnps_data_analysis/blob/master/notebooks/iomega-

extra-classical-spectra-similarities-performance-analysis-synthetic-data.ipynb 

 

When applying the different scores we noted large performance differences between the cosine-

based score calculations and the Spec2Vec similarity calculations. Both the used implementation 

for the cosine scores (CosineGreedy) as well as Spec2Vec show computation times that scale 

linearly with the number of peaks in a spectrum (Fig B and E). An important difference is that 

Spec2Vec implementation is largely dominated by the step to compute the spectrum 

embeddings. When large arrays of spectra are compared, the implementation only computes the 

embeddings of all spectra once, and thereby increasingly reduces the problem to a simple cosine 

similarity calculation between arrays of 300-dimensional float vectors. This is a very efficient 

operation and results in a large performance advantage of Spec2Vec when compared to cosine-

based scores whenever large arrays of spectra are compared, or -more generally- when the 

embeddings are calculated once and are stored (Fig D). 

We also see such behavior when calculating very large all-vs-all similarity score matrices.  For the 

UniqueInchikeys dataset, for instance, we computed the cosine-based similarity scores for all 

possible pairs between the 12,797 spectra (81,875,206 unique pairs), which --depending on the 

pre-processing and parameters used-- takes several hours on a standard CPU to compute. The 

precise computation time is highly dependent on the peak filtering, for the present noise filtering 

settings. When run on an Intel i7-8550U, the computation took 140 minutes (CosineGreedy). The 

number of matching peaks and the actual scores can be computed simultaneously (using 

matchms [1]) which allows to run the entire possible min_match range at once.  

For comparison, calculating the Spec2Vec similarities for the same 81.8*106 pairs took about 5 

minutes (from spectra to scores, hence including the computationally more expensive 

embedding creation step). 

Both implementations have not yet been optimized for parallel execution, which for such a task 

in principle is well suited. We expect that this could improve all mentioned scores (cosine-based 

and Spec2Vec) by a factor of 2 to 4 for the hardware used (Intel i7-8550U CPU, 4 cores). 

https://github.com/iomega/spec2vec_gnps_data_analysis/blob/master/notebooks/iomega-extra-classical-spectra-similarities-performance-analysis-synthetic-data.ipynb
https://github.com/iomega/spec2vec_gnps_data_analysis/blob/master/notebooks/iomega-extra-classical-spectra-similarities-performance-analysis-synthetic-data.ipynb
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In the following we present the results of some basic experiments for comparing performances 

of the different similarity scores. All results were computed on an Intel i7-8550U.  

 

Cosine score: 

At the heart of the cosine-based spectra similarity score between two spectra S1 and S2 lies a 

peak pairing or peak matching step which makes sure that each peak of S1 cannot be matched to 

more than one peak of S2. This represents an “assignment problem” which usually is approached 

by approximations to avoid that it takes polynomial time [2].  

We now provide two implementations for deriving the cosine spectra similarity score within the 

Python package matchms. The implementation used for the present work is CosineGreedy which 

takes linear time due to the use of a greedy implementation. The underlying Python code code 

was further optimized using Numpy [3] and Numba [4]. The greedy implementation did make it 

possible to avoid the very undesired, sharp rise of computation time that can be seen for the 

exact solution which is provided as CosineHungarian (Hungarian algorithm using scipy [5], see Fig 

C).  

 
Fig B. (Left plot) Computation times for the cosine spectra similarity score as dependence of the number of peaks 

per spectrum. 100 spectra are randomly generated with the given number of peaks within the m/z range of [100.0, 

600.0]. Used parameters were tolerance=0.005, mz_power=0, and intensity_power=1.0. For our CosineGreedy 

implementation the computation time takes linear time with respect to the number of peaks (as well as with the 

number of pairs to compute). The standard deviation over 10 independent runs is displayed as error bars. (Right 

plot) The underlying assignment problem is expected to scale with the number of pairs, which depends on the 

number of peaks, but also on the set tolerance value. Varying the tolerance from 0.001 Da to 1.0 Da for a randomly 

generated spectra (500 peaks within m/z range of [100.0 to 500.0]), the computation time increases linearly with 

the tolerance. 

 

Hungarian implementation: 
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Fig C. Running the same experiment as the one shown in Fig B using the CosineHungarian implementation which is 

meant to achieve an exact solution of the underlying assignment problem. As expected, this implementation runs in 

polynomial time with drastically reduced performance for spectra that contain large numbers of peaks. We included 

the results for CosineGreedy for better comparison. 

 
Fig D. Computing an all-vs-all CosineGreedy similarity matrix from N randomly generated spectra (200 peaks 

between 100.0 and 600.0 m/z), with N ranging from 1 to 1000, using CosineGreedy (left) and, with N ranging from 1 

to 3000 using Spec2Vec (right). While the cosine spectra similarity calculation shows a constant computation time 

per score, Spec2Vec varies by several orders of magnitude when run on larger arrays of spectra simultaneously. 

 

 

Comparison to Spec2Vec similarity score 

Deriving the Spec2Vec similarity between two spectra consists of three steps. The spectra need 

to be converted to documents (which is fast and was included in the preprocessing pipeline), 

then the documents are used to create an embedding vector, and finally the cosine similarity is 

calculated from the embedding vectors of two spectra. 
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Computationally, creating the embedding vector is the most expensive step. We hence provide 

a Spec2Vec.matrix() method that makes use of the fact that much fewer embedding needs to be 

calculated when comparing multiple spectra simultaneously. While computing a single similarity 

score between two spectra is generally slower than a cosine spectrum similarity score (if 

embeddings need be newly created), Spec2Vec is able to outperform the cosine spectrum 

similarity when larger arrays of spectra are compared to each other (see Fig E) or - more in 

general - when the spectra embeddings are created calculated once and then stored. The lower 

limit of this computation is the simple cosine similarity calculation between 300-dimensional 

float vectors which is a very fast and efficient operation (6∗ 10-4 ms per score on an Intel i7-8550U 

CPU, see Fig F). 

 

 
Fig E. (left plot) The computational cost for Spec2Vec similarities also increases linearly with the number of peaks in 

the spectra, but it drastically depends on the number of spectra that are compared simultaneously. (Right plot) 

Computing an all-vs-all similarity matrix from N randomly generated spectra (500 peaks between 100.0 and 600.0 

m/z) using Spec2Vec, with N ranging from 1 to 1000. While N=1 does require 2 embeddings (reference + query 

spectrums) for 1 single score, N=1000 only requires deriving 2x1000 embeddings for 106 scores. The lower limit here 

was estimated to be 6∗ 10-4 ms, which corresponds to the computational time of a cosine similarity calculation 

between two 300-dimensional float arrays (see Fig F). 
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Fig F. Computing an all-vs-all similarity matrix from N randomly generated embedding vectors (300 dimensional). 

This can be considered the maximum achievable performance of Spec2Vec similarity calculations, for instance if 

spectrum embeddings are pre-calculated and stored. 

 

 

Model retraining 

Jupyter notebook: 

https://github.com/iomega/spec2vec_gnps_data_analysis/blob/master/notebooks/iomega-

extra-evaluate-retraining-effect-5000subset.ipynb 

 

Spec2Vec is an unsupervised technique. As such it allows it to be trained on the same data it later 

is applied on. In general, we see three main ways to apply Spec2Vec to a specific mass spectral 

dataset.  

1) Using a pre-trained model (pre-trained on a large set of spectra, ideally with large 

overlap of instrument types and compound classes) 

We trained a model on a large set of positive ionmode spectra (AllPositive dataset), 

which can be downloaded here: https://doi.org/10.5281/zenodo.4173596  

2) Updating a pre-trained model by a short additional training on the desired dataset. 

3) Training a new model from scratch based on the desired set of spectra. 

 

To explore the potential of updating an existing model by re-training it, we ran the library 

matching experiment (main article, Fig 4) and the unknown compound search experiment (main 

article, Fig 5) with additional re-training of the models using the query spectra. Interestingly, we 

https://github.com/iomega/spec2vec_gnps_data_analysis/blob/master/notebooks/iomega-extra-evaluate-retraining-effect-5000subset.ipynb
https://github.com/iomega/spec2vec_gnps_data_analysis/blob/master/notebooks/iomega-extra-evaluate-retraining-effect-5000subset.ipynb
https://doi.org/10.5281/zenodo.4173596
https://doi.org/10.5281/zenodo.4173596
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do not see any significant improvement for these cases and speculate that the data used for the 

initial training (>76,000 spectra) already contains enough features to cover the removed query 

spectra well enough. This is also in agreement with an additional experiment where different 

fractions of spectra were removed from the UniqueInchikey dataset (see Fig H).  

 
Fig G. (left plot) The library matching experiment (see main article, Fig 4) was also run using a Spec2Vec model that 

was retrained on the query spectral, and a Spec2Vec model trained on the entire AllPositive dataset. Differences 

between those three scenarios are very minor and can be expected to be within the error margin. (right plot) The 

same was done for the “unknown compound search” experiment (see main article, Fig 5), which again only shows a 

minor (or none) improvement when retraining the model or when including all query spectra in the initial training 

(training on entire AllPositive dataset). 

 

In the experiment shown in Fig H it can be seen that models trained on only a small fraction of 

the data do strongly benefit from additional training on the missing data. However, for models 

trained on a large fraction of the data, the results of retraining usually remain inconclusive. We 

conclude that retraining is recommended in cases where a) the dataset Spec2Vec should be 

applied contains a significant number of spectra with respect to a pretrained model and/or b) if 

the training dataset contains a comparable small number of spectra. We would speculate that 

retraining might also be beneficial if the dataset in question is expected to contain spectra of 

notable different types (e.g. entirely different compound classes or instruments), though this 

would need further exploration. 
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Fig H. Experiment on the effect of model retraining. Different models were tested on a subset of UniqueInchikey 

(containing 5000 spectra). Dotted lines: Models were trained on only a part of the dataset (500, 1000, or 2500 out 

of 5000 spectra) for 25 epochs using the before mentioned default settings. Solid lines: The same 3 models 

underwent retraining on the missing spectra for 5 epochs. 
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